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The phenotypic presentation of monogenetic diseases is determined not only by the 
nature of the causative mutations but also is influenced by manifold cellular, 
microenvironmental, and external factors. Here, heritable extracellular matrix diseases, 
including dystrophic epidermolysis bullosa (DEB), are no exceptions. Dystrophic 
epidermolysis bullosa is caused by mutations in the COL7A1 gene encoding collagen VII. 
Deficiency of collagen VII leads to skin and mucosal fragility, which progresses from skin 
blistering to severe fibrosis and cancer. Clinical and pre-clinical studies suggest that 
targeting of secondary disease mechanisms or employment of natural disease modifiers 
can alleviate DEB severity and progression. However, since many of these mechanisms 
are needed for tissue homeostasis, informed, selective targeting is essential for safe and 
efficacious treatment. Here, we discuss a selection of key disease modifiers and modifying 
processes active in DEB, summarize the still scattered knowledge of them, and reflect 
on ways forward toward their utilization for symptom-relief or enhancement of 
curative therapies.
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INTRODUCTION

Epidermolysis bullosa (EB) comprises a group of genetic disorders manifested by mechanically 
induced blistering and fragility of the skin and other stratified epithelia. Over 20 genes have 
been described to be  causative of EB and related skin fragility disorders (Has et  al., 2020). 
These span genes encoding intracellular transporters, via cytoskeletal proteins and integrin 
receptors, to extracellular matrix (ECM) proteins. Depending on the level of separation in the 
skin, EB is divided into four main types: Epidermolysis bullosa simplex with blistering occurring 
in the epidermal basal keratinocyte layer, junctional EB with blistering within the lamina 
lucida of the epidermal basement membrane, dystrophic EB (DEB) with blistering below the 
epidermal basement membrane, and Kindler EB with blistering occurring in all layers 
(Bardhan  et  al., 2020).

This mini-review will focus on DEB, which can be  inherited in a dominant or a recessive 
(RDEB) manner (Bardhan et  al., 2020). Dystrophic epidermolysis bullosa is primarily caused 
by genetic loss of function or abundance of collagen VII, encoded by the COL7A1 gene (Has 
et al., 2018), but a number of secondary, molecular and cellular, events modify the disease phenotype.
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COLLAGEN VII

Collagen VII is a large, in parts atypical collagen, which attaches 
the epidermal basement membrane to the dermal ECM. It is 
synthesized as pro-collagen VII consisting of three pro-α1 
chains that fold into one pro-collagen VII molecule. The 
molecule has sizable N-terminal non-collagenous 1 (NC1) 
domains, followed by an extended collagenous domain, and 
ends with minor NC2 domains at the C-terminus (Has et  al., 
2018). Although minor, the NC2 domain is essential for 
intermolecular assembly (Bruckner-Tuderman et al., 1995; Chen 
et  al., 2001). Extracellularly in the skin, pro-collagen VII 
molecules align as antiparallel dimers, which laterally aggregate 
to form anchoring fibrils (Chung and Uitto, 2010). The antiparallel 
dimer formation occurs over the NC2 domain, and in a stretched 
configuration, anchoring fibrils consequently contain NC1 
domains at both ends and the NC2 domains in the middle. 
Proper removal of a large part of the NC2 domain is essential 
for stable anchoring fibril formation (Bruckner-Tuderman et al., 
1995; Chen et  al., 2001). Astacin-like proteases BMP-1/mTLD 
and meprins have been shown to cut pro-collagen VII to 
collagen VII (Rattenholl et  al., 2002; Moali et  al., 2005; 
Kruppa  et  al., 2021).

In the skin, epidermal keratinocytes and papillary dermal 
fibroblasts produce collagen VII and contribute to its deposition 
at the dermal-epidermal junction (DEJ; Twaroski et  al., 2019). 
The NC1 domains are generally positioned in the epidermal 
basement membrane and the collagenous domains loop down 
into the superficial papillary ECM (Has et al., 2018). Anchoring 
fibrils provide skin stability by attaching the epidermal basement 
membrane, via high-affinity interactions of their collagen VII 
NC1 domains with laminin-332 and collagen IV, and simultaneous 
binding to collagen fibrils in the papillary dermis (Chen et  al., 
1997, 1999; Brittingham et  al., 2006; Villone et  al., 2008). It 
appears that the sixth or seventh fibronectin type III-like domain 
in the NC1 domain harbors the major binding sites for laminin-
332, collagen IV, and even the weaker interaction partner 
thrombospondin-1 (Aho and Uitto, 1998; Chen et  al., 1999; 
Brittingham et  al., 2006; Atanasova et  al., 2019).

For the correct function, deposition and stability of collagen 
VII and anchoring fibrils posttranslational modifications are 
needed. Currently, there is an insufficient understanding on 
the exact role of these modifications. Collagen VII appears to 
be  a substrate of the cross-linking enzyme transglutaminase 
2 (TGM2), and TGM2-mediated crosslink formation may 
stabilize anchoring fibrils (Raghunath et al., 1996; Küttner et al., 
2014). In addition, collagen VII has been suggested to be modified 
by the multi-functional enzyme lysyl hydroxylase 3 (LH3) also 
known as pro-collagen-lysine, 2-oxoglutarate 5-dioxygenase 3 
(Watt et  al., 2015; Vahidnezhad et  al., 2019). Lysyl hydroxylase 
3 both hydroxylates lysyl residues and then further O-glycosylates 
these (Salo et al., 2006; Risteli et al., 2009). Lysyl hydroxylase 3 

deficiency is linked to altered deposition and reduced 
functionality of multiple tissue-stabilizing collagens, including 
collagen VII. Interestingly, skin blistering in LH3-deficient skin 
shows similarities to that of collagen VII-deficient RDEB skin 
(Salo et  al., 2008; Vahidnezhad et  al., 2019). In addition to 
posttranslational modifications, coordinated production and 
deposition of collagen VII by both keratinocytes and fibroblasts 
have been indicated to facilitate anchoring fibril assembly (Supp 
et al., 2019). Collectively, the complex synthesis and modification 
of collagen VII, the contribution of multiple cellular sources 
to anchoring fibril formation and the incomplete understanding 
of these processes, pose challenges for RNA, gene, protein, or 
cellular therapies aiming to restore collagen VII and anchoring 
fibrils in RDEB.

GENOTYPE-PHENOTYPE 
CORRELATIONS

More than 1,000 distinct mutations have been reported to 
cause DEB. The most severe phenotypes are associated with 
COL7A1 mutations causing complete loss of translated collagen 
VII. However, the genotype–phenotype correlations are not 
completely clear and there is a vast phenotypic variability 
(Figure  1). There are cases with sole nail dystrophy or mild 
localized disease. These are mostly associated with glycine 
substitutions in the collagenous domain (Dang and Murrell, 
2008). Patients might suffer from an inversa phenotype, with 
skin fragility mostly in the flexural skin areas and the mucosa. 
This seems to be  caused by recessive arginine and glycine 
substitutions in the collagenous domain (van den Akker et  al., 
2011), and the hypothesis was proposed that the higher 
temperature in the body flexures impairs stability of the glycine-
substituted collagen VII, leading to skin lesions in these specific 
areas (van den Akker et  al., 2011). The rare subtype, DEB 
pruriginosa, clinically characterized by intensively itchy, 

Abbreviations: EB, epidermolysis bullosa; ECM, extracellular matrix; DEB, dystrophic 
EB; DDEB, dominant DEB; DEJ, dermal-epidermal junction; IL, interleukin; NC, 
non-collagenous; LH3, lysyl hydroxylase 3; MMP, matrix metalloproteinase; RDEB, 
recessive DEB; TGF, transforming growth factor.

A B

FIGURE 1 | Phenotypic variability in dystrophic epidermolysis bullosa.  
(A) A 6-year-old patient with recessive DEB and residual collagen VII expression 
has blisters (arrow) and erosions on the feet. The nails are dystrophic or absent, 
scars and erythematous maculae occur after healing of the lesions.  
(B) A 27-year-old patient with severe RDEB and complete lack of collagen VII 
expression suffers from severe skin fragility, chronic wounds (arrowhead), and 
pronounced, progressive fibrosis of the skin, resulting in mitten deformities. The 
skin appears inflamed with redness and crusts in areas of healed blisters.
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hypertrophic, prurigo-like papules, and nodules, is in more 
than 50% of the cases associated with glycine substitutions, 
followed by in-frame skipping mutations in around 30% (Kim 
et  al., 2015). These data highlight that the type of mutation 
but also its position within collagen VII are phenotypic 
determinants (Dang and Murrell, 2008) with a broad range 
of cutaneous manifestations. Further, the nature of amino acid 
change for a given position is important, as shown by the 
different phenotypes caused by mutations in the same position 
(Almaani et  al., 2011). Nonetheless, even in patients with the 
same COL7A1 mutations the phenotypes might differ, as shown 
by studies in siblings (Hovnanian et  al., 1997; Bodemer et  al., 
2003; Titeux et  al., 2008; Odorisio et  al., 2014), disclosing that 
in addition to the causative mutations, other genetic, epigenetic, 
microenvironmental, and environmental factors contribute to 
the phenotype. As discussed below, these factors remain limitedly 
known. A better understanding of them is important for 
improved prognostication of the disease severity and therapeutic 
exploitation for disease-modifying therapies. Pathological 
COL7A1 mutations could also be  used to provide insights on 
the collagen VII interactome; however, it should in this context 
be mentioned that missense mutations in known protein–protein 
interacting domains, such as the NC1 domain, are exceedingly 
rare [COL7A1(gene)  - ClinVar – NCBI, 2020].

CUTANEOUS MANIFESTATIONS IN 
RDEB

The disease hallmark of RDEB is skin fragility, which manifests 
with the mechanically induced development of blisters and 
erosions, especially in trauma-prone skin areas, such as hands, 
feet, and knees (Figure  1). Acute or chronic wounds occur 
at different body sites with itch and pain as a consequence 
(Solis et  al., 2021). Also the mucosa and adnexal structures 
of the skin might be  affected, with features of intraoral soft-
tissue involvement and dental abnormalities (Krämer et  al., 
2020), nail dystrophy, and secondary alopecia. Ocular involvement 
encompasses corneal erosions and subsequent scarring, as well 
as eye lid erosions, followed by ectropion or symblephara 
(Figueira et  al., 2010). These may result in severe impairment 
of visual acuity.

The cutaneous and mucosal blisters heal with scarring. At 
sites, meeting frequent mechanical and frictional challenges, 
typically the extremities, fibrosis driven by a chronic state of 
injury and inflammation leads to joint contractures and webbing 
of fingers and toes and the formation pseudosyndactylies  – so 
called mitten deformities – allowing only limited function and 
mobility (Figure  1B).

The intermittent blistering, impaired wound healing with 
inflammation, high bacterial load, wound infections, and 
subsequent fibrosis of the skin are considered to be main events 
creating a microenvironment that promotes mutagenesis of 
keratinocytes through, e.g., activation of cell-intrinsic DNA 
editing enzymes, such as the APOBECs (Hoste et  al., 2015; 
Cho et  al., 2018). These events also establish a stiffened and 
hyper-vascularized environment, facilitating the growth, 

progression, and metastasis of established squamous cell 
carcinomas (SCCs; Martins et  al., 2016; Mittapalli et  al., 2016; 
Föll et  al., 2017; Condorelli et  al., 2019). These arise already 
in early adulthood and are the main cause of death in patients 
with severe generalized RDEB (Montaudié et al., 2016). Notably, 
in that specific patient, population more than 90% will have 
developed an SCC by the age of 55 years and have a 78% 
cumulative risk of death from metastatic SCCs (Fine et al., 2009).

EXTRACUTANEOUS MANIFESTATIONS 
IN RDEB

Besides the disease manifestations in skin and mucosa, 
complications arise in other organs. Such extracutaneous 
manifestations are more prominent in patients with the severe 
subtypes of RDEB. The perpetual cycles of trauma-induced 
blistering of the esophagus result in stenoses, requiring dilatations, 
and/or gastrostoma to ensure proper food intake. Consequences 
are anemia, partially due to iron deficiency, deficiencies in 
vitamins and minerals, and severe failure to thrive (Reimer 
et al., 2020). With progressive disease, connected to the systemic 
impact of cutaneous wounding and inflammation, internal 
organs can become affected. Renal parenchymal disease might 
arise, linked to amyloidosis or the autoimmune disease IgA 
nephritis (Bardhan et  al., 2020). A subset of individuals with 
RDEB develops life-threatening dilated cardiomyopathy at an 
early age (Fine et al., 2008). A less considered change is external 
auditory canal stenosis, which may result in hearing loss 
(Brown  et  al., 2017).

Immune Anomalies in RDEB
People with RDEB have elevated bacterial colonization of 
wounds compared to non-RDEB individuals with large, chronic 
wounds (Levin et  al., 2021), with Staphylococcus aureus and 
Streptococcus pyogenes being the most common colonizers 
(Fuentes et  al., 2018; Levin et  al., 2021). In addition, RDEB 
wounds and skin show a reduced diversity of their bacterial 
microbiome (Bar et  al., 2021). Our studies of RDEB patients 
and RDEB mouse models indicate that the increased susceptibility 
to bacterial infections is not only associated with wounding, 
but also to a large extent due to loss of collagen VII from 
secondary lymphoid organs (Nyström et  al., 2018). One 
mechanism making people with RDEB unable to respond 
appropriately to bacterial challenges is through loss of interactions 
between collagen VII and the ECM protein cochlin in the 
conduits of secondary lymphoid organs. Upon bacterial 
challenges, systemic danger signals, through, e.g., TNF, increase 
expression of aggrecanase 1 and 2  in the spleen and other 
secondary lymphoid organs. Aggrecanases in turn release the 
N-terminal LCCL domain of cochlin into the circulation. The 
LCCL domain promotes activation and boosting of antibacterial 
immunity exerted by innate immune cells (Py et  al., 2013). 
Collagen VII binds cochlin with high affinity and appears to 
serve as its major anchor in secondary lymphoid organs. Loss 
of collagen VII evokes a dramatic loss of cochlin from these 
organs and, thus, an inability to mount a cochlin LCCL 
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domain-mediated innate immune response toward bacteria 
(Nyström et  al., 2018).

Intriguingly, besides the abnormalities in the innate immune 
system, also anomalies in adaptive immunity including presence 
of autoantibodies against several proteins of the DEJ have been 
reported (see below; Tampoia et  al., 2013; Annicchiarico et  al., 
2015; Esposito et  al., 2016). If these changes are bystanders 
of chronic injury or if they represent active participants in 
disease pathogenesis needs to be elucidated; however, observation 
of alleviation of disease manifestations in RDEB patients receiving 
various forms of immunosuppressive or immunomodulatory 
treatment – mild to harsh (Wagner et  al., 2010; Petrof et  al., 
2015; Ebens et  al., 2019) – could suggest active participation 
to disease.

DISEASE MODIFIERS

There is a general tendency that higher levels of collagen VII 
expression positively correlate with milder disease in RDEB 
(van den Akker et  al., 2009). Upon closer inspection, this 
tendency is not constant and the mechanisms regulating disease 
severity are not well understood. Unexpectedly, the same 
mutation combinations even in the same family can result in 
widely disparate disease severity (Hovnanian et  al., 1997), 
indicating the presence of strong environmental, genetic, and 
epigenetic modifiers of disease in RDEB. The detailed nature 
of such modifiers remains for most elusive or not definitely 
proven, reflecting the challenges in generating robust data and 
statistically assessing these in a small subset of a rare disease 
(Kern et  al., 2009). Below, we  discuss molecular and cellular 
players that are thought to act as disease modifiers in DEB.

Proteolytic Activities
Dystrophic epidermolysis bullosa has been associated with 
increased proteolytic activity in epidermal and dermal 
microenvironments (Eisen, 1969; Lazarus, 1972). Human and 
murine RDEB skin and cultured RDEB skin-derived keratinocytes 
and fibroblasts display alterations in the expression and the 
activity of several proteases and inhibitors, including matrix 
metalloproteinase (MMP)-1, MMP-2, MMP-3, MMP-9, MMP-7, 
MMP-13, MMP-14, TIMP-1, TIMP-3, cathepsin B and Z, 
meprins, and fetuin B (Valle and Bauer, 1980; Winberg et  al., 
1989; Bodemer et  al., 2003; Küttner et  al., 2013; Liao et  al., 
2018; Thriene et  al., 2018; Akasaka et  al., 2021; Figure  2).

Dysregulation of lysosomal proteases occurs both in RDEB 
keratinocytes and fibroblasts (Küttner et  al., 2013; Thriene 
et al., 2018). These impair cellular fitness by affecting autophagy 
and causing a senescent, pro-inflammatory phenotype with 
limited regenerative abilities (Küttner et al., 2013; Thriene et al., 
2018; Berberich et  al., 2020).

Matrix metalloproteinases, especially the collagenase and 
gelatinases, have been the focus of most investigations on 
elevated protease activity in DEB. Early studies, before the 
genetic cause of RDEB had been disclosed, revealed increased 
collagenase and gelatinase activity in DEB skin blisters (Eisen, 
1969; Lazarus, 1972), but also increased activities in non-blistered 

DEB skin were suggested (Eisen, 1969). It was concluded that 
“the increased amounts of collagenase might perpetuate the 
blistering and scarring by degrading the connective tissue” 
(Lazarus, 1972). Based on findings that phenytoin reduced 
collagenase expression, it was repurposed to treat RDEB (Bauer 
et  al., 1980). First results were promising, indicating reduction 
of blistering (Bauer et al., 1980). However, a subsequent, larger 
study could not confirm a benefit (Caldwell-Brown et al., 1992) 
and the use of phenytoin for RDEB was consequently 
largely abandoned.

Interestingly, dysregulated collagenase and gelatinase activity 
are maintained in cultured RDEB keratinocytes and fibroblasts 
(Bauer and Eisen, 1978; Valle and Bauer, 1980; Akasaka et  al., 
2021), which suggests long-lasting intrinsic changes attributed 
to genetics, epigenetics, cellular responsiveness, or cellular 
memory. However, this is not a general phenomenon observed 
in all studies and whether or not these activities are heighted 
compared to donor cells appear to depend on donors and 
culture conditions (Winberg et  al., 1989; Küttner et  al., 2013; 
Akasaka et  al., 2021).

The variability in collagenase and gelatinase activity between 
individuals with DEB, together with the fact that they may 
degrade collagen VII, resulted in the hypothesis that MMP 
activity could be  a disease modifier for DEB (Bodemer et  al., 
2003). In three brothers with RDEB with dramatically discordant 
severity, the abundance of MMP-1, −2, −3, and − 9 was increased 
in both blisters and non-blistered skin, as compared to healthy 
control skin. Skin from the intermediately affected brother 
showed the highest MMP-2 and -9 activity. However, the 
abundance of MMP-1 was greatest in the most severely affected 
brother and this correlated with MMP-1 activity being uniquely 
detected in his blistered skin. Building on these studies, a 
subsequent investigation identified a SNP in the MMP-1 promoter 
associated with higher MMP-1 expression in the more severely 
affected brothers and further linked this SNP to more severe 
RDEB in a larger cohort (Titeux et al., 2008). Higher frequency 
of the specific MMP-1 SNP was also detected in RDEB compared 
to healthy controls in another study (Almaani et  al., 2009). 
Analysis of a larger DEB cohort confirmed higher frequency 
of the MMP-1 SNP in RDEB, however, could not make a 
correlation between the MMP-1 SNP and more severe RDEB 
(Kern et  al., 2009).

Early clinical trials on cancer treatment with MMP inhibitors 
were unsuccessful, which was due to multiple factors including 
low selectivity of the inhibitors, challenges with bioavailability 
and insufficient understanding of MMP function, and their 
interconnectivity in the protease web (Winer et al., 2018; Fields, 
2019). Progress of optimized inhibitor synthesis and overall 
enhanced knowledge of protease biology has created a renewed 
interest in MMP targeting in multiple diseases from autoimmune 
diseases to cancers (Winer et  al., 2018; Fields, 2019). Research 
for the application of MMP targeting for DEB could ride this 
wave. However, to avoid repeating past failures related to 
uninformed targeting, it is important to first gain a comprehensive 
understanding of the protease web in DEB and its dysregulation, 
as proteases are active on both sides of the disease spectrum – 
they are degenerative and may promote inflammation but also 
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essential for tissue regeneration and inflammatory homeostasis. 
Apart from their processing and degrading the ECM, they are 
essential regulators of transforming growth factor (TGF)β 
activity, inflammation, and angiogenesis – three other potential 
phenotype modifiers in RDEB.

TGFβ Activity
Increased TGFβ activity has since long been associated with 
fibrotic diseases (Kim et  al., 2018). In a chronically injured 
tissue setting as in RDEB, it is contributed by both activated 
tissue-resident cells as well as inflammatory cells and platelets 
(Kiritsi and Nyström, 2018; Figure  2). TGFβ is a pleiotropic 
cytokine, part of the larger TGFβ superfamily. Humans have 
three isoforms TGFβ1-3, which signal through TGFβ receptors 
type I  and II, and in the canonical pathway phosphorylate 
SMAD-2/3, which in a complex together with SMAD4 translocate 
to nucleus and promote gene expression. Non-canonical TGFβ 
signaling also occurs, activating multiple other pathways including 
JNK, MAPK, and AKT. TGFβ has a variety of essential roles 
in organ and tissue homeostasis. It exerts immunoregulatory 
actions, stimulates epithelial cell mobility, epithelial-to-
mesenchymal transition, activation of fibroblasts, and production 
of ECM proteins (Ramirez et  al., 2014; Hinz, 2015; Sanjabi 
et  al., 2017; Figure  2).

TGFβ is secreted in a latent form that needs to be activated 
to allow for signaling through its receptors (Kim et  al., 
2018). Multiple mechanisms can activate TGFβ; the reliance 
on these mechanisms differs depending on the context and 
the TGFβ isoforms. These mechanisms include activation 
through application of mechanical forces to the latency-
associated pro-peptide via RGD-binding integrins, breaking 
of chemical bonds via reactive oxygen species, induction  
of sterical shifts via binding to the ECM protein 
thrombospondin-1, proteolytic release via proteases including 
MMPs, and on lymphocytes via binding to GARP (Wang 
et  al., 2012, 2017; Kim et  al., 2018).

Recent data suggest an intricate relationship between collagen 
VII and TGFβ. Collagen VII can downregulate TGFβ activity 
in vitro and in vivo reducing scarring and it also seems to 
limit conversion of latent to active TGFβ (Wang et  al., 2013; 
Nyström et al., 2013b; Akasaka et  al., 2021). In a viable mouse 
model of severe RDEB – the collagen VII hypomorphic mouse – 
increased abundance of TGFβ ligands was seen in fibrotic 
forepaws (Fritsch et  al., 2008). Healing skin wounds in the 
same model showed elevated canonical TGFβ signaling (Nyström 
et  al., 2013b). Interestingly, increased TGFβ ligand expression 
was not disclosed in heavily scarred deformities of RDEB 
patients (Breitenbach et al., 2015a), whereas we observed elevated 

FIGURE 2 | Secondary disease mechanisms and potential disease modifiers in dystrophic epidermolysis bullosa (DEB). Disease progression in DEB is jointly driven 
by external and tissue-intrinsic factors. Frictional and mechanical challenges induce blistering of a pre-destabilized tissue, this together with high bacterial load 
trigger an exaggerated inflammatory and wound healing response. Bacteria may promote direct destruction of tissue through release of bacterial proteases. 
Epidermal keratinocytes, activated by impaired adhesion, injury, and inflammation, increase production of proteases, including matrix metalloproteinases (MMPs), 
which further evoke tissue degradation and inflammation. In addition, the keratinocytes secrete pro-inflammatory factors and trigger activation of dermal fibroblasts. 
Inflammatory cells – inflammatory macrophages and neutrophils – promote tissue degradation through secretion of MMPs and elastase, and activation of fibroblasts 
through release of, e.g., TGFß and IL-6. Activated fibroblasts respond by increasing production of provisional and interstitial extracellular matrix (ECM) and altering 
the ECM architecture to a stiffer structure. Vascular leakage enhanced by the hyper-vascularized tissue may cause a transient increase in stiffness triggering stiffness 
response in fibroblasts. Increasing stiffness and TGFβ, which is released by multiple cell types – keratinocytes, fibroblasts, inflammatory cells, and platelets – and 
activated by several mechanisms – integrins, proteases, thrombospondin-1, and ROS – promote conversion of fibroblasts to contractile myofibroblasts. With time, 
adaptive immune activation occurs which may further enhance chronic inflammation and injury response. Collectively, these multifaceted mechanisms promote the 
establishment of a fragile, fibrotic, and contractile tissue that supports the growth of squamous cell carcinomas.
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levels of circulating TGFβ in RDEB, as well as tissue-bound 
TGFβ and increased canonical TGFβ signaling in human RDEB 
wounds (Nyström et  al., 2015). Collectively, these results may 
reflect differences in the dependence of TGFβ during the onset 
and after establishment of fibrosis.

Cultured RDEB keratinocytes and fibroblasts display signs of 
increased TGFβ ligand expression and activity (Knaup et al., 2011; 
Küttner et  al., 2013; Odorisio et  al., 2014; Nyström et  al., 2015; 
Atanasova et  al., 2019). Keratinocytes contribute to fibrosis by 
facilitating TGFβ activation (Thriene et  al., 2018; Akasaka et  al., 
2021). Furthermore, TGFβ activity appears to be strongly dependent 
on culture conditions and time (Akasaka et  al., 2021). In RDEB 
fibroblasts and keratinocytes, RGD-binding integrins, ROS, 
thrombospondin-1, and MMP-2 and 9 have been suggested to 
participate in latent TGFβ activation (Atanasova et  al., 2019; 
Chacón-Solano et al., 2019; Akasaka et al., 2021) and the reliance 
of these changes with culture time (Akasaka et  al., 2021). 
Consequently, these processes and interactions can themselves 
be  disease modulating.

A groundbreaking paper from Odorisio and colleagues linked 
TGFβ activity to disparate disease presentation in identical 
twins with RDEB (Odorisio et al., 2014). The twins synthesized 
and secreted similarly reduced levels of collagen VII, but the 
TGFβ activity in the skin differed. Low TGFβ activity was 
associated with milder disease and high TGFβ activity with 
a severe phenotype. Mechanistically, the TGFβ activity correlated 
inversely with the production of the small leucine-rich 
proteoglycan decorin (Odorisio et  al., 2014). Decorin is a 
multi-functional protein with a large interactome and many 
biological functions assigned to its name (Neill et  al., 2012). 
The focus of decorin in the context of the discordant RDEB 
phenotype was on its ability to sequester TGFβ and hide it 
from presentation to its cognate receptors (Yamaguchi et  al., 
1990; Odorisio et  al., 2014). Subsequently, experimental 
pre-clinical support for the abilities of decorin to modify RDEB 
severity was obtained from systemic overexpression of decorin 
in collagen VII hypomorphic mice (Cianfarani et  al., 2019). 
Expression of human wild-type decorin in newborn collagen 
VII hypomorphic mice significantly improved survival and 
reduced formation of mitten deformities of forepaws (Cianfarani 
et  al., 2019). In addition, systemic injections of recombinant 
decorin fused to a wound target-seeking peptide (Järvinen and 
Ruoslahti, 2010) extended the life span of completely collagen 
VII-deficient mouse pups, reduced TGFβ ligand gene expression 
and markers associated with fibrosis (Pemmari et  al., 2020).

TGFβ activity in RDEB is a double-edged sword – on 
the one hand, it increases fibrosis by activating fibroblasts 
and promoting ECM production, and on the other hand, 
it is a strong inductor of collagen VII expression. In the 
setting of tumors, it inhibits keratinocyte proliferation but 
also creates a stiffened and hypervascular microenvironment 
supporting tumor progression, the stiffness combined with 
immunosuppression may reduce anti-tumor immune 
surveillance (Ryynänen et  al., 1991; Salmon et  al., 2012; 
Martins et  al., 2016; Mittapalli et  al., 2016; Sanjabi et  al., 
2017). This makes direct TGFβ targeting for treatment of 
RDEB challenging.

In an attempt to limit TGFβ activity with a therapeutically 
relevant pharmacological approach, we  treated collagen VII 
hypomorphic mice with the angiotensin II type 1 receptor 
antagonist losartan (Nyström et  al., 2015). Losartan had in 
previous studies been shown to reduce TGFβ activity in fibrotic 
conditions, including other genetic ECM diseases (Habashi 
et al., 2006). RDEB fibroblasts responded to losartan by reducing 
pro-fibrotic activation status. Prolonged losartan treatment in 
adult collagen VII hypomorphic mice protected against 
progression of dermal fibrosis (Nyström et  al., 2015). The 
outcome of this pre-clinical study prompted the initiation of 
a clinical trial testing the safety and efficacy of losartan for 
treatment of children with RDEB (EudraCT Number: 2015–
003670-32, interim results presented in First World Congress 
on Epidermolysis Bullosa, January 19–23, 2020, London, 
United  Kingdom (2020).

While clear effects on reduction of TGFβ activity were seen 
in the losartan-treated collagen VII hypomorphic mice, the 
most prominent was on inflammation (Nyström et  al., 2015). 
Thus, a major benefit of losartan appeared to be from reduction 
of inflammation.

Inflammation
Peripheral and systemic alterations in immune cell number 
and activity have been observed in RDEB (Lazarus, 1972; 
Tyring et  al., 1989; Chopra et  al., 1990, 1992). Because RDEB 
is associated with chronic tissue damage, inflammation could 
be a consequence of the damage and not involved in modifying 
disease manifestations. However, different lines of evidence 
from human and animal models suggest that DEB can 
be  considered a systemic inflammatory disease 
(Annicchiarico  et  al., 2015; Nyström et  al., 2015; Figure  2).

In collagen VII hypomorphic mice, natural disease severity 
positively correlated with myeloid cell numbers and 
immunoglobulin content in fibrotic skin (Nyström et al., 2015). 
Transcriptomic investigation of biopsies from scarred DEB skin 
revealed signs of heightened inflammation of DEB skin and 
posited mitten deformities to be  in part inflammation-driven 
(Breitenbach et  al., 2015a, 2015b). There is an element of 
autoimmunity in DEB. Analyses have revealed presence of 
antibodies against DEJ proteins including collagen VII in people 
with RDEB (Tampoia et  al., 2013; Woodley et  al., 2014; 
Annicchiarico et  al., 2015). The level of autoantibodies and 
level of interleukin (IL)-6 and − 12 showed positive correlation 
with disease severity in EB and specifically in DEB (Tampoia 
et  al., 2013; Annicchiarico et  al., 2015). A subsequent study 
indicated that the IL-6 to IL-10 ratio in serum could be  used 
as a prognostic marker of disease severity in RDEB 
(Tampoia  et  al., 2017).

Direct evidence of inflammation as an active modifier of 
disease in RDEB is still missing. As suggested by proteomics, 
the major effect from losartan treatment of RDEB model mice 
was reduction of inflammation; lower tissue inflammation and 
lower levels of circulating IL-6 and TGFβ correlated with milder 
disease. Mesenchymal stromal cells (MSCs) have been of interest 
for treatment of RDEB, since they, on the one hand, have the 
ability to produce collagen VII, on the other hand are 
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immunomodulatory (Tolarova and Tolar, 2015). Using the same 
animal model, we  disclosed that the major benefit of MSCs 
in promoting healing and reducing fibrotic aspects of RDEB 
wounds was from reduction in tissue inflammation (Kühl et al., 
2015). Clinical trials provide a similar picture. It appears that 
immunosuppression and -modulation after allogeneic bone 
marrow transplantation, which has been evaluated as a potentially 
curative treatment for RDEB, confer symptom-relief effects 
(Wagner et  al., 2010; Ebens et  al., 2019). Similarly, systemic 
administration of allogeneic MSCs alone has improved the 
wellbeing of people with RDEB by modulating inflammation, 
without increasing collagen VII deposition (Petrof et  al., 2015; 
Maseda et  al., 2020). Since RDEB is associated with a heavily 
heightened risk of developing aggressive SCC, it is important 
to not apply general immunosuppression but to keep anti-
tumor immunity intact. Therefore, more studies are needed 
to better understand which aspects of inflammation and immunity 
in RDEB correlate with and potentially drive disease.

Angiogenesis
While not yet functionally assessed in studies, another potential 
disease modifier in RDEB could be  increased angiogenesis 
(Arbiser et  al., 1998; Martins et  al., 2016). As shown in the 
context of cancer development and growth, angiogenesis is 
increased in RDEB skin prior to the occurrence of tumors 
(Martins et  al., 2016). Mechanistically, a higher vascularization 
of the tissue may lead to increased vascular leakage after 
damage, which could increase the stiffness of the tissue and 
evoke pro-fibrotic stiffness responses of fibroblasts that, in turn, 
support tumorigenesis (Figure  2).

Therapeutic Perspective
Like in many monogenetic diseases, several factors outside 
the mutational status determine the disease severity and 
phenotypic presentation of RDEB. With disease progression, 
the reliance on such factors is likely to change. Because of 
the rarity of the disease and the large mutational spectra of 
RDEB, it is challenging to identify factors in detail and on a 
mechanistic level in the human system. Here, the use of small-
animal models greatly facilitates the discovery and functional 
assessment of disease-modulating mechanisms, as spontaneous 
and genetically engineered small-animal models with identical 
with COL7A1 mutations display diversity in phenotypic 
presentations (Nyström et  al., 2013a, 2015; Smith et  al., 2021).

A feared complication of RDEB is the early occurrence of 
highly aggressive squamous cell carcinoma (Guerra et al., 2017; 
Cho et  al., 2018). Evidence points to that the aggressiveness 
is in large caused by changes in the microenvironment (Ng et al., 

2012; Mittapalli et  al., 2016; Guerra et  al., 2017). It should 
be  emphasized that all the discussed disease modifiers have 
been implicated in supporting the progression of SCC in the 
context of RDEB-associated SCCs and other SCCs (Ng et  al., 
2012; Martins et  al., 2016; Mittapalli et  al., 2016; Föll et  al., 
2017; Rahmati Nezhad et  al., 2021). Thus, therapies aiming 
at modulating the activity of these disease modifiers could 
create a microenvironment less supportive of malignant 
conversion of keratinocytes and high-risk tumor behavior.

An improved knowledge of disease-modulating mechanisms 
in RDEB will facilitate the development of new disease-stage 
specific, symptom-relief therapies. These could also have potential 
to improve the efficacy of curative therapies. For example, 
reducing inflammation and tissue-damaging processes in the 
dermal microenvironment should improve the take and healing 
of gene-corrected keratinocyte grafts that have been tested for 
treatment of EB (Nyström and Bruckner-Tuderman, 2016; 
Marinkovich and Tang, 2019). Since many of the already known 
disease-modulating or disease-associated mechanisms in RDEB 
are naturally active and important for wound healing and tissue 
regeneration, it is important to carefully test treatment 
combinations. Furthermore, as RDEB is a life-long and systemic 
disease, it is essential to consider the nature and actions of 
potential drug candidates on a system level over an extended 
time. For example, targeting certain aspects of inflammation, 
such as strong suppression of adaptive immunity, may reduce 
fibrosis and itch and improve wound healing but could also 
increase occurrence of cancers.

The aim of future research in the disease-modulating space 
of RDEB should be  to obtain careful mechanistic knowledge 
and translate this into evidence-based therapies that will relieve 
symptoms and slow disease progression.
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