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Abstract

Since the beginning of the Coronavirus Disease 2019 (COVID-19) pandemic, a focus of

research has been to identify risk factors associated with COVID-19-related outcomes,

such as testing and diagnosis, and use them to build prediction models. Existing studies

have used data from digital surveys or electronic health records (EHRs), but very few have

linked the two sources to build joint predictive models. In this study, we used survey data

on 7,054 patients from the Michigan Genomics Initiative biorepository to evaluate how well

self-reported data could be integrated with electronic records for the purpose of modeling

COVID-19-related outcomes. We observed that among survey respondents, self-reported

COVID-19 diagnosis captured a larger number of cases than the corresponding EHRs, sug-

gesting that self-reported outcomes may be better than EHRs for distinguishing COVID-19

cases from controls. In the modeling context, we compared the utility of survey- and EHR-

derived predictor variables in models of survey-reported COVID-19 testing and diagnosis.

We found that survey-derived predictors produced uniformly stronger models than EHR-

derived predictors—likely due to their specificity, temporal proximity, and breadth—and that

combining predictors from both sources offered no consistent improvement compared to

using survey-based predictors alone. Our results suggest that, even though general EHRs

are useful in predictive models of COVID-19 outcomes, they may not be essential in those

models when rich survey data are already available. The two data sources together may

offer better prediction for COVID severity, but we did not have enough severe cases in the

survey respondents to assess that hypothesis in in our study.
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Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the novel coronavirus

SARS-CoV-2, has over the past eighteen months reached every corner of the globe. Although

some countries have been successful in suppressing COVID-19 cases, the United States (US)

remains a hotbed, with a staggering count of over 78 million cases and 900 thousand deaths as

of February 27th, 2022 [1]. Over 2 million people have been infected in the State of Michigan

alone, resulting in more than 31,000 deaths [2]. Even as the initial pandemic has waned, novel

SARS-CoV-2 variants such as B.1.617.2 (“delta”), and more recently B.1.1.529 (“omicron”),

have continued to spark new waves of cases worldwide [3–8].

A focal point of research has been to identify predictors of COVID-19-related outcomes,

such as testing and diagnosis, and use them to build predictive models. Early in the pandemic,

COVID-19 testing was targeted at those who had symptoms or were thought to be high risk

[9], meaning that healthcare worker status, essential worker status, and severity of COVID-19

symptoms are all effective predictors of being tested [10,11]. Studies have also outlined predic-

tors of COVID-19 susceptibility, including demographic features, like age and sex, along with

certain comorbidities and social habits [9–12]. Non-White racial groups, especially Blacks, are

disadvantaged and overrepresented among COVID-19 cases and deaths due to prevailing

health disparities and being disproportionately employed as “essential workers” [9–11,13].

Predictive models of COVID-19-related outcomes have tended to rely on either electronic

health records (EHRs) or survey data. In ideal cases, EHRs can paint a detailed picture of a

patient’s medical history, providing demographic information, anthropometrics, and longitu-

dinal disease and procedure codes. Vaid et al. used EHRs to predict mortality and critical

events on a sample of 4,098 COVID-19 patients in New York City, USA, attaining Areas

Under the Receiver Operating Characteristic curve (AUCs) of 0.79 to 0.89 [14]. Feng et al.

used EHRs, specifically lab results, to predict suspected COVID-19 pneumonia with an AUC

of 0.94 among 32 hospital admittees in Beijing, China [15]. Using EHR-derived comorbidities

and social variables, Hippisley-Cox et al. built a model explaining 74.1% of the variation in

time to death among 626,656 adults hospitalized for COVID-19 post COVID-19 vaccination

in the United Kingdom [16].

Though EHRs have their advantages—such as costs, detail, and sample size—they also have

limitations. Indeed, what EHRs in terms of depth of medical diagnoses and procedure, they

sometimes lack in depth, as non-medical lifestyle, behavioral or demographic data are typically

either limited or unavailable [17,18]. Survey data, in contrast, can be more specific to the topic

of interest. Recent studies have used email correspondence, mobile applications, and other dig-

ital survey tools to study COVID-19 status in relation to exposure, occupation, social habits,

and many other non-medical variables [10,11,19,20]. With survey data on 3,829 adult mobile-

phone application users across the United States, Allen et al. obtained an AUC of 0.79 for pre-

dicting positive COVID-19 test results using pre-test data only [10]. Surveys may also be able

to identify COVID-19 cases with greater success, as EHRs tend to be system- or hospital-spe-

cific and may miss out on COVID-19 cases that were diagnosed or treated at offsite locations.

Given the differences between survey data and EHRs, it is natural to question their relative

utility in model development for COVID-19-related outcomes. However, to our knowledge, a

direct comparison of EHR- and survey-derived variables has not been explored on the same

population for prediction of these COVID-19 related outcomes. In this study, we explicitly

consider whether the addition of EHR variables to survey data can improve prediction models

for COVID-19 testing and diagnosis. On a sample of 7,054 participants of Michigan Medicine

biorepositories, we combine data from the Michigan Medicine COVID-19 Survey [11] with

EHR-derived comorbidities and sociodemographic variables; then, using both pools of
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variables, we construct prediction models for two outcomes: (1) whether survey respondents

have been tested for COVID-19 and (2) whether they have been diagnosed with COVID-19 by

either a physician or test, comparing model performance using AUC.

Materials and methods

Data

Survey data for this study came from the Michigan Medicine COVID-19 Survey, which was

conducted from May 26th to June 23rd of 2020 with the goal of assessing COVID-19 risk factors

among participants of Michigan Medicine biorepositories. The Michigan Medicine COVID-

19 Survey contained 96 total questions and spanned several topics of interest, from basic

demographic information to COVID-19 testing, diagnosis, symptoms, and exposure, as well

details about health status and social habits. Respondents were asked, among other topics,

about their living situation, professional work, socioeconomic status, physical health, mental

health, drug use, medication use, changes in behavior due to the pandemic, perceptions of

pandemic-related restrictions, and efforts to avoid contracting COVID-19. Most questions

were multiple choice, though some involved a typed-in numerical response (e.g., height and

weight), and many questions were either binary or used a Likert scale. A full version of the sur-

vey with branching logic was published by Wu and Hornsby et al. 2020 and is available online

via the following URL: https://doi.org/10.1371/journal.pone.0246447.s004 [11]. The survey

was issued by email to 50,512 participants with 8,422 complete responses (16.7% response

rate). We restricted the survey data to 7,054 individuals who participated in the Michigan

Genomics Initiative (MGI) study and for whom EHRs were available (Fig 1). Respondents to

Fig 1. Processing of COVID-19 survey data and Michigan Genomics Initiative EHRs. For the survey-based analysis, respondents from the COVID-19

survey were limited to those with relevant EHR from MGI. The desired EHR variables were then merged with the survey data for those patients.

https://doi.org/10.1371/journal.pone.0269017.g001
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the survey who had participated in other repositories besides MGI were not considered, as we

did not have approval to access the individual level data of these participants. EHRs used were

based on a data pull from February 19th, 2020. This date was chosen to precede the initial

COVID-19 outbreak in Michigan, which began in March of 2020 [2], so that the data would

include medical conditions and other variables that existed strictly before the COVID-19 pan-

demic, as opposed to those that may have been due to a COVID-19 infection or the pandemic

itself.

Data were collected according to the Declaration of Helsinki principles [21]. MGI study

participants’ consent forms and protocols were reviewed and approved by the University

of Michigan Medical School Institutional Review Board (IRB ID HUM00180294 and

HUM00155849). Opt-in written informed consent was obtained from all participants for the

use of medical records and survey data. All data were fully anonymized prior to our access.

Outcomes and variables

We constructed prediction models for two outcomes of interest: first, whether an individual

was tested for COVID-19, and second, whether they were diagnosed as COVID-19 positive

(by either a test or a physician) or not. Both outcomes were determined by the first two ques-

tions of the survey, which asked, (1) “Were you diagnosed with COVID-19?” and (2) “Were

you tested for COVID-19 at any point in time? If so, where?” Whether each respondent was

diagnosed or tested only once or multiple times was not recorded, nor was information on the

specific type of test. We also considered the six variables age, sex, race/ethnicity, body mass

index (BMI), education, and essential worker status as covariates, all of which have been

shown to be associated with COVID-19 testing, diagnosis, or severity [9–11,13,19,22]. All pre-

diction models contained this base set of covariates. All selections of additional predictors was

carried out conditional on the covariates. In addition to these, 143 potential predictor variables

were extracted for analysis from the survey data, covering a broad range of topics related to

health, social habits, and experiences during the COVID-19 pandemic. Another set of 15

potential predictor variables were obtained from the EHRs, including drinking status, smoking

status, and US census tract sociodemographic variables for the year 2010 based on residential

address (obtained from the National Neighborhood Data Archive [23]). The 15 EHR-derived

predictor variables also included seven different health condition indicator variables, which

were constructed using the available phenotype codes (or “phecodes”) [24,25], as well as a

comorbidity score representing the sum of those from zero to seven. A mapping from

phecodes to the more common International Classification of Disease codes (ICD9: 1.2,

ICD10-CM: 1.2b1) is available through the PheWAS Catalog website (https://phewascatalog.

org/) [24,25]. Each variable is described in detail in the supplement (S1 Table).

Missing data

Missing data were handled with multiple imputation [26]. Under a missing at random

assumption, we used predictive mean matching to create 30 multiply imputed datasets. In

accordance with imputation guidelines [27,28], the number 30 was chosen to roughly coincide

with proportion of incomplete cases in the full dataset—in our case, 29%.

Statistical analysis

Single-predictor analysis. Both outcomes—being tested and being diagnosed—were

treated as binary. For the COVID-19 testing models, we compared those who had been tested

for COVID-19 at any point (1) to those who had not been (0), based on their responses first

two questions of the survey. For the COVID-19 diagnosis models, we compared those who
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were diagnosed with COVID-19 either by a test or by a physician (1) to those who were never

diagnosed or tested (0). Respondents who reported to have self-diagnosed themselves with

COVID-19 without a positive test were excluded from the diagnosis models, as these cases

were unconfirmed [11].

We began by evaluating the association between each potential predictor and each out-

come, while adjusting for age, sex, race/ethnicity, BMI, education, and essential worker status

as covariates. (Fig 2A). Using Firth logistic regression, we fit the model

logit PrðYi ¼ 1jX
*

T
i ; C

*T
i Þ ¼ X

*T
i b
*

þC
*T

i g
*
;

Fig 2. Modeling of survey-reported COVID-19 outcomes. (A) Initially, each possible predictor was tested for each outcome individually, adjusting for covariates.

(B) Next, different subsets of the data were used to run penalized multivariable models, allowing for comparison between groups of variables.

https://doi.org/10.1371/journal.pone.0269017.g002
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where Yi is the binary outcome for the ith observation, X
*

T
i contains the value(s) of the predictor

variable, and C
*

i T includes the intercept and covariates. Firth’s bias-corrected odds ratios were

produced for each variable and then tested for significance using the Wald test. The Firth cor-

rection is used to prevent separation issues, which can occur when large class imbalances or

small sample sizes pull b
*

estimates toward the extreme [29–31]. To account for multiple test-

ing among the potential predictors, we used Bonferroni correction corresponding to 184 tests

(α = 0.05/184� 2.72x10-4), where 184 is the total number of variables or variable factor levels

tested (25 non-binary categorical variables had a total of 76 levels, excluding covariates). Last,

to test the covariates on their own, we fit models for both outcomes omitting X
*T

i , and used

the Wald test for g
*

without multiple correction (α = 0.05). Each model was fitted on the 30

imputed datasets separately, and results were combined using Rubin’s rules [32,33].

Multi-predictor analysis. Next, we conducted a multi-predictor analysis to compare vari-

ables from different sources for predicting each outcome (Fig 2B). We generated four “subsets”

of the data for comparison: (1) the covariates only, (2) the EHR predictors and covariates, (3)

the survey predictors and covariates, and (4) all variables put together. On each subset, we fit

several different penalized logistic regression models for predicting the outcomes. Models

included (1) a ridge penalized logistic regression, (2) a lasso penalized logistic regression, and

(3) an elastic net penalized logistic regression. Ridge regression is useful in multivariable set-

tings as a way to lessen the effects of multicollinearity and improve the precision of the model,

at the cost of introducing some bias, by adding an L2 penalty l2

P
j b

2

j to the loss function [34].

Lasso follows in a similar vein, only with an L1 penalty λ1 ∑j |βj| instead. This comes with the

added benefit of performing variable selection in addition to shrinkage; by reducing some βj to

exactly zero, the lasso penalty will eliminate poor predictors from the model as needed [35]. In

ridge regression this is not the case, and all predictor variables are retained. Finally, elastic net

regression uses the ridge and lasso penalties simultaneously to exploit the advantages of both

[36]. The six covariates were included in all models and were not selected for or penalized. The

tuning parameters λ1 and λ2 were selected by five-fold cross-validation.

We evaluated the models internally using AUC (Fig 3). Each of the 30 imputed datasets was

divided 100 times into a 70–30 train-test split. At each split, the model was fitted on each of the

30 imputed training sets and evaluated on the corresponding test set, and the 30 AUCs were

pooled into a single value representing performance on that split. The mean of the 100 pooled

AUCs was taken as the estimated AUC of the model, and the 2.5th and 97.5% percentiles

were used to create an empirical 95% confidence interval. We tested for a difference in AUC

between two models by computing a confidence interval for their pairwise AUC differences

over all 100 splits, considering the AUCs to be significantly different if the resulting interval

did not contain zero. We assessed the calibration of each model by producing calibration plots

corresponding to the first split, and by plotting a distribution of the Hosmer-Lemeshow test p-

values of all 100 splits [37].

Finally, to check the sensitivity of all our results to social environment, we reran both our

single-predictor and multi-predictor models additionally adjusting for the composite metric

Neighborhood Socioeconomic Disadvantage Index (NDI), one of the US census tract variables

obtained from the National Neighborhood Data Archive. NDI is computed as the average of

the proportion of the census tract population below the US poverty level, the proportion

unemployed, the proportion with public assistance income, and the proportion female-headed

families with children. Results for the sensitivity analysis are available in the supplement (S3–

S6 Tables). All analyses were completed using R version 4.1.2. Multiple imputation was per-

formed with the package ‘mice’ [26]. Firth’s corrected models used the ‘logistf’ package [38],
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whereas the lasso, ridge, and elastic net penalized models fitted with the ‘glmnet’ package [39]

and tuned using the ‘caret’ package [40]. AUCs were obtained using ‘pROC’ [41] and pooled

across imputed datasets with ‘psfmi’ [42]. We produced calibration plots with ‘PredictABEL’

[43].

EHR-based analysis

As a supplementary analysis, we explored how these same 15 EHR-derived variables would

perform for prediction on the larger set of patients for whom only EHR data was available.

Since this analysis is not directly relevant to our question and head-to-head comparison of sur-

vey versus EHR is not feasible, we relegate this analysis to the supplementary material. We

used Michigan Medicine EHRs to construct cases and controls for both outcomes. To con-

struct the COVID-19 tested cases, we retrieved data for all 15,929 patients who had obtained a

Fig 3. Internal validation by repeated 70/30 train/test data splitting on multiply imputed datasets. We evaluated each model internally using data splitting. For

each split of the data, we pooled the results of the 30 imputed datasets into a single AUC using Rubin’s Rules. The resulting 100 pooled AUCs were used to compute

an empirical mean and confidence interval.

https://doi.org/10.1371/journal.pone.0269017.g003
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reverse transcription polymerase chain reaction (RT-PCR) test for SARS-CoV-2 at Michigan

Medicine between March 10th and June 30th, 2020. For COVID-19 diagnosed cases, we used

the 1,193 who had tested positive, along with another 290 patients who had had COVID-19

per their EHRs but had no test results (this latter group would have included, for example,

patients who were treated for COVID-19 at Michigan Medicine but were not tested there).

This resulted in a total of 1,483 diagnosed cases for the analysis. These dates were chosen to

align approximately with the timeline of the COVID-19 Survey, so that both analyses would

capture COVID-19-related outcomes which had occurred in the same window: namely, the

first four months of the pandemic in Michigan. Last, for controls, we extracted data for 30,000

random patients who were alive, were not in the tested or diagnosed groups, and had an

encounter in Michigan Medicine (Inpatient, Outpatient, or Emergency) between April 23,

2012, and June 21, 2020. We used this data to fit similar models as described above and evalu-

ated performance using AUC. A detailed description of our procedure and results is included

in the supplement (S2 File).

Results

Descriptive statistics

Out of 7,054 survey respondents with electronic health records in MGI, only 842 (11.9%) were

tested for COVID-19, 78 (1.11%) diagnosed by physician or test, and 132 (1.87%) self-diag-

nosed due to symptoms (Table 1). Survey respondents were 58.1 years old on average, with a

standard deviation of 14.7 years, which was higher than both the tested subgroup (Mean 56.6

years, SD 14.7) and the diagnosed subgroup (Mean 49.5, SD 14.8). Their average BMI was 29.2

(SD 6.7), and they were 59.9% female. Roughly 20.1% of respondents were essential workers,

compared to only 29.1% of the tested subgroup and 46.2% of the diagnosed subgroup. In

terms of race-ethnicity, 6,545 (92.8%) respondents were non-Hispanic White, but only 158

(2.2%) were non-Hispanic Black. Respondents also tended to be highly educated, as 2,510

Table 1. Descriptive statistics of covariates across survey-reported COVID-19 outcomes.

Variables All (n = 7,054) Tested (n = 842) Diagnosed by physician or test (n = 78) Self-diagnosed due to symptoms (n = 132)

Numeric, Mean (SD)

Age (Years) 58.1 (14.7) 56.6 (14.7) 49.4 (14.8) 54.9 (12.8)

BMI (kg/m2) 29.2 (6.72) 29.8 (6.82) 30.0 (6.91) 29.1 (6.13)

Categorical, No. (%)

Female Sex 4,223 (59.9%) 542 (64.4%) 50 (64.1%) 89 (67.4%)

Essential Worker 1,421 (20.1%) 245 (29.1%) 36 (46.2%) 36 (27.3%)

Race / Ethnicity

NHB 158 (2.24%) 37 (4.39%) 6 (7.69%) 4 (3.03%)

NHW 6,545 (92.8%) 755 (89.7%) 64 (82.1%) 123 (93.2%)

Other 261 (3.70%) 41 (4.87%) 6 (7.69%) 4 (3.03%)

Missing 90 (1.28%) 9 (1.07%) 2 (2.56%) 1 (0.75%)

Education

� High School 1,180 (16.7%) 173 (20.6%) 16 (20.5%) 23 (17.4%)

Associate Degree 1,128 (16.0%) 152 (18.1%) 14 (17.9%) 20 (15.2%)

Bachelor’s Degree 2,204 (31.2%) 240 (28.6%) 22 (28.2%) 43 (32.6%)

Advanced Degree 2,510 (35.6%) 275 (32.7%) 25 (32.1%) 45 (34.1%)

Missing 32 (0.45%) 2 (0.24%) 1 (1.28%) 1 (0.76%)

Abbreviations: BMI, Body Mass Index; NHB, non-Hispanic Black; NHW, non-Hispanic White.

https://doi.org/10.1371/journal.pone.0269017.t001
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(35.6%) had an advanced degree and only 1,180 (16.7%) had strictly a high school education

or less.

To check for nonconformity between the survey data and EHRs, we scanned the EHRs of

all respondents for a COVID-19 diagnosis prior to the date they completed the survey. Only

14 respondents had a positive diagnosis in their records, and all of them had reported so in the

survey. This suggests that non-reporting of COVID-19 was not an issue and that the survey

was better able to identify COVID-19 cases than the MGI EHRs, as 64 of 78 self-reported

COVID-19 cases had no such diagnosis in their electronic records.

Single-predictor models

For predicting COVID-19 testing and COVID-19 diagnosis, we used logistic regression to pro-

duce Firth bias-corrected odds ratios for every variable, adjusting for the covariates age, sex,

BMI, race, education, and essential worker status (Fig 4). Of the 143 survey variables tested,

only 32 were significant predictors of being tested for COVID-19 after Bonferroni correction,

most of them related to overall health, such as whether the respondent has poor sleep quality

(OR, 1.60 [CI, 1.34–1.92]) or has much difficulty going up stairs compared to none (OR, 2.43

[CI, 1.87–3.15]). In contrast, only three of the 15 EHR variables were significant: chronic kid-

ney disease (OR, 1.54 [CI, 1.27–1.86]), comorbidity score (OR, 1.14 [CI, 1.08–1.20]), and

respiratory conditions (OR, 1.33 [CI, 1.14–1.56]. For predicting diagnosis, seventeen survey

variables were significant—some related to possible exposure, like having had a relative diag-

nosed with COVID-19 (OR, 8.70 [CI, 5.07–14.90]), and others related to overall health, like

reporting headaches in the past six months (OR, 2.45 [CI, 1.48–4.06]), while only two of the

EHR-derived variables were significant: comorbidity score (OR, 1.26 [CI, 1.08–1.47]) and

respiratory conditions (OR, 2.07 [CI, 1.24–3.48]).

Multi-predictor models

To compare the predictive power of the survey variables to the EHR variables, we ran penal-

ized multiple logistic regression models on four different subsets of the data: the covariates

alone, the covariates plus EHR variables, the covariates plus survey variables, and at last all var-

iables put together. AUCs for all models are included in Table 2, though for succinctness we

discuss the results from the elastic net models only. For predicting survey-reported COVID-19

testing, the EHR-variable model achieved a mean AUC of 0.595 across 100 different training-

test splits, whereas the survey-variable and all-variable models attained mean AUCs of 0.649

and 0.648, respectively. A 95% empirical confidence interval (CI) for the AUC differences indi-

cated that the survey-variable model was significantly more predictive than the EHR model

(CI AUCSurvey–EHR, [0.031, 0.078]), the all-variable model was more predictive than the EHR

model (CI AUCAll–EHR, [0.032, 0.076]), and the survey- and all-variable models were similarly

predictive (CI AUCAll–Survey, [-0.001, 0.004]). In other words, showing all variables to the mod-

els at once did not improve predictions compared to using survey variables but not EHR.

Results for survey-reported COVID-19 diagnosis were similar, but with generally higher

AUCs: The EHR-variable model reached an average AUC of 0.709, and the survey-variable

model 0.802, which was again significant at the 5% level (CI AUCSurvey–EHR, [0.015, 0.178]).

The all-variable model performed nearly identically to the survey-variable model yet again (CI

AUCAll–Survey, [-0.016,0.020]), with a mean AUC of 0.804. The addition of EHR-derived vari-

ables to survey-based models again seemed to offer no gain in predictive performance.

Lastly, to illustrate some of the variables these models have chosen, we report the variables

selected at least 80% of the time from the elastic net models for both outcome variables. Results

for the lasso regression models are included in the supplements (S8 Table). Note that, in the
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present context, it would be inappropriate to provide estimated model coefficients, as they

would be adjusted for different sets of selected variables and therefore have different interpre-

tations. For predicting self-reported COVID-19 testing (Table 3), the EHR-variable models

chose comorbidity score 99% of the time, a kidney disease indicator variable 98% of the time,

and a respiratory disease indicator 94% of the time. In the survey-variable models, several

Fig 4. Firth-corrected odds ratios for survey-reported COVID-19 outcomes, adjusted for covariates. All odds ratios used Firth correction, were adjusted for

age, sex, race/ethnicity, education, and essential worker status, and were combined across 30 multiply imputed datasets using Rubin’s Rules. Significance was

determined using α = 0.05 for covariates and α = 0.05/184� 2.72x10-4 for predictors. For brevity, predictors are included in the figure only if they are statistically

significant for at least one outcome.

https://doi.org/10.1371/journal.pone.0269017.g004
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predictors had extremely high selection rates, such as whether a person had ever been hospital-

ized with a viral infection (Q17, 1.00) and whether a member of their household (besides

themselves) had been diagnosed with COVID-19 (Q36, 1.00). The all-variable model results

look similar to the survey-variable model results, and no EHR-derived variables were selected

more than 80% of the time.

For predicting self-reported COVID-19 diagnoses (Table 4), the most frequent predictor

chosen in the EHR-variable models was an indicator for liver disease (0.92), the only predictor

to be chosen more than 90% of the time. In the survey-variable models, the most selected vari-

able again was whether a member of the respondent’s household had been diagnosed with

COVID-19 (Q36, 1.00), though similar variables—such as having had a relative diagnosed

with COVID-19 (Q81, 0.82)—were popular as well. The all-variable models produced similar

results to the survey-variable models, and again no EHR-derived variables were selected more

than 80% of the time. Overall, selection rates tended be lower for the COVID-19 diagnosis out-

come than the COVID-19 testing outcome (Table 3), a sign that the former has fewer strong

predictors and requires sparser models.

Discussion

Our aim was to evaluate whether survey-based predictive models of COVID-19-related out-

comes can be improved by the addition of EHR data. Among up to 7,054 survey respondents,

we analyzed two outcomes of interest—having received a COVID-19 test and having been

diagnosed with COVID-19—by fitting models using EHR variables, survey variables, and then

all variables combined, while using six covariates as a baseline for comparison. We observed,

for both outcomes, that simultaneously including both EHR variables and survey variables led

to no meaningful improvement compared to survey variables alone, with maximum AUCs

around 0.65 for COVID-19 testing and 0.82 for diagnosis. In a supplementary analysis, explor-

ing how EHR-derived variables would perform on EHR-derived outcomes, we built models on

COVID-19 case control data from Michigan Medicine (S2 File). The resulting AUCs tended to

be relatively high (0.75 for COVID-19 testing and 0.80 for diagnosis), suggesting that EHR-

Table 2. Area Under the Curve (AUC) and the corresponding 95% CI for the two COVID-19-related outcome prediction models.

Mean AUC (95% Empirical CI)�

Outcome Variable Model Type Covariates Only Covariates + EHR Variables Covariates + Survey Variables All Variables

Tested for COVID-19 Lasso 0.582

(0.552, 0.609)

0.593

(0.569, 0.617)

0.646

(0.621, 0.676)

0.645

(0.619, 0.674)

Ridge Regression 0.582

(0.552, 0.609)

0.597

(0.57, 0.623)

0.641

(0.618, 0.67)

0.639

(0.616, 0.668)

Elastic Net 0.582

(0.552, 0.609)

0.595

(0.569, 0.62)

0.649

(0.624, 0.678)

0.648

(0.624, 0.676)

Diagnosed with COVID-19 Lasso 0.694

(0.599, 0.774)

0.694

(0.599, 0.774)

0.798

(0.718, 0.885)

0.798

(0.718, 0.885)

Ridge Regression 0.694

(0.599, 0.774)

0.713

(0.615, 0.793)

0.812

(0.741, 0.885)

0.821

(0.743, 0.887)

Elastic net 0.694

(0.599, 0.774)

0.709

(0.612, 0.788)

0.802

(0.728, 0.878)

0.804

(0.724, 0.88)

Mean AUC reflects the average of 100 random training test/splits, with a CI representing the 2.5th and 97.5th percentiles, respectively. The tested for COVID-19 outcome

compares the tested population (1) to those not tested (0). The diagnosed with COVID-19 outcome compares those diagnosed with COVID-19 by a physician or test (1)

to those not diagnosed, not tested, and not self-diagnosed (0).

Data from Michigan Medicine COVID-19 Survey and Michigan Genomics Initiative. Sample size: n = 7,054 for testing outcome models, n = 6,159for diagnosis models.

https://doi.org/10.1371/journal.pone.0269017.t002
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Table 4. Elastic net regression variable selection in models of “diagnosed with COVID-19” outcome.

Proportion of Times Selected

EHR Variables Models Survey Variable Models All Variable Models

Liver disease 0.92 Q36. Household member diagnosed with COVID-19 1.00 Q36. Household member diagnosed with COVID-19 1.00

Respiratory disease 0.87 Q85. Relative died from COVID-19 0.85 Q85. Relative died from COVID-19 0.82

Q70.1 Abdomen pain in past 6 months 0.82 Q81. Relative diagnosed with COVID-19 0.81

Q81. Relative diagnosed with COVID-19 0.82 Q70.1 Abdomen pain in past 6 months 0.80

The value shown is the proportion of times the variable was chosen in 3,000 fitted models, as models were fit on 1000 train/test splits of 30 multiply imputed datasets

(100x30 = 3,000). Only variables with a selection rate over 80% are included. Variable descriptions are available in the supplement (S1 Table). The diagnosed with

COVID-19 outcome compares those diagnosed with COVID-19 by a physician or test (1) to those not diagnosed, not tested, and not self-diagnosed (0). All models

included the six covariates age, sex, race/ethnicity, body mass index, education level, and essential worker status, which were not selected for or penalized. Data from

Michigan Medicine COVID-19 Survey and Michigan Genomics Initiative. Sample size: 6,159.

https://doi.org/10.1371/journal.pone.0269017.t004

Table 3. Elastic net regression variable selection in models of “received COVID-19 test” outcome.

Proportion of Times Selected

EHR Variables Models Survey Variable Models All Variable Models

Comorbidity score 0.99 Q17. Ever Hospitalized with infection 1.00 Q17. Ever Hospitalized with infection 1.00

Kidney disease 0.98 Q36. Household member diagnosed with COVID-19 1.00 Q36. Household member diagnosed with COVID-19 1.00

Respiratory disease 0.94 Q147.1 Kidney disease 1.00 Q147.1 Kidney disease 1.00

Liver disease 0.91 Q68.1 Felt fatigued in past week 1.00 Q68.1 Felt fatigued in past week 1.00

Former smoker 0.80 Q70.1 Abdomen pain in past 6 months 1.00 Q70.1 Abdomen pain in past 6 months 1.00

Q70.3 Headaches in past 6 months 1.00 Q70.3 Headaches in past 6 months 0.99

Q13. No times gotten flu in past year 0.99 Q13. No times gotten flu in past year 0.99

Q125. Cardiovascular condition 0.98 Q125. Cardiovascular condition 0.98

Q146.2 COPD 0.98 Q146.2 COPD 0.97

Q147. Metabolic Condition 0.96 Q125.7 Blood clotting disorder 0.95

Q125.7 Has cardiovascular condition 0.95 Q147. Metabolic condition 0.94

Q59.1 Police officer lives in home 0.95 Q59.1 Police officer lives in home 0.94

Q23.3 Concerned about losing job 0.95 Q114.1 Overall body pain at worst 0.94

Q71.1 Some difficult doing chores 0.94 Q23.3 Concerned about losing job 0.93

Q71.1 Much difficulty doing chores 0.94 Q71.1 Much difficulty doing chores 0.93

Q114.1 Overall body pain at worst 0.94 Q71.1 Some difficulty doing chores 0.93

Q133.2 Benzodiazepine use has increased 0.88 Q133.2 Benzodiazepine use has increased 0.87

Q114.2 Overall body pain on average 0.86 Q68.3 Trouble waking up refreshed 0.85

Q46. Flu shot in past year 0.86 Q77. Poor sleep quality, past 7 days 0.85

Q77. Poor sleep quality, past 7 days 0.86 Q114.2 Overall body pain, on average 0.85

Q68.3 Trouble waking up refreshed 0.85 Q133.1 Opioid use has increased 0.83

Q133.1 Opioid use has increase 0.85 Q46. Flu shot in past year 0.83

Q36.1. Lives alone 0.83 Q36.1. Lives alone 0.81

Q68.2 Memory trouble in past week 0.81

The value shown is the proportion of times the variable was chosen in 3,000 fitted models, as models were fit on 100 train/test splits of 30 multiply imputed datasets

(100x30 = 3,000). Only variables with a selection rate over 80% are included. Variable descriptions are available in the supplement (S1 Table). The tested for COVID-19

outcome compares the tested population (1) to those not tested (0). All models included the six covariates age, sex, race/ethnicity, body mass index, education level, and

essential worker status, which were not selected for or penalized. Data from Michigan Medicine COVID-19 Survey and Michigan Genomics Initiative. Sample size:

7,054.

https://doi.org/10.1371/journal.pone.0269017.t003
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derived variables can be moderately predictive of COVID-19 outcomes in certain contexts,

especially in case-control populations that are too large to be surveyed in full.

Our results also speak to the relative difficulty of modeling different COVID-19 outcomes.

AUCs for predicting COVID-19 testing tended to be lower than those for predicting diagnosis,

which is not surprising considering COVID-19 testing may be driven by many factors (e.g.,

work, travel, symptoms, anxiety), some of which we have not accounted for. In contrast, being

diagnosed with COVID-19 is heavily tied to exposure to the virus, resulting in strong associa-

tions for certain survey variables. We also ran our models using self-diagnosis with COVID-19

as an outcome, but found only weak associations and poor predictive power (S6 Table). As

symptoms of COVID-19 mirror common cold and flu symptoms [44], self-diagnosis due to

symptoms may be inherently imprecise.

There are several limitations to our work. First, our sample is not representative of the US

population, or even the Michigan population, as it was based on survey respondents who were

disproportionately White, predominantly college-educated, and who tended to have chronic

medical conditions. There are many reasons why this could have been–for instance, EHR data-

bases are known to be subject to selection bias [45]. Biorepositories such as MGI are no excep-

tion, as MGI’s initial recruiting pool consisted largely of Michigan Medicine surgery patients,

a nonrandom subset of the population [46]. Further, nonresponse to the survey could have

compounded these biases or introduced novel ones, as descriptive statistics of survey respond-

ers compared to recipients showed small differences [11]. Respondents to the survey also

tended to be older than Michigan Medicine at large, and more female (S13 Table). The odds

ratios we have presented should be viewed only in this context and not extrapolated to the gen-

eral United States. Advanced tools such as inverse probability weighting, which can help

account for some of these biases, were beyond the scope of the current work. Our relative com-

parison between survey- and EHR-derived variables is still fair conditional on a fixed pool of

respondents.

Second, our models lacked external validation data and could only be evaluated internally

Though our study evaluated prediction performance of the models by repeated data-splitting

of the sample, alternative methods to avoid over-fitting, such as optimism correction [47], are

also logical choices for an honest assessment of prediction. However, data-splitting has the

advantage of simplicity, especially in the case of handling multiply imputed datasets, and the

procedure should be sufficient for the sake of comparing relative predictive performance

across multiple sets of variables on the same sample. Moreover, as the survey- and EHR-based

models were based on different samples from different populations, we should be wary of com-

paring their AUCs directly.

Third, the small number of COVID-19 diagnosed cases in the data (78), relative to the

number of features explored (up to 164), could have led to instability in the estimated model

coefficients or performance. However, these concerns are lessened, though not eliminated

entirely, by the fact that we applied shrinkage to the models via penalization. Moreover, the

relative comparison between EHR- and survey-derived variables for prediction can be thought

of as conditioning on a given sample, so the relative comparison is still of value despite this

limitation of the data. A proper quantification that is broadly generalizable would require sim-

ulation studies with various effect sizes and sample sizes that is beyond the scope of the current

work. There are also possible limitations to our specific choice of models. Variable selection

approaches such as LASSO and elastic net can have difficulty choosing the optimal model

under certain conditions: for instance, when predictors are correlated. For this reason, the pro-

portion of times each variable was selected may not always be reflective of the true variable

importance. Moreover, parametric generalized linear models in general may struggle to cap-

ture the true nature of exposure-outcome associations, especially when those associations are
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complex and involves non-linearity and interactions. Future work could expand upon our

findings by applying machine learning approaches that are more flexible than logistic regres-

sion, such as, for example random forests or neural networks as well as ensemble methods like

the super learner [48].

Fourth, it may be argued that our comparison of survey variables to EHR variables is intrin-

sically unfair, as we tested 143 variables from the survey and only 15 from the EHRs. However,

the breadth and number of variables is an important difference between EHR and survey data

in general. If the additional variables that surveys can incorporate are predictive, then the dif-

ference in number of variables is not inhibitive to our comparison but fundamental to it. Our

comparison is also only relevant to the specific outcome variables that we explored: being diag-

nosed with COVID-19 and being tested for it. Other COVID-19-related outcomes, such as

severity of symptoms, may have stronger associations with EHR-derived comorbidities, poten-

tially making the addition of EHR variables to survey data more impactful, but we did not have

the data to address this question.

Last, it is possible that there are reporting errors in the survey, due to factors such as recall

bias [49,50], or that the EHR-derived health conditions came with inherent accuracies

[17,51,52]. An example of the former, having abdomen pain in the prior six months was asso-

ciated with both COVID-19 testing and diagnosis, but respondents may have had difficulty

recalling their pain over such a long period.

EHR- and survey-based research have both been critical to understanding COVID-19 out-

comes and their risk factors. Our results should not be interpreted to mean that EHR data have

no value when survey data are available, only that surveys offer access to a broader scope of

features that may, in some cases, make general EHRs less vital. As the spread of COVID-19 is

heavily tied to risk factors that EHR do not capture (e.g., exposure information, health behavior,

and vaccination status), it remains a priority to continue investing in the collection and analysis

of survey data. Moreover, while the pandemic continues, it may be worthwhile to expand the

base-questionnaires received by patients at hospitals and clinics to include factors that are rele-

vant to COVID-19 risk. Efficient access to detailed and accurate medical data is a prerequisite

for studying COVID-19, and going forward, may be critical in identifying vulnerable groups.
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