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SUMMARY
Throughout their journey to forming new individuals, germline stem cells must remain totipotent, particularly bymaintaining a specific

chromatin structure. However, the place epigenetic factors occupy in this process remains elusive. So far, ‘‘sensitization’’ of chromatin by

modulation of histone arrangement and/or content was believed to facilitate transcription-factor-induced germ cell reprogramming.

Here, we demonstrate that the combined reduction of two epigenetic factors suffices to reprogram C. elegans germ cells. The histone

H3K4 demethylase SPR-5/LSD1 and the chromatin remodeler LET-418/Mi2 function together in an early process to maintain germ

cell status and act as a barrier to block precocious differentiation. This epigenetic barrier is capable of limiting COMPASS-mediated

H3K4 methylation, because elevated H3K4me3 levels correlate with germ cell reprogramming in spr-5; let-418 mutants. Interestingly,

germ cells deficient for spr-5 and let-418mainly reprogram as neurons, suggesting that neuronal fate might be the first to be derepressed

in early embryogenesis.
INTRODUCTION

To ensure that all lineages will develop after fertilization,

germ cells must proceed through gametogenesis while

maintaining totipotency and resisting somatic differentia-

tion. After their induction, mammalian primordial germ

cells (PGCs) express the transcription factors sufficient to

not only maintain their pluripotency, such as Oct4, Sox2,

or Nanog, but also activate the epigenetic changes essential

to PGC specification, including chromosome X inactiva-

tion, histone H3K9 demethylation, and genome-wide

erasure of methylated DNA (reviewed in Magnúsdóttir

et al., 2012). The use of nonvertebrate systems such as

C. elegans orD.melanogaster to study germ cell specification

revealed that combinations of genetic and epigenetic

events were the key to somatic fate repression. Tomaintain

their unique status, C. elegans PGCs globally repress mRNA

transcription and establish a specific chromatin structure

and composition to tightly control gene expression

(Wang and Seydoux, 2013). Recently, germline reprogram-

ming was ‘‘artificially’’ obtained by the simultaneous

ectopic expression of master somatic fate inducers (‘‘termi-

nal selector genes’’) and the downregulation of chromatin

repressors such as LIN-53/RbAP46-48 and the H3K27

methyl-transferase Polycomb (Patel et al., 2012; Tursun

et al., 2011), implying that specific combinations of tran-

scriptional and epigenetic factors were capable of control-

ling the germ cell program.

The ATP-dependent nucleosome remodeler Mi2 is the

core component of the nucleosome remodeling and deace-

tylase complex (NuRD), a multisubunit transcriptional

repressor complex known to play a major role in mamma-
Stem
lian cell fate determination and capable of different scopes

of activities depending on its subunit content (reviewed in

Bowen et al., 2004). Embryonic stem cells (ESCs) deficient

for the NuRD subunit MBD3 are unable to undertake line-

age commitment (Kaji et al., 2006). Conditional knockout

micemodels showed thatMi2/NuRDwas essential in termi-

nal differentiation programs, including T cell maturation

(Williams et al., 2004) andSchwanncell-directedperipheral

nerve myelination (Hung et al., 2012). In addition, recent

findings propose that the NuRD repressive activity is

required to limit pluripotency gene expression, thereby

permitting ESC differentiation (Reynolds et al., 2012a).

Recently, histone H3 lysine 4 (H3K4) demethylase LSD1/

KMD1A was identified as a de novo member of the NuRD

complex in HeLa cell extracts (Wang et al., 2009) and in

ESCs (Whyte et al., 2012), independently of the chromatin

repressor complex CoREST, of which it is the core compo-

nent (Lee et al., 2005). LSD1 carries differentiation-

licensing functions in common with the NuRD complex.

lsd1�/� ESCs fail to fully deactivate pluripotency gene

enhancers to complete differentiation programs (Whyte

et al., 2012). LSD1 silences the bivalent promoter of devel-

opmental genes, which combine activating H3K4me2/3

and repressing H3K27me3 histone marks, to maintain

ESC pluripotency (Adamo et al., 2011). LSD1 is also

involved in multiple developmental programs, including

myoblast differentiation (Choi et al., 2010) and neuronal

development (Ceballos-Chávez et al., 2012; Fuentes et al.,

2012), and is a putative metastatic breast cancer suppressor

(Wang et al., 2009). In Drosophila, loss of LSD1 leads to

ovarian germline tumorigenesis, because somatic gonadal

cells become unable to produce the lineage specification
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Figure 1. SPR-5 Interacts with LET-418 and MEP-1 In Vivo
(A) Coimmunoprecipitation of SPR-5 and LET-418 in embryonic
extracts using anti-LET-418 or anti-SPR-5 antibodies. wt, wild-
type; spr-5, spr-5(by134) null allele.
(B) Coimmunoprecipitation of LET-418 using anti-SPR-5 (SPR-5 IP)
antibodies with (+) or without (�) DNaseI/ethidium bromide
(DNase+EtBr) pretreatment.
(C) Coimmunoprecipitation of LET-418 and FLAG-tagged MEP-1,
using anti-SPR-5 and anti-FLAG antibodies, in embryonic extracts
of a control wild-type strain (�) or a strain stably expressing
MEP-1::3xFLAG::GFP (+).
See also Figure S1.
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signals required for germline stem cell differentiation

(Eliazer et al., 2011).

In C. elegans, homologs for both the NuRD complex and

LSD1 were identified. C. elegans LET-418/Mi2 is a subunit

of a NuRD-like complex, together with Rb-binding pro-

tein LIN-53/RbAp48, histone deacetylase HDA-1/HDAC1,

metastasis-associated protein homolog LIN-40/MTA1, and

DCP-66/p66(a/b) (Passannante et al., 2010; Unhavaithaya

et al., 2002; our unpublished data). The C. elegans NuRD-

like complex was previously involved in controlling the

vulval cell fate (von Zelewsky et al., 2000). In addition,

similar to its Drosophila dMi2 homolog (Kunert et al.,

2009), LET-418 interacts tightlywith the zinc finger protein

MEP-1 and HDA-1/HDAC1 in a distinct MEP-1-interacting

complex (MEC) involved in repressing germline gene

expression in somatic cells (Passannante et al., 2010; Unha-

vaithaya et al., 2002).

Three C. elegans genes encode putative LSD1 homologs:

Suppressor of Presenilin 5 (spr-5), T08D10.2/lsd-1 and

R13G10.2/amx-1. The SPR-5 protein displays a demon-

strated biochemical H3K4 demethylase activity and func-

tions in promoting fertility (Katz et al., 2009). SPR-5 is

partially responsible for the specific erasure of H3K4me2
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marks in thePGCsat their birth. spr-5mutants progressively

accumulate H3K4me2 in PGCs throughout generations,

correlating with the progressive ‘‘mortal germline’’ sterile

phenotype peaking at 28–30 generations (Katz et al., 2009).

All these observations suggest that the functions of LSD1

and Mi2/NuRD in controlling cell lineage specification are

ancient and well conserved across species. In order to deci-

pher themolecular mechanisms by which LSD1 and NuRD

determine cell fate in vivo, we set up to analyze their com-

mon functions in the developmental model organism

C. elegans. Here, we describe an interaction between the

C. elegans LET-418/Mi2-containing complexes and SPR-5/

LSD1. In addition to the physical interaction between

SPR-5, LET-418, and associated complexes, spr-5 and let-

418 interact genetically to promote the normal develop-

ment of germline stem cells. Concomitant loss of SPR-5

and LET-418 leads to immediate sterility, aberrant gonad

development, and germline teratoma incidence. SPR-5

and LET-418 together maintain the germline stem cell sta-

tus and form an epigenetic barrier to reprogramming. This

infers the existence of a conserved link between LSD1 and

Mi2-related complexes and shows that specific epigenetic

regulators collaborate intricately to control cell fate during

germ cell development.
RESULTS

LET-418 and SPR-5 Physically Interact In Vivo

To first test whether the C. elegans homologs of LSD1 and

Mi2 interacted physically, coimmunoprecipitation (co-IP)

assays of SPR-5 and LET-418 were performed in embryonic

extracts of wild-type and spr-5 null (by134 allele) strains

(Figure 1A). Although anti-LET-418 antibodies did not

pull down visible amounts of SPR-5, anti-SPR-5 antibodies

recovered detectable levels of the LET-418 protein in

wild-type, but not spr-5-null-derived, samples (Figure 1A),

demonstrating that SPR-5 and LET-418 interact in vivo.

To determine whether this interaction was bridged by

DNA, the anti-SPR-5 immunoprecipitation was repeated

using wild-type embryonic extract pretreated with DNaseI

and ethidium bromide (EtBr), which separate all proteins

from DNA (Figure 1B). LET-418 was still detectable in

the DNase/EtBr-treated anti-SPR-5 eluate, ruling out DNA

bridging as a cause for the interaction (Figure 1B).

An interaction was thereafter detected in embryonic ex-

tracts between 33Flag-tagged MEP-1 and SPR-5 (Figure 1C)

and between HDA-1 and SPR-5 (Figure S1A available

online). Provided that HDA-1 is potentially a member

of both the NuRD and MEC complexes, SPR-5 might be

interacting preferentially with the MEC complex or with

both. We therefore tested the interaction of SPR-5 with

other NuRD complex members. A weak but reproducible
s



Figure 2. Simultaneous Downregulation
of SPR-5 and LET-418 Causes Sterility
and Germline Tumor Formation
(A) Double spr-5(by134); let-418(n3536)
mutants are maternal-effect sterile. Per-
centage of fertile adults, at 20�C, over the
indicated generations; R100 adults were
counted per strain per generation.
(B) Nomarski pictures of the indicated
genotypes 4 days postbirth.
(C) DAPI staining of the indicated mutant
germlines 6 days postbirth. Double spr-5;
let-418 mutants develop a germline tumor.
Plain arrows, oocytes; empty arrows, sperm;
gray arrows, embryos; striped arrows,
endomitotic oocytes. Scale bar = 20 mm.
(D) Enlarged view of the squared zones from
(C), showing DAPI-stained nuclei for the
indicated genotypes. Fine dashed circles,
larger nuclei with decondensed chromatin;
long dashed circles, smaller nuclei different
from wild-type germ cells. Scale bar =
20 mm.
All strains in (B)–(D) displayed the unc-
46(e177) allele in their background. See
also Figure S2.
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interaction was detected between SPR-5 and GFP-tagged

LIN-53, a NuRD member homologous to mammalian

RbAp48 (Harrison et al., 2006) (Figure S1B). Hence, SPR-5

interacts with both LET-418-containing NuRD and MEC

complex subunits in vivo.

Simultaneous Downregulation of SPR-5- and LET-418-

Containing Complexes Leads to Synthetic Sterility

To understand the genetic relationship between spr-5 and

let-418, double mutants were generated. Similar to the

spr-5(101) mutant allele phenotype reported previously

(Katz et al., 2009), the spr-5(by134) null strain started

to lose fertility after seven generations (Figure 2A).

Conversely, let-418(n3536) temperature-sensitive (let418ts)

hypomorphic worms maintain fertility over generations

at 20�C, whereas they produce an L1-arrested progeny at
Stem
25�C (von Zelewsky et al., 2000; Figure 2A). Interestingly,

combining spr-5(by134) with let-418(n3536) mutations at

20�C led to a maternal effect sterile phenotype (Figure 2A).

The first generation of spr-5(by134); let-418(n3536) double

homozygotes was fertile, whereas 97.8% (312/319) sec-

ond-generation worms were sterile, with the remaining

seven subfertile worms producing a total of 38 sterile

third-generation progeny (Figure 2A). To determine

whether this synergistic effect on fertility could also be ob-

tained using RNAi-mediated gene targeting, spr-5(by134)

L4 larvae were transferred onto let-418(RNAi) feeding plates

at the semipermissive temperature of 20�C and their prog-

eny observed. spr-5(by134); let-418(RNAi) mutants were

synthetic sterile in the next generation, causing 100%

sterility in spr-5(by134); let-418(RNAi) versus 27% in let-

418(RNAi) animals at 20�C (Figure S2C). This effect was
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Table 1. Gonads of the spr-5 let-418 Double Mutants Are Tumorous

Strain % Sperm % Oocyte % Embryos % Endomitoses % Tumors n

unc-46(e177) 100 100 100 0 0 28

spr-5(by134); unc-46(e177) 97 92 92 0 0 39

let-418(s1617) unc-46(e177) 100 94 0 91 0 32

spr-5(by134); let-418(s1617) unc-46(e177) 17 0 0 0 100 36

Quantification of events occurring in the germlines of DAPI-stained 7-day-old adults of the indicated genotypes. % sperm, percentage of worms producing

sperm; % oocyte, percentage of worms producing mature oocytes; % embryos, percentage of worms producing fertilized embryos; % endomitoses, percent-

age of worms containing endomitotic, nonfertilized oocytes; % tumors, percentage of worms presenting a tumorous germline; n, total number of worms

counted.
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also observed at 15�C, but to a lower extent (Figure S2B).

Simultaneous loss of spr-5 and let-418 function therefore

leads to synthetic sterility in the next generation.

This phenotype did not involve the otherC. elegans LSD1

homologs, because let-418ts worms exposed to lsd-1 and

amx-1(RNAi) produced a 100% fertile progeny (Figure S2D).

Synthetic sterility was also observed in spr-5(by134)

mutants grown on mep-1(RNAi) at 15�C and 20�C, on

hda-1(RNAi) at 15�C, and on dcp-66(RNAi) at 15�C and

20�C (Figures S2B and S2C). No effect was observed on

lin-53(RNAi) or on hda-1(RNAi) (at 20�C), due to embryonic

lethality (Figures S2B and S2C; our unpublished data).

These results imply that SPR-5 interacts with both the

LET-418-containing NuRD and MEC complexes to pro-

mote fertility.

SPR-5 was first identified as a physical and functional

member of the C. elegans CoREST complex (Eimer et al.,

2002), a chromatin-remodeling complex with repressive

transcriptional activities (Andrés et al., 1999; Lakowski

et al., 2006). Three subunits were identified as putative

CoRESTcomplexmembers: spr-1, spr-3, and spr-4 (Smialow-

ska and Baumeister, 2006). let-418ts worms produced

a 100% fertile progeny when fed on spr-3 or spr-4 (RNAi)

and 97.3% fertile progeny when fed on spr-1(RNAi) (Fig-

ure S2E), indicating that the CoRESTcomplexwas probably

not involved in SPR-5/LET-418 function.

Overall, we found that spr-5 interacts physically

and genetically with NuRD and MEC complex members

in a CoREST-independent manner to promote germline

immortality over generations.

The Double spr-5; let-418 Mutation Triggers Germline

Tumor Formation

Morphologically, the sterile spr-5(by134); let-418ts sterile

progeny was slow growing, shorter and thinner than

wild-type, and displayed abnormally developed gonads

(data not shown). DAPI (40,6-diamidino-2-phenylindole di-

hydrochloride) staining showed that the double-mutant

gonads did not extend in the classical ‘‘U’’ shape but instead
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formed a large oval shape invading the whole center of

the worm, occasionally with a small gonadal protrusion

on one side (Figure S2A). To confirm these observations,

double-null spr-5 let-418 mutants were generated from

spr-5(by134); let-418(s1617)/+ heterozygote parents. let-

418(1617) M+Z� single mutants are sterile, most likely

due to precocious oocyte endomitosis (Figure 2C; Table 1).

Double-null spr-5(by134); let-418(s1617) M+Z� mutants

are also sterile, smaller than single mutants, and grow

abnormally shaped oval gonads (Figures 2B and 2C).

Similar to what we observed with the previous genotypes

(Figure S2A), the sterility in double spr-5(by134); let-

418(s1617) worm was due to abnormal germ cell progres-

sion and incomplete gametogenesis (Figure 2C). Their

oval gonads retained normal germ cell nuclei at their ex-

tremities, whereas the central region contained both small

condensed and large decondensed nuclei, which are nor-

mally not found in wild-type germlines (Figures 2C and

2D). Sperm was present in the central gonad, but oocytes

were never observed, demonstrating a strong defect in

completing gametogenesis (Figures 2C and 2D; Table 1).

Seven days postbirth, 100% of the spr-5(by134); let-

418(s1617) worms displayed a large disorganized germline

(Figure 2C; Table 1). We are qualifying these abnormal spr-

5; let-418 germlines of ‘‘germline tumors,’’ although they

are different from the proximal or distal proliferative germ-

line tumors previously observed in C. elegans (Francis et al.,

1995; Subramaniam and Seydoux, 2003). Germline tumors

were observed for all the combinations of spr-5 and let-418

alleles or RNAi tested; in addition, the progeny of spr-

5(by134); let-418(RNAi) or spr-5(by134); dcp-66(RNAi) also

developed abnormal germline tumors (Table S1), suggest-

ing that the LET-418-containing NuRD and MEC com-

plexes are involved in this abnormal germ cell progression.

spr-5 let-418 Germ Cells Lose Pluripotency while

Maintaining Cell Division

Tofindoutwhether the tumorousgermlines in spr-5; let-418

worms were hyperproliferative, replication activity was
s



Figure 3. spr-5 let-418 Germline
Tumors Replicate Rapidly while Losing
Pluripotency
BrdU incorporation assay in single or double
spr-5(by134) let-418(s1617) mutants 4 or
7 days postbirth at 20�C. Gonad immuno-
staining against BrdU (green) and the
P granule component PGL-1 (red) plus DAPI
staining of the DNA content (blue). Empty
arrows, PGL-1-positive, BrdU-positive cells;
plain arrows, PGL-1-negative, BrdU-posi-
tive cells; right panel squares, enlarge-
ments of the boxed areas on their left. All
these strains contained the unc-46(e177)
mutation in their genetic background.
Scale bar = 20 mm. See also Figure S3 and
Table S2.
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monitoredusing aBrdU incorporationassay (Figure 3; Table

S2). In parallel, the germ cell status was checked by immu-

nostaining PGL-1, a component of the cytosolic P granules

(Kawasaki et al., 1998) cosegregating specifically with germ

cells (Hird et al., 1996). Wild-type and spr-5(by134) or let-

418(s1617) single-null mutants displayed comparable

amounts of BrdU-positive cells in the distal mitotic region

of the gonads at 4 and 7 days after birth (Figure 3). All their

germ cells were P granule positive and progressed normally

toward gametogenesis (Figure 3; Table S2). On the contrary,

double spr-5(by134); let-418(s1617) mutants held disorga-

nized, BrdU-positive cells in every part of their abnormally

oval gonad (Figure 3). Strikingly, 78% of the BrdU-positive

cells were P granule negative (Figure 3; Table S2), indicating

that the double-mutant germ cells lost pluripotency while

maintaining an active replication.

The mitotic potential of gonadal cells was also assessed

by immunostaining phosphorylated histone H3 serine 10

(PH3) (Hendzel et al., 1997) in 7-day-old worms (Figure S3;

Table S3). Wild-type and single spr-5 or let-418 mutant

gonads were entirely P granule positive, with a few PH3-

positive cells, reflecting the low mitotic rate at this age

(Figure S3; Table S3). Strangely, germlines of spr-5(by134);

let-418(s1617) double mutants contained two distinct pop-

ulations of cells, separable by the intensity of their PH3

staining. The first population of ‘‘high-PH3-signal’’ cells

was defined as cells displaying PH3 levels comparable to

the control and single mutants; these cells were all devoid

of P granules (Figure S3; Table S3). On the other hand,

a second population of ‘‘low-PH3-signal’’ cells, never

observed in the control strains, was composed essentially

of P-granule-positive cells and might indicate the presence
Stem
of a slowly dividing population (Figure S3; Table S3). Alto-

gether, our data suggest that spr-5; let-418 germlines are

tumoral, because replication and mitosis are maintained

in the whole gonad and are not restricted to a mitotic

zone. In addition, cells in the central tumors keep dividing

but fail to maintain their germ cell status, which is evoca-

tive of cells undertaking a somatic fate.

spr-5 let-418 Germ Cells Reprogram into Neurons

To detect the likely activation of somatic differentiation

pathways, reporter constructs expressingGFP or red fluores-

cent protein under the control of tissue-specific promoters

were introduced in the spr-5(by134)backgroundandectopic

expression was examined in let-418(RNAi)-treated worms.

Strikingly, strong ectopic expression of pan-neuronal

reporter unc-119p::gfp was detected specifically within

the spr-5(by134); let-418(RNAi) worm gonads starting at

the young-adult stage (Figure 4A). This ectopic expression

increased progressively between 4 and 7 days after birth

and was detected in a large majority of worms (73%–75%

at day 7; Figure 4A). Moreover, the pan-cellular expression

of the transgene allowed us to observe that theGFP-positive

cells adopted a neuron-like morphology and developed

cellular projections similar to neuronal axons (Figure 4A).

Nomarski pictures confirmed that the unc-119p::GFP-posi-

tive cells had lost the ‘‘pan-fried egg’’ shape of normal

germcells, becameflatter, andprojectedaxon-like structures

(Figure 4B).Neuronal transformationwas further confirmed

by testing the expression of two other pan-neuronal trans-

genes, rab-3p::nls::rfp and unc-33p::gfp, in the spr-5(by134);

let-418(RNAi) mutant background. In both cases, these

transgenes were found ectopically expressed in the mutant
Cell Reports j Vol. 2 j 547–559 j April 8, 2014 j ª2014 The Authors 551



Figure 4. spr-5 let-418 Germ Cells
Reprogram toward a Neuronal Fate
(A) Ectopic expression of the pan-neuronal
reporter unc-119p::gfp within the spr-
5(by134) let-418(RNAi) germinal gonad.
spr-5(by134) or control worms (wild-type)
expressing the unc-119p::gfp reporter were
grown on let-418(RNAi) at 20�C and moni-
tored for ectopic GFP expression in their
gonads at 5, 7, 11 and 13 days postbirth.
The percentage of worms ectopically ex-
pressing unc-119p::GFP in their gonads is
indicated within each representative pic-
ture. Dashed lines, gonad limits; n.d., not
determined; *, distal tip (when observable).
Scale bar = 20 mm.
(B) Nomarski pictures of unc-119p-driven
GFP-positive cells in the spr-5(by134) let-
418(RNAi) germlines 7 days postbirth. Scale
bar = 10 mm.
See also Figure S4.
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tumorous germlines (Figure S4A). Strikingly, this phenome-

nonwasalsoobservedwhen theunc-119p::gfp transgenewas

expressed into spr-5(by134)worms exposed to dcp-66(RNAi)

or mep-1(RNAi) worms (Figure S4B; data not shown). Thus,

downregulating onemember of a LET-418-containing com-

plex is therefore sufficient to produce synthetic cell-fate

catastrophes in spr-5 worm germlines.
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SPR-5 and LET-418 Protect the Germline against

Multiple Somatic Fates

To determine whether other cell fates were induced in

the spr-5; let-418 mutants, muscle- and intestinal-specific

transgenic reporters were tested in our system. Among

them, only the muscular unc-97::gfp reporter was found

to be ectopically expressed in a subset of spr-5(by134);
s
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let-418(RNAi) germlines (54%; Figure S4A; data not shown).

To confirm this, ectopic expression of theMYO-3 muscular

marker expression (Miller et al., 1983) was followed in early

and late adult tumors (Figure S5A). Cytoplasmic expression

of MYO-3, which is distinct from the signal generally

observed in sheath cells around wild-type gonads, was

detected in PGL-1-negative cells in a small amount of old-

adult tumorous germlines (Figure S5A). These cells formed

distinct ‘‘clonal’’ groups (Figure S5A), substantiating our

previous finding that cells kept dividing after losing P gran-

ules (Figure 3). Because of its late occurrence, this germ-to-

muscle reprogramming might be general of germline

tumors in aging worms, although this phenomenon was

not documented in the literature. To rule out this possibil-

ity, worms with mutations causing proliferative tumors

(mog-6(q465); gld-3(q730) (Belfiore et al., 2004) and glp-

1(ar202) gain of function (Pepper et al., 2003) mutations,

respectively) were grown to old age and ectopic expression

of MYO-3 was assessed by immunostaining (Figure S5B).

Although the tumorous germlines of both mutants were

filled with proliferative germ cells, there was no P granule

loss or ectopic MYO-3 expression, confirming that

muscular differentiation was not simply an age-related

process but was specific to the spr-5; let-418 tumorous

germlines (Figures S5A and S5B).

Altogether, our data infer that the spr-5; let-418 germline

forms a type of teratoma, in which germ cells keep dividing

but fail to complete meiosis, lose their pluripotent status,

and reprogram into neurons, muscles, and possibly other

undetermined cell types.

Germline Tumor Formation in spr-5 let-418Mutants Is

Linked to a COMPASS-Complex-Dependent Increase

in H3K4 Methylation Levels in Chromatin

In spr-5 mutants, the loss of H3K4 demethylase activity is

accompanied by an increase in H3K4me2/3 levels in the

PGCs (Katz et al., 2009). To determine whether germline

defects in the double spr-5; let-418 mutants were caused

by ectopic accumulation of methylated H3K4 on chro-

matin, we first undertook a genetic approach that consisted

of decreasing H3K4 methyltransferase activity in those

mutants. In C. elegans, most of the H3K4 methylation is

ensured by the SET1 homolog SET-2 (Greer et al., 2010;

Xiao et al., 2011; Xu and Strome, 2001), in association

with homologs of the yeast SET1/COMPASS complex com-

ponents such as WDR-5.1 (Li and Kelly, 2011), DPY-30

(Pferdehirt et al., 2011), ASH-2 (Greer et al., 2010), and

RbBP5 (Li and Kelly, 2011). Endogenous levels of SET-2

or WDR-5.1 were therefore downregulated by RNAi in

the double-null mutants spr-5(by134); let-418(s1617), and

germline tumor formation was monitored (Figure 5A).

control(RNAi)-treated, spr-5(by134); let-418(S1617) worms

developed germline tumors in a majority (91%) of individ-
Stem
uals, whereas set-2(RNAi)-treated worms were partially

rescued, with 36% worms harboring two normally shaped

gonads, and 64%developed only one unilateral tumor (Fig-

ure 5A; Table S4). wdr-5.1(RNAi)-treated worms were also

partially rescued, but to a lesser extent (Figure 5A;

Table S4). The rescued gonads, although smaller, presented

a normal mitosis-through-meiosis progression, up to sper-

matogenesis; however, there was no oogenesis (Figure 5A),

indicating that gametogenesis was only partially rescued.

To confirm these results, we generated a double spr-

5(by134); set-2(ok952) mutant in which the SET-2 enzy-

matic activity is mildly compromised (Simonet et al.,

2007; Xiao et al., 2011). Strikingly, 96% of the spr-

5(by134); set-2(ok952); let-418(RNAi) progeny showed no

germline tumor and contained two normally shaped go-

nads in which spermatogenesis took place; among these,

9% produced fertilized embryos (Figure S6, two first rows;

Table S5).

In summary, reduction of the COMPASS H3K4 methyl-

transferase activity partially rescues the germline program

in spr-5; let-418 animals, allowing for the maintenance of

germ cell status, progression throughmeiosis, and suppres-

sion of somatic differentiation.

To verify whether the observed tumoral phenotypes

correlated with a COMPASS-dependent increase in

H3K4 methylation levels, germlines of spr-5(by134); let-

418(s1617) double-null mutants treated with set-2 or

wdr-5.1(RNAi) were immunostained for trimethylated

H3K4 (H3K4me3) (Figure 5B). Strikingly, elevated levels

of H3K4me3 were specifically observed in the P-granule-

negative cells of spr-5(by134); let-418(s1617) mutants (Fig-

ures 5B and 5C). Coherent with the previous observations

that downregulation of COMPASS activity rescued the spr-

5(by134); let-418(s1617)mutant phenotypes, set-2 andwdr-

5.1(RNAi) treatment resulted in a reduction not only of the

number of P-granule-negative cells but also of the global

H3K4me3 levels in those cells (Figures 5B and 5C; data

not shown). Hence, simultaneous targeting of SPR-5 and

LET-418 functions leads to an abnormal, COMPASS-depen-

dent, increase in H3K4me3 levels in germ cells, which

tightly correlates with the loss of germ cell status.

Germ Cell Pluripotency Is Maintained via H3K4

Methylation Control

Our results strongly support the hypothesis that a strong

increase in H3K4 methylation can lead to germ cell re-

programming. Sterile spr-5(by134) late-generation worms,

which display a high H3K4 methylation level in their

germ cell chromatin, should therefore show neuronal dif-

ferentiation of their germline (Katz et al., 2009). To test

this hypothesis, sterile spr-5(by134) worms, which stochas-

tically appear at each generation, were analyzed for ectopic

expression of the pan-neuronal unc-119p::gfp reporter and
Cell Reports j Vol. 2 j 547–559 j April 8, 2014 j ª2014 The Authors 553



Figure 5. The Cooperative Control of
COMPASS-Dependent H3K4 Methylation
Levels by SPR-5 and LET-418 Is Linked
to Germ Cell Status
(A) Germline tumorigenesis of spr-5 let-418
mutants is partially rescued by set-2 and
wdr-5.1(RNAi). DAPI staining of wild-type
and double spr-5(by134) let-418(s1617)
null mutants grown on control, set-2, or
wdr-5.1(RNAi) 7 days postbirth at 20�C.
Right panels show an enlarged view of the
right arm of spr-5; let-418 mutant gonads.
Dashed lines show the position of the
somatic gonad. *, distal tip (when visible).
Scale bar = 20 mm.
(B) P-granule-negative cells of the spr-
5(by134); let-418(s1617) germlines show
elevated H3K4me3 levels, which are
partially rescued by set-2(RNAi) and wdr-
5.1(RNAi). Immunostaining of control
or spr-5(by134); let-418(s1617) germlines
after exposure to control, set-2, or wdr-
5.1(RNAi) 7 days postbirth at 20�C. Full
arrows show P-granule (GLH-2)-positive
germ cells, whereas empty arrows point to
P-granule-negative cells. Scale bar = 20 mm.
(C) Quantification of (A), showing the per-
centage of cells with elevated H3K4me3
signal in P-granule-positive (light gray
bars) or P-granule-negative (dark gray bars)
cells. Results are represented as the mean
percentage of cells with high H3K4me3
signal, counted manually using the ImageJ
cell counting tool on immunostaining pic-
tures, between two biological replicates.
Error bars = SD; p values: t test (1), p =
0.00025; t test (2), p = 0.00012. All the
strains present in this figure contained
the unc-46(e177) mutation in their genetic
background.
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compared to their fertile counterparts (Figure 6A). Strik-

ingly, ectopic unc-119p::gfp expression was detected in

the germline of more than three-quarters of the sterile

spr-5(by134) population, although it was never observed

in fertile worms (Figure 6). This ectopic expression was

accompanied by loss of germ cell shape toward a neuron-

like morphology, including axonal extensions (Figure 6A;

data not shown). Side-by-side immunostaining of fertile

and sterile spr-5(by134); unc-119p::gfp dissected gonads

confirmed that the H3K4me3 level in sterile, P-granule-

negative spr-5(by134) germlines (Figure 6B, right gonad)

is visibly higher than in the P-granule-positive, fertile spr-

5(by134) germline (Figure 6B, left gonad). Hence, the pro-
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gressive accumulation of H3K4 methyl marks on germ

cell chromatin over generations directly leads to loss of

pluripotency, germ cell reprogramming, and sterility in

spr-5(by134) null worms.

To confirm these results, we studied the impact of

depleting other H3K4 demethylases on germ cell develop-

ment in the absence of LET-418. H3K4 histone demethy-

lases (KDM) can be organized in two groups relative to their

functional domain (reviewed in Rotili and Mai, 2011). In

C. elegans, only four H3K4 KDMs were identified. The

amine-oxidase family includes the three LSD1 homologs

spr-5, lsd-1, and amx-1 (Katz et al., 2009; Maures et al.,

2011), whereas the JumonjiC (JmJC)/JARID family is only
s



Figure 6. Loss of Fertility in spr-5(by134) Single Mutants Is
Also Associated with Germ Cell Reprogramming and Elevated
H3K4me3 Levels
(A) Percentage of worms ectopically expressing the pan-neuronal
reporter unc-119p::gfp in the germline of spr-5(by134) fertile and
sterile individuals of a same generation 7 days postbirth at 20�C.
Two representative pictures are presented. n, total number coun-
ted. t test p value = 0.0025 (**). White dashed lines show gonad
borders. *, distal tip; &, background fluorescence of the intestine;
white arrow, position of the vulva. Scale bar = 20 mm.
(B) Side-by-side immunostaining showingH3K4me3 (green) an GLH-
2(red) levels in dissectedgonads from fertile and sterile spr-5(by134)
individuals from (A). Left gonad (white full line), fertile worm; right
gonad (white dashed line), sterile worm. Scale bar = 20 mm.
See also Figure S6 and Table S5.
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represented by the RBP2 homolog rbr-2 (Christensen et al.,

2007). As mentioned above, depletion of lsd-1 or amx-1 via

RNAi did not reduce the fertility of let-418tsworms at semi-
Stem
permissive temperature (Figure S2D), implying that none

of these LSD1 homologs were involved in the SPR-5/LET-

418-dependent mechanisms of germ cell protection. Simi-

larly, the rbr-2(tm1231) mutation did not lead to increased

sterility when combined to let-418(RNAi) (Figure S6). How-

ever, double spr-5(by134); rbr-2(tm1231)mutants were syn-

thetic lethal when exposed to let-418(RNAi) (Figure S6;

Table S5), suggesting that spr-5 and rbr-2 might function

principally in separate and complementary pathways.

This synthetic lethality was largely rescued when downre-

gulating SET-2 activity, to an higher extent with respect

to fertility than in spr-5(by134); let-418(RNAi) worms (Fig-

ure S6; Table S5). Thus, the combined loss of two H3K4

KDMs, SPR-5 and RBR-2, in combination with LET-418

might generate a global, COMPASS-mediated increase in

H3K4 methylation levels incompatible with embryonic

development.

Altogether, we believe that the LET-418-containing

NuRD and MEC complexes specifically interact with the

H3K4 demethylase SPR-5, but not with RBR-2, AMX-1, or

LSD-1, to form an epigenetic barrier to germ cell reprogram-

ming. A deficiency in SPR-5 activity, accompanied by loss

of NuRD or MEC function, leads to inappropriate levels

of H3K4 methylation on germ cell chromatin due to

uncontrolled COMPASS activity and triggers loss of germ

cell status and somatic differentiation.
DISCUSSION

Here, we describe the identification of an epigenetic mech-

anism necessary and sufficient to maintain pluripotency

and/or avoid precocious differentiation of the germ cell

lineage in C. elegans. Histone H3K4 demethylase SPR-5/

LDS1 physically interacts with the LET-418-containing

chromatin-remodeling NuRD and MEC complexes. This

is accompanied by a genetic interaction, leading to a syn-

thetic sterile phenotype in double mutants and indicating

that SPR-5 and LET-418 have a collaborative role in pro-

moting fertility. We then discovered that spr-5; let-418

germ cells progressed anarchically, eventually lost their

pluripotent status, and undertook somatic differentiation,

leading to teratoma formation.Most of the reprogramming

germlines contained a large number of neuron-shaped

cells, suggesting that the neuronal fate is a major target

for combined SPR-5 and LET-418-complex regulation.
The LET-418/SPR-5 Physical Interaction Might

Potentiate Their Biochemical Function

Our finding that NuRD and SPR-5 work together to con-

trol germ cell fate suggests that the state of the chro-

matin linked to germ cell differentiation relies principally

on the three biochemical activities of these complexes,
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namely histone deacetylation, histone demethylation, and

nucleosome remodeling. Identifying a physical LET-418/

SPR-5 interaction was surprising considering the synthetic

phenotypes of the double spr-5; let-418 mutants, which

would not be expected if those factors worked together in

a single complex. A first, simple interpretation is that the

SPR-5 and LET-418 complexes interact in embryonic and

adult somatic cells, but not in the germline. Arguing

against this idea, immunostaining experiments show that

both proteins colocalize around the adult germ cell chro-

matin (data not shown). More excitingly, we postulate

that the LET-418/SPR-5 interaction has a synergistic effect

on their biochemical activities. As an illustration, Reynolds

et al. recently demonstrated that NuRD-mediated deacety-

lation of histone H3K27 was necessary for Polycomb/PRC2

access and subsequent methylation of this residue to regu-

late the expression of poised developmental genes in ESCs

(Reynolds et al., 2012b). Furthermore, the activity of hu-

man LSD1 depends on the histone code surrounding the

H3K4 residue and is inhibited by H3K9 acetylation (Forne-

ris et al., 2005). The NuRD complex’s histone deacetylase

activity could be necessary to deacetylate H3K9 and pro-

mote LSD1-dependent H3K4 demethylation. In our hands,

concomitant loss of LET-418 and SPR-5/LSD1 increased the

amount of methylated H3K4 on chromatin in cells that

had lost their germline status. Downregulating members

of the COMPASS H3K4 methyltransferase complex

partially rescued this H3K4me3 increase, comforting the

hypothesis that SPR-5 and LET-418 are synergistically

limiting the COMPASS-dependent H3K4 methylation in

germ cells.

Surprisingly, we did not observe any genetic interaction

impairing germline development between let-418 and the

three other C. elegans H3K4 demethylases rbr-2, lsd-1, and

amx-1, re-enforcing the idea that the let-418/spr-5 interac-

tion is specific and involved in promoting proper germ

cell progression toward gametogenesis. However, spr-5;

rbr-2 double mutants, which grow normally and are fertile

at low generation count, were synthetic lethal when

exposed to let-418(RNAi). This implies that in the absence

of spr-5 and let-418 functions, rbr-2 is essential to the

worms’ development and that SPR-5 and RBR-2 function

primarily on different targets and possibly in different tis-

sues. The fact that COMPASS downregulation rescues spr-

5; rbr-2 mutants on let-418(RNAi) confirms that all these

phenotypes were generated by a deregulation of H3K4

methylation on chromatin, but the functions and tissue

specificity harbored by rbr-2 during development remain

elusive. rbr-2 was proposed to act mainly in somatic cells

during early embryogenesis, spr-5 being then considered

as the main germline-specific H3K4 KDM (Wang et al.,

2011). rbr-2 also counteracts the effects of ash-2 in the

germline of aging worms (Greer et al., 2010). Finally, exten-
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sive studies on two rbr-2 null alleles demonstrated that RBR-

2 and SPR-5 are required to maintain germline immortality

at high temperatures (Alvares et al., 2014). In our hands,

the germline of rbr-2(tm1231) mutants did not display

higher-than-normal H3K4me3 levels (data not shown).

However, more extensive studies investigating the intricate

relationship among SPR-5, RBR-2, and SET-2 will be neces-

sary to understand their unique function in controlling

germ cell status.

LET-418 and SPR-5: An Epigenetic Barrier to Somatic

Programs in Germ Cells

In our model, SPR-5- and LET-418-containing complexes

are the prime inhibitors of COMPASS-mediated H3K4

methylation, forming a strong epigenetic barrier against

germ cell differentiation, for which the mechanistics of

action start to become unraveled. The observation that

late-generation spr-5 sterile mutants also exhibit reprog-

rammed germlines directly links H3K4 methylation to so-

matic fate. In wild-type animals, LET-418 complexes might

target SPR-5 to chromatin and potentiate SPR-5 activity

by deacetylating histones but also maintain a certain level

of competition with COMPASS for specific sites on chro-

matin. In the absence of SPR-5, this steric competition is

at least partially acting to protect chromatin, explaining

why only a small subpopulation of spr-5 mutant worms,

versus all the spr-5; let-418 mutants, undergo germline

reprogramming. An overdose of H3K4me2/3 marks on

germ cell chromatin, above a defined threshold, would

therefore represent an irreversible ‘‘somatic signal,’’ con-

demning the germline to mortality.

Noticeably, among every single let-418 mutant allele

already studied in our laboratory, germ cell reprogramming

was never obtained (our unpublished data). This might

indicate that SPR-5 might be coupled to additional

chromatin factors to protect germ cell chromatin against

COMPASS activity.

Neuronal Differentiation: The ‘‘Default’’ Program?

A majority of sterile spr-5 and spr-5; let-418 worms devel-

oped neurons in their reprogrammed germline. Interest-

ingly, the first asymmetric divisions of the C. elegans

embryo produces one germ cell progenitor (P) and one so-

matic cell progenitor (AB), from which most (254/259)

neurons originate (Sulston et al., 1983). SPR-5- and LET-

418-containing complexes might constitute important

guardians of the neuronal differentiation program within

P-granule-positive germ cell progenitors. It would be of

upmost interest to determine whether the LET-418/SPR-5

interaction is specific to germ cells and/or occurs specif-

ically at the promoter of differentiation genes and gets dis-

rupted once cells exit the ‘‘P’’ lineage, lose pluripotency,

and enter somatic differentiation.
s
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EXPERIMENTAL PROCEDURES

C. elegans strains, expression vectors, and antibodies used in

these experiments are described in detail in the Supplemental

Information.

C. elegans Strains and Cultures
The BristolN2 strainwas used as thewild-type strain of reference in

all experiments, which were performed at 20�C under standard

worm culture conditions (Brenner, 1974), unless otherwise stated.

RNAi
RNAi constructs were all amplified from the Ahringer RNAi library

(Kamath and Ahringer, 2003), except for the control RNAi con-

trol (pPD129.36, Fire lab L4440), LET-418, and MEP-1 RNAi vec-

tors (pFG98 and pMP167 RNAi vectors; information available

upon request). RNAi experiments were performed by feeding as

described in Kamath et al. (2001). Briefly, L4 mothers of the indi-

cated genotype were fed on RNAi plates at 20�C (unless otherwise

stated) and allowed to lay fertilized embryos for 24–36 hr. Their F1

progeny were then analyzed at the indicated time of growth post-

birth on the RNAi plates at 20�C (where ‘‘birth’’ = egg laying time).

F1 worms were transferred to fresh plates every 2–3 days when

necessary.

Coimmunoprecipitations
Co-IP assays were performed following standard protocols

described in detail in the Supplemental Information.

Transgenerational Fertility Assay
To start the transgenerational fertility assays at generation count

zero, the spr-5(by134) BR3417 strain was outcrossed with N2 and

homozygote spr-5(by134) mutants were selected by PCR. At each

generation, six nonstarved, fertile adults were transferred to a fresh

plate at 20�C, allowed to lay eggs for 24 hr, and eliminated. At least

100 worms of the next generationwere scored per strain per gener-

ation. ‘‘Fertile’’ worms contained visible embryos in their uterus

4 days postbirth at 20�C.

DAPI Staining
RapidDAPI staining protocolwas applied as follows. Briefly, worms

were harvested and washed in M9, fixed for 10 minutes in meth-

anol at �20�C, washed in M9, stained with 2 mg/ml DAPI (Sigma-

Aldrich), washed extensively in M9, and mounted in Vectashield

mounting medium (Vector Laboratories) before being examined

under a UV-light microscope (Zeiss Axioplan 2 microscope, Zeiss

AxioCam Color camera, AxioVision 4.6 software).

BrdU Assays
BrdU assays were performed as described in Biedermann et al.

(2009) with modifications, as described in the Supplemental

Information.

Cell Counting in Germline Tumors
Cells positive for PGL-1, GLH-2, BrdU, PH3, or H3K4me3 signal

were counted manually using the Cell Counter application of
Stem
the ImageJ software (National Institutes of Health). In the BrdU

and PH3 experiments, the amounts of counted cells are indicated

in the corresponding tables. For the H3K4me3 experiment (Fig-

ure 6), a minimum of 500 DAPI-positive nuclei were counted in

each category, totalized from at least five different pictures for

each of the indicated strains.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, six figures, and five tables and can be found with this

article online at http://dx.doi.org/10.1016/j.stemcr.2014.02.007.
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