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   Abstract: Aims: To develop a tool that can annotate subcellular localization of human proteins. 
Background: With the progression of high throughput human proteomics projects, an enormous 
amount of protein sequence data has been discovered in the recent past. All these raw sequence data 
require precise mapping and annotation for their respective biological role and functional attributes. 
The functional characteristics of protein molecules are highly dependent on the subcellular localiza-
tion/compartment. Therefore, a fully automated and reliable protein subcellular localization prediction 
system would be very useful for current proteomic research.  
Objective: To develop a machine learning-based predictive model that can annotate the subcellular lo-
calization of human proteins with high accuracy and precision. 
Methods: In this study, we used the PSI-CD-HIT homology criterion and utilized the sequence-based 
features of protein sequences to develop a powerful subcellular localization predictive model. The da-
taset used to train the HumDLoc model was extracted from a reliable data source, Uniprot knowledge 
base, which helps the model to generalize on the unseen dataset.  
Results: The proposed model, HumDLoc, was compared with two of the most widely used tech-
niques: CELLO and DeepLoc, and other machine learning-based tools. The result demonstrated prom-
ising predictive performance of HumDLoc model based on various machine learning parameters such 
as accuracy (≥97.00%), precision (≥0.86), recall (≥0.89), MCC score (≥0.86), ROC curve (0.98 square 
unit), and precision-recall curve (0.93 square unit).  
Conclusion: In conclusion, HumDLoc was able to outperform several alternative tools for correctly 
predicting subcellular localization of human proteins. The HumDLoc has been hosted as a web-based 
tool at https://bioserver.iiita.ac.in/HumDLoc/. 
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1. INTRODUCTION 

 The biological cell is a complex structural unit with vari-
ous functionally distinct subcellular compartments/ loca-
tions. These subcellular compartments include the cell mem-
brane, cytoplasm, nucleus, endoplasmic reticulum, golgi-
apparatus, mitochondria, and extracellular region, each with 
a defined set of roles. The major role of subcellular localiza-
tion is to provide a functional environment for proteins [1]. 
They also affect the function of proteins by controlling the 
availability and access of partner molecules across different 
localizations [2]. Since the eukaryotic cell synthesizes more 
than ten thousand different types of proteins, and each pro-
tein performs its optimal function in specific subcellular  
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localization; hence, translocation of these proteins into their 
respective subcellular locations is very important [3]. It has 
been reported that, if a protein fails to shift into its respective 
subcellular location, serious disorders or functional loss can 
occur [4-9]. Hence, the accurate identification of subcellular 
localization of a protein is a crucial step for its functional 
annotation and to decide its role in underlying complex bio-
logical processes. 
 The traditional approach to determine the subcellular local-
ization of protein depends on biochemical experiments such as 
fluorescence microscopy, electronic microscopy, and cell sep-
aration methods [10]. However, for a single protein, these 
methods are very labor-intensive and often time-consuming. 
In today’s post-genomic era, given the rate at which protein 
data is generated, a reliable automated method is required that 
can precisely predict the subcellular localization of protein 
molecules [11]. Automating this process with higher accuracy 
remains a challenging task in computational biology.  
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 There are several computational approaches for predict-
ing the subcellular localization of proteins; the techniques 
could be categorized as follows: 
 Composition based method: These methods use classical 
machine learning approaches, such as Artificial Neural Net-
work (ANN) [8, 12, 13], and Support Vector Machine 
(SVM) [14-21] to predict the subcellular localization of pro-
tein. The methods included in this category are CELLO [19, 
20], and P-CLASSIFIER [22], which use amino-acid com-
position based features to predict subcellular localization of 
proteins. 
 Integrated method: These methods also make use of ma-
chine learning approaches, but include several other structur-
al and functional attributes of protein as their feature space to 
predict the subcellular localization. The methods included in 
this category are PSLpred [22], PSORTb [23, 24] and, 
EvoStruct-Sub [25], which integrates various analytical pro-
tein characteristics as their feature space, demonstrating that 
integrated approaches perform better than individual feature 
approaches. 
 Homology based method: These methods are based on 
the assumption that there exist several conserved traits 
among protein sequences belonging to specific subcellular 
localization. These techniques make an effort to address the 
relationship between the subcellular localization and evolu-
tionary information by using a sequence-based similarity 
profile. The methods included in this category are homolo-
gy-based method [26], domain projection [27-29], and phy-
logenetic profiling [30, 31]. 
 However, there exist various challenges in such subcellu-
lar localization prediction models, which can be summarized 
as follows: i) the composition-based and homology-based 
methods degrade their performance if homologous sequences 
are not captured while training the model parameters. ii) 
there is a possibility that highly-homologous sequences share 
the same structure or function; however, it is not necessary 
that they belong to the same subcellular localization. This 
results in wrong classifier training, preventing it from cor-
rectly annotating the subcellular localization of proteins. iii) 
composition-based approach is further limited to amino acid 
composition based features, which are essentially not capa-
ble of capturing other important features for the prediction. 
Meanwhile, the integrated-based method tries to incorporate 
various features but suffers from overfitting problems. It is 
also difficult to determine all the crucial set of features relat-
ed to a specific subcellular compartment. Finally, the above 
said subcellular localization prediction models use redundant 
training sets, which overestimate the prediction performance. 
It often results in poor performance with a significantly low-
er accuracy score, while redundant sequences were removed 
from the training set. Furthermore, due to unconscious bias 
in feature selection as well as due to human error, the classi-
fier was splashed into local minima and mis-predicted the 
query point. This makes the machine learning model less 
reliable among the biologists. However, the situation 
changed after the emergence of deep neural networks [32, 
33]. These networks are capable of adjusting the connection 
weights based on feature importance for classification [11]. 
 In this study, a DNN based approach, HumDLoc, is in-
troduced to predict the subcellular localization of proteins. 
Utilizing DNN with several hidden layers as compared to 

conventional ANN enables HumDLoc to capture robust fea-
tures from the training dataset, i.e., the fully connected initial 
layers learn simplex features and then forward these features 
to subsequent layers to learn complex features for classifica-
tion [34]. HumDLoc was also compared with other classifi-
cation approaches such as K-nearest neighbor (K-NN), 
Gaussian Naive-Bayes (GNB), SVM, Random Forests (RF), 
and other existing tools. The comparison result suggests that 
HumDLoc outperforms the other approaches.  
 To develop a reliable classification model, HumDLoc 
followed Chou’s 5-step rules [35]. The five key points sum-
marized by Chou to develop a reliable model are as follows: 
i) Design a valid dataset from a reliable source. ii) Formulate 
the dataset sample in such a way that it can truly represent a 
correlation with a predicted target. iii) Develop an algorithm 
that can automate the prediction process. iv) Perform Cross-
fold validation to evaluate the performance of the developed 
model. v) Provide a user-friendly server to the public. In our 
study, the five steps corresponding to Chou’s five-step rules 
are as follows: i) we design dataset from UniProt, which is a 
reliable database for protein sequences. ii) To represent se-
quence information in the form of machine learning trainable 
units, we convert them into a feature vector, which correlates 
with predicted targets. iii) To perform a reliable classifica-
tion, we develop a DNN based HumDLoc model. iv) Cross-
validation is performed to evaluate the performance of the 
model. v) To demonstrate our findings, the HumDLoc tool 
was implemented and hosted as a user friendly and publicly 
accessible web prediction server, which is available on serv-
er interface https://bioserver.iiita.ac.in/HumDLoc/. 

2. MATERIALS AND METHODS 

2.1. Dataset Collection and Preprocessing 

 The prediction quality of any machine learning model is 
highly dependent on the reliability of the training dataset. In 
our study, protein sequences were extracted from Uniprot 
Knowledgebase, release 2019_03 [36] for training the 
HumDLoc model. The Uniprot Knowledgebase consists of 
two sections: UniProtKB/Swiss-Prot, which contains re-
viewed and manually annotated protein subcellular localiza-
tion entries, and UniProtKB/TrEMBL, which contains non-
reviewed and automatically annotated protein subcellular 
localization entries. To extract reliable protein entries from 
Uniprot knowledgebase, the following filtering criteria were 
used: Organism: Homo sapiens, Sequence: not a fragment 
(C-terminal or N-terminal should be absent), longer than 30 
amino acids, does not contain non-amino acid character, 
manually annotated and reviewed. To increase the number of 
protein sequences in each localization/compartment, similar 
subcellular localization or subclasses of the same subcellular 
localization were mapped to 7 main subcellular compart-
ments. Moreover, protein sequences were labeled as a mem-
brane or soluble if they were found either in the membrane 
or the lumen of the organelle; if no information was availa-
ble for the protein sequence, then they were filtered out. Pro-
tein sequences with more than one subcellular localization 
were also removed. After the filtering process, a total of 
4,418 human protein sequences with unique subcellular lo-
calizations were obtained. The number of protein sequences 
and the mapped subclass of each main subcellular location is 
summarized in Table 1. 
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Table 1. Summary of human protein subcellular localization. 

S. No. Subcellular Localization/Compartment Number of Proteins Subclass 

1 Nucleus 1251 
Nucleus, Nucleus Matrix, Nucleolus, Nucleus lamina, Nucleus enve-

lope, Nucleus speckle, Nucleus inner membrane, Nucleus Outer Mem-
brane, Nucleus Membrane, Chromosome. 

2 Cell Membrane 1045 
Cell Membrane, Apical cell membrane, Basal cell membrane, Basolat-
eral cell membrane, Lateral cell membrane, Cell Projection, lamellipo-

dium, axon, dendrite, filopodium, Phagocytic cup. 

3 Cytoplasm 764 
Cytoplasm, Microtubule, Stress fiber, Spindle, myofibril, Spindle Pole, 

Centrosome, Cytoskeleton, Cytosol, sarcomere, A band, M line, H 
zone, Z line, I band, microtubule organizing center. 

4 Extracellular 578 
Extracellular, Secreted, Extracellular Space, Extracellular Matrix, 

Basement membrane, surface film, Interphotoreceptor matrix. 

5 Mitochondrion 456 
Mitochondrion, Mitochondrion outer membrane, Mitochondrion Ma-

trix, mitochondrion nucleoid, Mitochondrion Membrane, Mitochondri-
on Inner Membrane, Mitochondrion intermembrane space. 

6 Endoplasmic Reticulum 230 

Endoplasmic Reticulum, Endoplasmic reticulum Membrane,  Sarco-
plasmic Reticulum, Microsome, Endoplasmic Reticulum Lumen, Mi-
crosome membrane, Rough endoplasmic reticulum, Rough endoplas-

mic reticulum lumen, Smooth endoplasmic reticulum membrane. 

7 Golgi Apparatus 94 

Golgi Apparatus, Golgi Network, Golgi Apparatus Lumen, Golgi appa-
ratus Membrane, Cis Golgi network, cis-Golgi network membrane, 
Golgi stack membrane, trans-Golgi network membrane, Golgi stack 

trans-Golgi network. 

 
 After the mapping process, a stringent homology parti-
tion was performed on said above-mapped dataset, which 
will ensure that HumDLoc generalizes on the new dataset. 
To do this, PSI-CD-HIT [37] tool was used, which cluster 
homologous proteins based on certain constraints. The con-
straints used in this study can be summarized as follows: if 
proteins are at least 30% identical, and if alignment covers at 
least 80% of the shorter sequence, then proteins are mapped 
onto the same cluster, otherwise on different clusters. This 
clustering process produced 3079 clusters for the whole da-
taset. Following this step, proteins from each cluster were 
mapped to one of three folds (train fold, validate fold, and 
test fold) in such a way that all folds contain distinct sets of 
protein. 

2.2. Feature Calculation 

 Protein sequences were converted into numerical fea-
ture vectors by “protr” [38], a library package, from the R 
software environment [39]. The calculated features include 
conjoint triad, pseudo amino acid composition, CTD 
(Composition, Transition, and Distribution), quasi se-
quence order features, autocorrelation, and amino acid 

composition. The descriptions related to features are sum-
marized in Table 2. 

2.3. Supervised Machine Learning Algorithm 

2.3.1. HumDLoc 

 HumDLoc is based on DNN with multiple hidden layers 
for classification, unlike conventional ANN [40]. Fig. (1) 
depicts the architecture of the HumDLoc training kernel. The 
initial input layer contains 600 self-learning units called neu-
rons. The initial layer receives protein as an input, represent-
ed by [1 X 9920] feature vectors, and projects them onto 600 
neurons of the first hidden layer to learn the simplex features 
for classification. These simplex/learned features are used as 
input for the batch normalization layer, which avoids the 
problems caused due to the internal covariate shift [41]. 
However, since every feature is not important for classifica-
tion, a dropout layer is used to randomly drop some neuron 
connection before transferring the learned simplex feature to 
the next layer. The same procedure was used for subsequent 
hidden layers with 400 and 200 neurons, respectively. Final-
ly, the last layer contains seven output neurons, which corre-
sponds to seven subcellular localization. 
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Table 2. List of protein sequence features calculated using ‘protr’. 

Sl. No. Feature Group Feature Name Dimension 

1 Conjoint Triad Conjoint Triad 343 

2 Pseudo-Amino Acid Composition 

Pseudo-Amino Acid Composition 50 

Amphiphilic Pseudo-Amino Acid Composition 80 

3 CTD 

Composition 21 

Transition 21 

Distribution 105 

4 Quasi-Sequence-Order 

Sequence-Order-Coupling Number 60 

Quasi-Sequence-Order Descriptors 100 

5 Autocorrelation 

Moran Autocorrelation 240 

Geary Autocorrelation 240 

Normalized Moreau-Broto Autocorrelation 240 

6 Amino Acid Composition 

Amino Acid Composition 20 

Dipeptide Composition 400 

Tripeptide Composition 8000 

 

 
Fig. (1). Architectural view of the HumDLoc model. The vertical rectangular bars represent the layer of HumDLoc model, and dotted lines 
between the two layers represent a fully connected connection. 
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A deep neural network model for predicting the subcellular 
localization can be defined by equation (1).  

! = !!(!) (1) 

Where ! represents the predicted subcellular localization, fp 
represents learned function with hyperparameters p, and X 
represents the feature vector of protein under consideration. 

 In general, single learnable units or neurons in the hidden 
layers are fully connected to the previous layer of neurons. 
However, in a large network, these fully connected neurons 
create problems of co-adaptation, i.e., if all neurons try to 
learn their weights together, some neurons had more predic-
tive power than others. To avoid such problems, dropout 
layers were introduced in the proposed DNN model. Also, 
with the dropout layers, neurons in each hidden layer be-
come more robust and learn useful features on their own 
without relying on other neurons [42]. Dropout refers to the 
act of randomly dropping some neurons, along with its in-
coming and outgoing connection from the network during 
the training phase of the model based on a dropout rate (hy-
perparameter), and constructs a new network on which for-
ward and backpropagation is applied. Thus, training a drop-
out neural network is similar to training a collection of 2m 
neural networks, where m is the number of neurons. But, 
during the testing phase, the idea is to use single neural net-
works without the dropout layer. To do so, if a neuron is 
present with probability p during the training phase, the out-
going weight of that neuron is multiplied with probability p 
in the testing phase. This ensures that each individual neuron 
will learn its own useful features for classification and avoid 
the problem of overfitting of the training dataset. 

 To overcome the problem related to internal covariate 
shift, a batch normalization layer was introduced in a deep 
neural network. The internal covariate shift creates a prob-
lem in classification during the training phase of DNN, due 
to the differential distribution of training dataset in hidden 
layer neurons. The batch normalization layer receives the 
output of the previous layer and normalizes it before for-
warding it to the next layer. The other parameters used to 
train HumDLoc, known as “adam” optimizer (adaptive 
learning rate optimizer) [43], was used to minimize the loss 
function. Although several optimizers have been proposed in 
the literature [44-46] due to different effect of chosen scalar 
products [47], we used “adam” optimizer, since the purpose 
of this optimizer is to provide different learning rate for neu-
rons based on the classification outcome. At the output layer, 
the softmax activation function was used, which maps the 
output between 0 and 1. For other layers, the “relu” activa-
tion function was used. However, the drawback of this acti-
vation function has been identified in some recent works [48, 
49], but the quantitative evaluations have shown the high 
performance of the “relu” function in the proposed network 
model with our datasets. To train the HumDLoc model, early 
stopping criteria was used, with the final model being the 
one with the lowest validation loss. As the graphical figures 
provide useful information than the textual information [50], 
traces of training and validation loss (categorical cross-
entropy) and accuracy of HumDLoc are shown in Fig. (2). 

2.3.2. Other Supervised Techniques 

 K-NN is an iterative technique in which a query point is 
assigned to a particular category/class based on the majority 
of K (hyperparameter) nearest neighbors (minimum Euclide-
an distance). To select hyperparameter K, different values of 
K were used (1-99), and the ones with the highest perfor-
mance were selected. GNB uses a probabilistic approach to 
decide the category/class of a query point based on the prob-
abilistic value determined through Bayes theorem. The un-
derlying assumptions of GNB are Gaussian distribution of 
features and feature independence, where a smoothing factor 
(hyperparameter), α, is used to avoid the zero probability 
problem during class probability calculation. The smoothing 
factor (α) is a portion of the largest variance of all features 
that is added to the variance for calculation stability. To se-
lect hyperparameter, α, different values of α were used 
(1e−20 to 1e−1), and the one with the highest performance 
was selected. SVM uses maximal margin hyperplane and 
support vectors (the nearest training data points form maxi-
mal margin hyperplane) to predict the fate of a query point. 
For this, SVM kernels, such as the linear kernel, polynomial 
kernel, sigmoid kernel, and radial basis kernel, were used. 
RF is an ensemble classification model that uses multiple 
decision trees for classification. The hyperparameter in RF is 
the number of decision trees or base models. To select the 
hyperparameter, i.e., the number of the base model (n), dif-
ferent values of n (10 to 200) were used, and the ones with 
the highest performance were selected. 

2.4. Evaluating Criteria 

 To evaluate the performance of each classifier, different 
statistical scores were used, as described in [11, 51-54]. In 
fact, in a typical supervised binary classification problem, 
each query point from the test sets have their own true class 
label. However, during the evaluation process, the classifier 
maps the query points onto one of the following categories: 
True Positive (TP), True Negative (TN), False Positive (FP), 
and false negative (FN). To achieve such categories for each 
class, the multiclass classification uses one versus rest ap-
proach. In this approach, the query point belongs to a partic-
ular class considered a positive or negative point. Based on 
this, TP, TN, FP, and FN is calculated for each class, then 
the following statistical scores are used to evaluate the per-
formance of classifier correspond to each class: 
a) Accuracy (ACC): It is the measure of correct prediction 
out of total predictions. 

!"" =
(!" + !")

(!" + !" + !" + !")
 (2) 

b) Precision (PPV): It can be defined as the ability of a clas-
sifier to correctly predict only relevant data, and is calculated 
as the ratio between predicted true positive (TP) to all pre-
dicted positive observations (TP+FP). 

!!" =
!"

(!" + !")
 (3) 

c) Recall/Sensitivity (SEN): It can be defined as the ability 
of a classifier to correctly predict all relevant data, and can 
be calculated as the ratio between predicted true positive 
(TP) to all positive observations (TP+FN). 
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Fig. (2). a) Tracing of training and validation loss b) Tracing of training and validation accuracy during the training of HumDLoc. (A higher 
resolution / colour version of this figure is available in the electronic copy of the article). 

!"# =
(!")

(!" + !")
 (4) 

d) F1-score (F1): The F1-score uses only three categories 
(TP, FP, and FN) to evaluate the performance of the classifi-
er. It is the weighted average of PPV and SEN, and takes 
values between 0 and 1, where zero value represents the 
worst classifier, and the value one represents the best classi-
fier. 

!! =
2 ∗ (!!" ∗ !"#)
(!!" + !"#)

 (5) 

e) Matthew’s correlation coefficient (MCC): It can be de-
fined as the correlation between the observed and predicted 
values. The reason behind calculating MCC is that the ACC 
and F1scores sometimes overestimate the performance of the 
classifier [55]. Also, the MCC score is considered as bal-
anced statistics to measure classifier performance as it does 
not effected by class imbalance problems. To calculate 
MCC, all four categories (TP, TN, FP, and FN) were used, in 
which the classifier predicts the fate of the query point [11]. 

The MCC value +1 represents the best prediction, 0 repre-
sents random prediction, and -1 represents the disagreement 
between true class and predicted class. 
!""

=
!" + !" − (!" + !")

!" + !" ∗ !" + !" ∗ !" + !" ∗ (!" + !"))
 

(6) 

3. RESULTS AND DISCUSSION 

3.1. HumDLoc Result Analysis 

 To evaluate the performance of the HumDLoc classifier, 
along with the above-specified evaluation criteria, ROC and 
Precision-recall analysis of each class were also performed. 
(Table 3) was used to represent the different statistical scores 
of the HumDLoc classifier corresponding to each subcellular 
compartment. The result showed that all compartments had 
an accuracy of more than 93 percent, while the accuracy of 
the golgi-apparatus compartment was 100 percent. However, 
accuracy alone is not a good measure of classifier perfor-
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mance because even a classifier with zero predictive power 
can get high accuracy, which is known as an accuracy para-
dox [55-57]. According to this, when the number of false 
positives are greater than the number of true positives, the 
accuracy will always increase, where the classifier rule al-
ways gives a negative category as the output for all test cas-
es. The same holds true when the number of false negatives 
are greater than the number of true negatives; in this case, 
the classifier rule always gives positive class as the output. 
This implies that a high accuracy model doesn’t always 
mean high performance of the classifier. To avoid such prob-
lems, F1-score is used as a less misleading measure [58]. 
The F1-score of all compartments were greater than 86 per-
cent, which implied that the classifier had high precision and 
recall. However, to include all four categories (TP, TN, FP, 
and FN) for evaluating the performance, Matthew’s correla-
tion coefficient (MCC) was used. The MCC score of all 
components were greater than +0.71, while the MCC score 
of Golgi apparatus was +1. 

3.1.1. ROC Analysis (Receiver Operating Characteristics) 

 ROC is a graphical plot that is used to describe the per-
formance of a system, where a false-positive rate (FPR or 
1—specificity) is plotted against the x-axis and true-positive 
rate (TPR or sensitivity) is plotted against the y-axis [59]. 
TPR is defined in equation (3), while FPR can be defined as 
the ratio of the number of negative data points predicted as 
positive, out of the total negative data points. (Fig. 3a) was 
used to represent the plot for the ROC curve of each subcel-
lular compartment, generated using sklearn [60] package 
‘roc-auc’ [61] with different thresholds. The ideal situation 
for the ROC curve can be depicted by coordinate values (0, 
1), corresponding to FPR and TPR, respectively. This im-
plies that tests have sensitivity and specificity equal to 100%. 
This situation is known as a perfect classification [59]. The 

diagonal of the ROC plot (coordinate (0, 0) to (0,1)) repre-
sents the random classification with sensitivity and specifici-
ty equal to 50%. If the ROC curve of a classifier is above the 
diagonal, then it is considered as a good classifier, i.e., more 
the area under the curve, better a classifier is. Since the prob-
lem at hand deals with multiclass classification, the micro 
average [58] ROC curve for the HumDLoc classifier was 
also plotted, which was used to represent the average per-
formance of the classifier (ROC-AUC= 0.98 square unit). 
Micro average ROC was plotted against micro average TPR 
(TPRµ) and micro average FPR (FPRµ), where micro aver-
age TPR and FPR are individual contributions of each sub-
cellular compartment to compute average matrix and is de-
fined in equation (7), and equation (8): 

!"#! =
!"!!

!!!
(!"! + !"!)!

!!!
 

(7) 

!"#! =
!"!!

!!!
(!"! + !"!)!

!!!
 

(8) 

Where c represents the total number of subcellular compart-
ments. The area under the curve of each subcellular com-
partment: cell membrane, cytoplasm, endoplasmic reticulum, 
golgi-apparatus, mitochondria, nucleus, and extracellular 
was 0.99 square unit, 0.96 square unit, 0.99 square unit, 1.0 
square unit, 0.96square unit, 0.97 square unit, and 0.99 
square unit respectively. 

3.1.2. Precision-Recall (PR) Analysis 

 Precision recall curve is another measure used to evaluate 
the performance of classifiers, where precision is plotted 
against the y-axis, and recall is plotted against the x-axis. 
(Fig. 3b) represents the precision-recall plot of the 
HumDLoc classifier corresponding to each subcellular com-
partment. The plot of PR-curve is generated using sklearn 
package ‘precision-recall curve’ with different thresholds.

Table 3. HumDLoc statistical scores correspond to each subcellular localization/compartment. 

                        Performance Measures  

 
Subcellular Localization 

Accuracy Precision Recall F1-Score MCC 

Cell Membrane 0.9862 0.99 0.98 0.99 +0.9912 

Cytoplasm 0.9358 0.71 0.81 0.76 +0.7104 

Endoplasmic Reticulum 0.9862 0.77 1.00 0.87 +0.7717 

Golgi-Apparatus 1.00 1.00 1.00 1.00 +1.000 

Mitochondria 0.9817 0.87 0.87 0.87 +0.8765 

Nucleus 0.9771 0.88 0.92 0.90 +0.8801 

Extracellular 0.9679 1.00 0.82 0.90 +0.9810 
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Fig. (3). Performance analysis of HumDLoc against seven subcellular compartments. a) Represents the ROC analysis of HumDLoc. b) Rep-
resents the Precision-Recall analysis of HumDLoc. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 

Precision-recall does not consider the true negative samples 
in its calculation and helps in analyzing the true positive 
quality of the classifier. In an ideal situation, the value of 
precision and recall equal to 1; this is the top right corner of 
the precision-recall curve. This implies the ability of the 
classifier to perfectly predict all true positive samples with-
out any false positive prediction. In this situation, the area 
under the precision-recall curve is 1 square unit. However, 
when the precision is low, and recall is high, then it shows 
that the classifier is able to predict most of the true samples, 
as well as, it also predicts false samples as true samples. 
Similarly, when the precision is high, and recall is low, this 
means classifiers are able to predict some of the true samples 
out of all true samples with a less false positive value. In 

practice, for good classification, there must be a good trade-
off between precision and recall. To achieve this criterion, 
the area under the precision-recall curve must be close to 1 
square unit. In Fig. (3b), the area under the curve of each 
subcellular compartment were found to be: cell membrane, 
cytoplasm, endoplasmic reticulum, golgi-apparatus, mito-
chondria, nucleus, and extracellular is 0.99 square unit, 0.87 
square unit, 0.95 square unit,1.0 square unit, 0.88 square 
unit,0.91 square unit, and 0.96 square unit respectively. 

3.2. Comparison with Other Classification Techniques 
and Existing Tools 

 To perform a comparison between HumDLoc, other clas-
sification techniques, and existing tools, the above-specified 
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evaluation criteria were aggregated to get the overall perfor-
mance of classifiers. For comparison, the two most popular 
and recently reported tools: DeepLoc [62] and CELLO [19, 
63] were selected. DeepLoc uses a combination of convolu-
tion neural networks and recurrent neural networks, while 
CELLO uses the SVM classifier in its core to predict subcel-
lular localization. Both of these methods are used to predict 
eukaryotic protein subcellular localization. The detailed 
evaluation criteria of each classifier correspond to the class 
specified in the Supplementary material (S1-S9). The micro 
averaged evaluation criteria of each classifier were repre-
sented in Table 4. 

 In terms of micro average accuracy, the performance of 
HumDLoc (97.64%) was comparable to that of SVM with 
linear (SVML with accuracy 96.46%), and rbf kernel 
(SVMR with accuracy 96.07%); whereas the micro-average 
accuracy of HumDLoc was much higher compared to other 
classifiers and existing tools. This suggested that the training 
dataset could be separated by almost linear hyperplanes. 
However, in multiclass classification, due to the accuracy 
paradox, one can not only rely on accuracy parameters to 
evaluate the performance of the prediction system. The mi-
cro-average precision of HumDLoc (92%) was lower than 
the Random Forest classifier (RF with precision 97%) but 
was much higher than other machine learning techniques and 
existing tools. This showed that the false positive prediction 
quality of HumDLoc was slightly higher than that of RF, but 

much lower than other techniques and tools. However, the 
micro-average recall of HumDLoc (92%) was exceptionally 
high when compared to other classification methods. This 
indicated that the true positive prediction quality of 
HumDLoc was much better than other tools when applied on 
the total available dataset. The micro-average F1-score for 
HumDLoc was quite high (0.92), while other classifiers suf-
fered from lower F1-scores (0.86). For a given dataset, the 
F1-score represents the ability of HumDLoc to make a clear 
distinction between true positive samples from false positive 
and negative ones. Furthermore, the MCC score of 
HumDLoc was much higher (+0.8873) while compared to 
other techniques (+0.855). 

 To perform a unbiased comparison (dataset independent 
comparison) between HumDLoc and other existing tools (i.e 
CELLO, and DeepLoc), a standard benchmark database re-
pository LocDB [64] was used. The LocDB is an expert-
curated protein subcellular localization database, containing 
localization information related to Homo sapiens (human) 
and Arabidopsis thaliana (Weed). To perform a comparison 
between tools, we extracted the data related to Homo sapiens 
from LocDB. Fig. (4) represents the comparison result be-
tween HumDLoc and existing tools (i.e., CELLO and 
DeepLoc). In all four evaluation metrics criteria, the 
HumDLoc tool outperformed the existing tools. The accura-
cy of HumDLoc was 97% while the accuracy of DeepLoc 

Table 4. Micro-averaged comparative statistical scores of classifiers. 

                                  Performance  
                            Measures 

Machine Learning Model 
Accuracy Precision Recall F1-Score MCC 

HumDCLoc 0.9764 0.92 0.92 0.92 +0.8873 

K-NNa 0.9004 0.65 0.65 0.65 +0.6500 

Naive-Bayes 0.9043 0.67 0.67 0.67 +0.6093 

SVMLb 0.9646 0.88 0.88 0.88 +0.8555 

SVMPc 0.9581 0.85 0.85 0.85 +0.8287 

SVMRd 0.9607 0.86 0.86 0.86 +0.8394 

SVMSe 0.9541 0.84 0.84 0.84 +0.8400 

RFf 0.9227 0.97 0.67 0.80 +0.6843 

DeepLoc 0.9521 0.81 0.81 0.78 +0.7631 

CELLO 0.9498 0.80 0.80 0.80 +0.7704 

aK-nearest neighbour, bSVM with linear kernel, cSVM with polynomial kernel, dSVM with radial basis kernel, eSVM with sigmoid kernel, fRandom Forests. 
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and CELLO was 94% and 93%respectively. The precision of 
HumDLoc to capture true data out of all positive predicted 
data was much higher (86%) than that of DeepLoc (72%) 
and CELLO (69%). The sensitivity of HumDLoc to predict 
positive data out of all actual positive data was also much 
higher (89%) than DeepLoc (74%) and CELLO (73%). 
Similarly, the F1-score of HumDLoc was much higher 
(87%) than DeepLoc (71%) and CELLO (70%), showing the 
ability of the classifier to make clear distinctions between a 
true positive sample from false positive and negative ones. 
The MCC score of the HumDLoc classifier was much better 
(86%) than the DeepLoc (69%) and CELLO (67%), which 
showed that HumDLoc performed better classification even 
if the distribution among classes was non-uniform. The de-
tailed evaluation criteria of each classifier correspond to the 
class specified in the Supplementary material (S10-S12). 

CONCLUSION 

 With the advancement in protein sequence discovery and 
the abundance of raw protein data, there is a requirement for 
automated tools that can predict subcellular compartmentali-
zation of proteins with high precision and accuracy. 
Knowledge of subcellular localization helps in deciphering 
the functional aspect of proteins. In this study, a machine 
learning-based prediction system, HumDLoc, was devel-
oped. This tool can be used to predict human protein subcel-
lular localization into seven major subcellular compartments: 
cell membrane, cytoplasm, endoplasmic reticulum, golgi-
apparatus, mitochondria, nucleus, and extracellular. To pre-
dict subcellular localization of the protein, HumDLoc uses 
various sequence-related features, such as CTD, PseAAc, 
AAC, etc. HumDLoc was compared with other machine 
learning techniques and existing tools (DeepLoc and CEL-
LO). The average accuracy (97.64%), precision (0.92), recall 
(0.92), and Matthew’s correlation coefficient (+0.92) of 
HumDLoc was much higher than other machine learning 

techniques, as well as existing tools. Also, to make an unbi-
ased comparison, a benchmark dataset LocDB had been tak-
en to evaluate the performance of HumDLoc and existing 
tools (i.e., DeepLoc and CELLO). HumDLoc outperformed 
DeepLoc and CELLO in terms of average accuracy 
(97.42%), precision (0.86), recall (0.89), and Matthew’s cor-
relation coefficient (+0.86). In conclusion, HumDLoc was 
able to outperform several alternative tools for correctly 
classifying large datasets obtained from Uniprot 
Knowledgebase with higher accuracy and precision. 
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