organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

c-3,t-3-Dimethyl-r-2,c-7-diphenyl-1,4diazepan-5-one

K. Ravichandran,^a P. Ramesh,^a S. Sethuvasan,^b S. Ponnuswamy^b and M. N. Ponnuswamy^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Chemistry. Government Arts College (Autonomous), Coimbatore 641 018, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 10 October 2009; accepted 20 October 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.061; wR factor = 0.167; data-to-parameter ratio = 18.9.

In the title compound, $C_{19}H_{22}N_2O$, the diazepine ring adopts a distorted chair conformation. One of the N-H groups forms an intermolecular $N-H \cdots O$ hydrogen bond generating an $R_2^2(8)$ graph-set motif. The other N-H group does not form a hydrogen bond.

Related literature

For general background to diazepine derivatives, see: Hirokawa et al. (1998); Jeyaraman & Ponnuswamy (1997). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis, see: Jeyaraman et al. (1995); Ponnuswamy et al. (2006).

Me Me ń

Experimental

Crystal data

$C_{19}H_{22}N_2O$	
$M_r = 294.39$	
Triclinic, P1	
a = 6.7354 (4) Å	
b = 10.6867 (6) Å	

c = 11.4186(7)	Å
$\alpha = 82.191 \ (3)^{\circ}$	
$\beta = 88.218 \ (4)^{\circ}$	
$\gamma = 80.317 \ (3)^{\circ}$	
V = 802.65 (8) Å	ľ

Z = 2Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.167$ S = 1.083958 reflections 209 parameters

Table 1 Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ $H \cdots A$ D - H $D \cdots A$ $D - H \cdot \cdot \cdot A$ $N1-H1\cdots O1^{i}$ 0.90(3)2.02(3)2.928 (2) 177 (2) Symmetry code: (i) -x + 1, -y + 1, -z + 1.

T = 293 K

 $R_{\rm int}=0.029$

refinement

 $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

 $0.25 \times 0.20 \times 0.20$ mm

17703 measured reflections 3958 independent reflections

3196 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

KR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection, and the management of Kandaswami Kandar's College, Velur, Namakkal, TN, India, for the encouragement to pursue the programme. SS thanks the UGC for a fellowship under the Rajiv Gandhi National Fellowship Scheme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5093).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hirokawa, Y., Morie, T., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 619-624.
- Jeyaraman, R. & Ponnuswamy, S. (1997). J. Org. Chem. 62, 7984-7990.
- Jeyaraman, R., Senthil kumar, U. P. & Bigler, P. (1995). J. Org. Chem. 60, 7461-7470
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Ponnuswamy, S., Murugadoss, R., Jeyaraman, R., Thiruvalluvar, A. & Parthasarathi, V. (2006). Indian J. Chem. Sect. B, 45, 2059-2070.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o2884 [doi:10.1107/S160053680904330X]

c-3,t-3-Dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one

K. Ravichandran, P. Ramesh, S. Sethuvasan, S. Ponnuswamy and M. N. Ponnuswamy

Comment

1,4-Diazepines are of considerable importance due to their wide spectrum of biological activities (Hirokawa *et al.*, 1998). Various substituted diazepin-5-ones have been synthesized using Schmidt rearrangement from the corresponding piperdin-4-ones and their stereochemistry has been reported (Jeyaraman & Ponnuswamy, 1997). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound, namely *c*-3,*t*-3-dimethyl-*r*-2,*c*-7-diphenyl-1,4-diazepan-5-one, has been carried out.

The *ORTEP* diagram of the title compound is shown in Fig. 1. The diazepine ring adopts a distorted chair conformation with puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of $q_2 = 0.348$ (2)Å, $q_3 = 0.677$ (2)Å, $\varphi_2 = 105.2$ (3)°, $\varphi_3 = 99.9$ (2)° and $\Delta_s(N5) = 12.2$ (2)°. The sum of the bond angles around the N1 atom (359.4°) of the diazepine ring is in *sp*²-hybridization, whereas the other atom, N5 (331.1°), is in accordance with *sp*³-hybridization.

The crystal packing is stabilized by intermolecular N—H···O interactions. The molecules at (x, y, z) and (-x+1, -y+1, -z+1) are linked through intermolecular N1—H1···O1 hydrogen bonds into cyclic centrosymmetric $R_2^2(8)$ dimers (Bernstein *et al.* 1995).

Experimental

In a typical reaction, c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-one was first converted into its hydrochloride and the dry, powdered c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-one hydrochloride (10.0 g) was added, in portions, to cold conc. H_2SO_4 (25.0 ml). The temperature of the solution was allowed to rise to 25°C and NaN₃ (3.0 g) was added in portions with vigorous stirring. The solution was poured into crushed ice and cold NaOH solution (2 N) was added slowly with stirring until the pH was 8. The separated white solid was filtered and crystallized using ethanol and pet-ether (60–80°C) in the ratio of 9.5:0.5 (Jeyaraman *et al.*, 1995; Ponnuswamy *et al.*, 2006).

Refinement

The amino H atoms were refined and the other H atoms positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with $1.5U_{eq}(C)$ for methyl H and $1.2 U_{eq}(C)$ for other H atoms.

Figures

Fig. 1. Perspective view of the molecule showing the displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity.

c-3,t-3-Dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one

Crystal data

C ₁₉ H ₂₂ N ₂ O	Z = 2
$M_r = 294.39$	$F_{000} = 316$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.218 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.7354 (4) Å	Cell parameters from 3562 reflections
b = 10.6867 (6) Å	$\theta = 2.5 - 28.4^{\circ}$
c = 11.4186 (7) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 82.191 \ (3)^{\circ}$	<i>T</i> = 293 K
$\beta = 88.218 \ (4)^{\circ}$	Block, colorless
$\gamma = 80.317 \ (3)^{\circ}$	$0.25 \times 0.20 \times 0.20 \text{ mm}$
$V = 802.65 (8) \text{ Å}^3$	

Data collection

Bruker Kappa APEXII area-detector diffractometer	3958 independent reflections
Radiation source: fine-focus sealed tube	3196 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
T = 293 K	$\theta_{\text{max}} = 28.4^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 2001)	$h = -8 \rightarrow 8$
$T_{\min} = 0.982, \ T_{\max} = 0.985$	$k = -14 \rightarrow 14$
17703 measured reflections	$l = -15 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.167$	$w = 1/[\sigma^2(F_o^2) + (0.0617P)^2 + 0.472P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.08	$(\Delta/\sigma)_{max} < 0.001$
3958 reflections	$\Delta\rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
209 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.3091 (2)	0.63384 (13)	0.48222 (13)	0.0459 (4)
N1	0.3506 (2)	0.48085 (15)	0.36366 (15)	0.0377 (4)
H1	0.453 (4)	0.443 (2)	0.412 (2)	0.053 (6)*
C2	0.2588 (3)	0.59310 (17)	0.39357 (16)	0.0350 (4)
C3	0.0919 (3)	0.67316 (17)	0.31721 (18)	0.0390 (4)
H3A	0.1428	0.6879	0.2370	0.047*
H3B	0.0573	0.7558	0.3453	0.047*
C4	-0.0997 (3)	0.61476 (16)	0.31459 (16)	0.0332 (4)
H4	-0.1374	0.5842	0.3957	0.040*
N5	-0.0711 (2)	0.50751 (14)	0.24522 (14)	0.0358 (4)
Н5	-0.191 (3)	0.4839 (19)	0.2375 (18)	0.037 (5)*
C6	0.0652 (2)	0.39247 (15)	0.29509 (16)	0.0313 (4)
Н6	0.0410	0.3803	0.3806	0.038*
C7	0.2915 (3)	0.40542 (17)	0.27481 (16)	0.0343 (4)
C8	-0.2685 (3)	0.71712 (16)	0.26079 (17)	0.0350 (4)
C9	-0.3855 (3)	0.7958 (2)	0.3313 (2)	0.0503 (5)
Н9	-0.3629	0.7842	0.4123	0.060*
C10	-0.5362 (4)	0.8919 (2)	0.2834 (3)	0.0650(7)
H10	-0.6130	0.9447	0.3322	0.078*
C11	-0.5727 (3)	0.9095 (2)	0.1653 (3)	0.0652 (7)
H11	-0.6747	0.9736	0.1333	0.078*
C12	-0.4587 (4)	0.8324 (2)	0.0943 (3)	0.0635 (7)
H12	-0.4828	0.8445	0.0135	0.076*
C13	-0.3075 (3)	0.7363 (2)	0.1414 (2)	0.0482 (5)
H13	-0.2314	0.6840	0.0919	0.058*
C14	0.0070 (3)	0.27925 (17)	0.24575 (18)	0.0370 (4)
C15	-0.0316 (3)	0.2835 (2)	0.1270 (2)	0.0499 (5)

supplementary materials

-0.0186	0.3566	0.0750	0.060*
-0.0896 (4)	0.1794 (3)	0.0848 (3)	0.0680 (8)
-0.1138	0.1828	0.0046	0.082*
-0.1115 (4)	0.0715 (3)	0.1608 (3)	0.0749 (9)
-0.1501	0.0017	0.1325	0.090*
-0.0763 (4)	0.0676 (2)	0.2778 (3)	0.0692 (8)
-0.0918	-0.0053	0.3296	0.083*
-0.0175 (3)	0.17043 (19)	0.3214 (2)	0.0510 (5)
0.0055	0.1662	0.4018	0.061*
0.3380 (3)	0.4639 (2)	0.14928 (18)	0.0493 (5)
0.2536	0.5458	0.1310	0.074*
0.3127	0.4082	0.0943	0.074*
0.4768	0.4746	0.1437	0.074*
0.4225 (3)	0.2742 (2)	0.3012 (2)	0.0470 (5)
0.5614	0.2841	0.3029	0.071*
0.4042	0.2230	0.2407	0.071*
0.3845	0.2328	0.3764	0.071*
	$\begin{array}{c} -0.0186\\ -0.0896 \ (4)\\ -0.1138\\ -0.1115 \ (4)\\ -0.1501\\ -0.0763 \ (4)\\ -0.0918\\ -0.0175 \ (3)\\ 0.0055\\ 0.3380 \ (3)\\ 0.2536\\ 0.3127\\ 0.4768\\ 0.4225 \ (3)\\ 0.5614\\ 0.4042\\ 0.3845\end{array}$	-0.0186 0.3566 -0.0896 (4) 0.1794 (3) -0.1138 0.1828 -0.1115 (4) 0.0715 (3) -0.1501 0.0017 -0.0763 (4) 0.0676 (2) -0.0918 -0.0053 -0.0175 (3) 0.17043 (19) 0.0055 0.1662 0.3380 (3) 0.4639 (2) 0.2536 0.5458 0.3127 0.4082 0.4768 0.4746 0.4225 (3) 0.2742 (2) 0.5614 0.2841 0.4042 0.2230 0.3845 0.2328	-0.0186 0.3566 0.0750 -0.0896 (4) 0.1794 (3) 0.0848 (3) -0.1138 0.1828 0.0046 -0.1115 (4) 0.0715 (3) 0.1608 (3) -0.1501 0.0017 0.1325 -0.0763 (4) 0.0676 (2) 0.2778 (3) -0.0918 -0.0053 0.3296 -0.0175 (3) 0.1662 0.4018 0.3380 (3) 0.4639 (2) 0.14928 (18) 0.2536 0.5458 0.1310 0.3127 0.4082 0.0943 0.4768 0.4746 0.1437 0.4225 (3) 0.2742 (2) 0.3012 (2) 0.5614 0.2841 0.3029 0.4042 0.2230 0.2407 0.3845 0.2328 0.3764

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0448 (8)	0.0471 (8)	0.0484 (8)	-0.0047 (6)	-0.0165 (6)	-0.0155 (6)
N1	0.0325 (8)	0.0402 (8)	0.0414 (9)	-0.0027 (6)	-0.0140 (7)	-0.0102 (6)
C2	0.0321 (9)	0.0366 (9)	0.0381 (9)	-0.0098 (7)	-0.0081 (7)	-0.0045 (7)
C3	0.0395 (10)	0.0304 (8)	0.0481 (11)	-0.0066 (7)	-0.0146 (8)	-0.0044 (7)
C4	0.0335 (9)	0.0301 (8)	0.0354 (9)	-0.0036 (6)	-0.0043 (7)	-0.0032 (6)
N5	0.0279 (7)	0.0329 (7)	0.0481 (9)	-0.0036 (6)	-0.0112 (6)	-0.0098 (6)
C6	0.0273 (8)	0.0301 (8)	0.0368 (9)	-0.0034 (6)	-0.0037 (6)	-0.0060 (6)
C7	0.0279 (8)	0.0397 (9)	0.0376 (9)	-0.0056 (7)	-0.0060 (7)	-0.0113 (7)
C8	0.0292 (8)	0.0309 (8)	0.0446 (10)	-0.0061 (6)	-0.0036 (7)	-0.0022 (7)
C9	0.0463 (12)	0.0448 (11)	0.0570 (13)	-0.0004 (9)	0.0059 (10)	-0.0072 (9)
C10	0.0439 (12)	0.0467 (12)	0.099 (2)	0.0065 (10)	0.0125 (13)	-0.0097 (13)
C11	0.0375 (12)	0.0496 (12)	0.100 (2)	0.0004 (9)	-0.0148 (12)	0.0137 (13)
C12	0.0550 (14)	0.0604 (14)	0.0699 (16)	-0.0067 (11)	-0.0253 (12)	0.0121 (12)
C13	0.0457 (11)	0.0468 (11)	0.0497 (12)	-0.0016 (9)	-0.0111 (9)	-0.0032 (9)
C14	0.0239 (8)	0.0342 (8)	0.0545 (11)	-0.0040 (6)	-0.0018 (7)	-0.0125 (8)
C15	0.0437 (11)	0.0544 (12)	0.0573 (13)	-0.0126 (9)	-0.0076 (10)	-0.0202 (10)
C16	0.0493 (13)	0.0785 (18)	0.0888 (19)	-0.0147 (12)	-0.0088 (13)	-0.0494 (16)
C17	0.0434 (13)	0.0535 (14)	0.141 (3)	-0.0130 (10)	-0.0009 (15)	-0.0523 (17)
C18	0.0470 (13)	0.0324 (10)	0.129 (3)	-0.0067 (9)	-0.0004 (15)	-0.0145 (13)
C19	0.0399 (11)	0.0357 (10)	0.0763 (16)	-0.0042 (8)	-0.0006 (10)	-0.0068 (9)
C20	0.0415 (11)	0.0707 (14)	0.0408 (11)	-0.0208 (10)	0.0030 (8)	-0.0116 (10)
C21	0.0320 (10)	0.0484 (11)	0.0615 (13)	0.0035 (8)	-0.0095 (9)	-0.0205 (9)

Geometric parameters (Å, °)

O1—C2	1.233 (2)	C10—H10	0.9300
N1—C2	1.337 (2)	C11—C12	1.362 (4)
N1—C7	1.481 (2)	C11—H11	0.9300

N1—H1	0.90 (3)	C12—C13	1.383 (3)
C2—C3	1.513 (2)	C12—H12	0.9300
C3—C4	1.528 (2)	С13—Н13	0.9300
С3—НЗА	0.9700	C14—C19	1.381 (3)
С3—Н3В	0.9700	C14—C15	1.382 (3)
C4—N5	1.463 (2)	C15—C16	1.388 (3)
C4—C8	1.519 (2)	C15—H15	0.9300
C4—H4	0.9800	C16—C17	1.372 (4)
N5—C6	1.463 (2)	С16—Н16	0.9300
N5—H5	0.89 (2)	C17—C18	1.358 (4)
C6—C14	1.515 (2)	С17—Н17	0.9300
C6—C7	1.561 (2)	C18—C19	1.385 (3)
С6—Н6	0.9800	C18—H18	0.9300
C7—C21	1.523 (3)	С19—Н19	0.9300
C7—C20	1.529 (3)	C20—H20A	0.9600
C8—C13	1.377 (3)	C20—H20B	0.9600
C8—C9	1.378 (3)	С20—Н20С	0.9600
C9—C10	1.384 (3)	C21—H21A	0.9600
С9—Н9	0.9300	C21—H21B	0.9600
C10—C11	1.360 (4)	C21—H21C	0.9600
C2—N1—C7	129.23 (15)	С9—С10—Н10	119.8
C2—N1—H1	113.2 (15)	C10-C11-C12	119.5 (2)
C7—N1—H1	117.0 (15)	C10-C11-H11	120.2
O1—C2—N1	121.10 (16)	C12-C11-H11	120.2
O1—C2—C3	118.95 (16)	C11—C12—C13	120.6 (2)
N1—C2—C3	119.94 (16)	C11—C12—H12	119.7
C2—C3—C4	115.13 (15)	C13—C12—H12	119.7
С2—С3—НЗА	108.5	C8—C13—C12	120.7 (2)
С4—С3—НЗА	108.5	C8—C13—H13	119.7
С2—С3—Н3В	108.5	C12—C13—H13	119.7
С4—С3—Н3В	108.5	C19—C14—C15	118.53 (19)
НЗА—СЗ—НЗВ	107.5	C19—C14—C6	119.65 (19)
N5—C4—C8	109.15 (14)	C15—C14—C6	121.76 (18)
N5—C4—C3	111.58 (15)	C14—C15—C16	120.5 (2)
C8—C4—C3	109.06 (14)	C14—C15—H15	119.8
N5—C4—H4	109.0	C16—C15—H15	119.8
C8—C4—H4	109.0	C17—C16—C15	120.3 (3)
C3—C4—H4	109.0	C17—C16—H16	119.8
C4—N5—C6	116.12 (14)	C15—C16—H16	119.8
C4—N5—H5	108.4 (13)	C18—C17—C16	119.4 (2)
C6—N5—H5	106.6 (13)	С18—С17—Н17	120.3
N5-C6-C14	107.83 (13)	С16—С17—Н17	120.3
N5—C6—C7	112.49 (14)	C17—C18—C19	121.1 (3)
C14—C6—C7	113.70 (14)	C17-C18-H18	119.5
N5—C6—H6	107.5	C19—C18—H18	119.5
С14—С6—Н6	107.5	C14—C19—C18	120.2 (2)
С7—С6—Н6	107.5	C14—C19—H19	119.9
N1—C7—C21	104.82 (14)	С18—С19—Н19	119.9
N1—C7—C20	111.22 (16)	С7—С20—Н20А	109.5

supplementary materials

C21—C7—C20	108.80 (17)	C7—C20—H20B	109.5
N1—C7—C6	108.63 (14)	H20A—C20—H20B	109.5
C21—C7—C6	109.66 (15)	C7-C20-H20C	109.5
C20—C7—C6	113.36 (15)	H20A—C20—H20C	109.5
С13—С8—С9	117.95 (18)	H20B-C20-H20C	109.5
C13—C8—C4	121.90 (17)	C7—C21—H21A	109.5
C9—C8—C4	120.15 (18)	C7—C21—H21B	109.5
C8—C9—C10	120.9 (2)	H21A—C21—H21B	109.5
С8—С9—Н9	119.5	C7—C21—H21C	109.5
С10—С9—Н9	119.5	H21A—C21—H21C	109.5
С11—С10—С9	120.3 (2)	H21B—C21—H21C	109.5
С11—С10—Н10	119.8		
C7—N1—C2—O1	168.29 (18)	C3—C4—C8—C9	-87.3 (2)
C7—N1—C2—C3	-12.5 (3)	C13—C8—C9—C10	-0.6 (3)
O1—C2—C3—C4	-114.2 (2)	C4C8C10	178.2 (2)
N1-C2-C3-C4	66.6 (2)	C8—C9—C10—C11	0.6 (4)
C2-C3-C4-N5	-73.1 (2)	C9-C10-C11-C12	-0.5 (4)
C2—C3—C4—C8	166.24 (16)	C10-C11-C12-C13	0.4 (4)
C8-C4-N5-C6	-171.21 (15)	C9—C8—C13—C12	0.5 (3)
C3-C4-N5-C6	68.2 (2)	C4—C8—C13—C12	-178.3 (2)
C4-N5-C6-C14	155.20 (16)	C11—C12—C13—C8	-0.4 (4)
C4—N5—C6—C7	-78.64 (19)	N5-C6-C14-C19	-131.39 (18)
C2-N1-C7-C21	-166.7 (2)	C7—C6—C14—C19	103.2 (2)
C2-N1-C7-C20	75.9 (2)	N5-C6-C14-C15	45.6 (2)
C2-N1-C7-C6	-49.5 (3)	C7—C6—C14—C15	-79.8 (2)
N5-C6-C7-N1	79.63 (18)	C19—C14—C15—C16	-1.3 (3)
C14—C6—C7—N1	-157.44 (15)	C6-C14-C15-C16	-178.35 (19)
N5-C6-C7-C21	-166.35 (15)	C14—C15—C16—C17	0.7 (4)
C14—C6—C7—C21	-43.4 (2)	C15—C16—C17—C18	0.1 (4)
N5-C6-C7-C20	-44.5 (2)	C16—C17—C18—C19	-0.4 (4)
C14—C6—C7—C20	78.4 (2)	C15—C14—C19—C18	1.1 (3)
N5-C4-C8-C13	-30.7 (2)	C6-C14-C19-C18	178.18 (18)
C3—C4—C8—C13	91.4 (2)	C17—C18—C19—C14	-0.2 (3)
N5-C4-C8-C9	150.53 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots A$
N1—H1…O1 ⁱ	0.90 (3)	2.02 (3)	2.928 (2)	177 (2)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

