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Lysine crotonylation (Kcr) is one of the most important post-translational modifications (PTMs) that is
widely detected in both histone and non-histone proteins. In fact, Kcr is reported to be involved in various
biological processes, such as metabolism and cell differentiation. However, the available experimental
methods for Kcr site identification are laborious and costly. To effectively replace existing experimental
approaches, some computational methods have been developed in the last few years. The available com-
putational methods still lack some important aspects, as they can only identify Kcr sites on either
histone-only or combined histone and nonhistone proteins. Although a tool was developed to identify
Kcr sites on non-histone proteins only, its performance is inadequate and the exploration of hidden
Kcr patterns (motifs) has been completely ignored, which might be significant for detailed Kcr studies.
Therefore, algorithms that can more effectively predict Kcr sites on non-histone proteins with their bio-
logical meaning need to be designed. Accordingly, we developed a novel deep learning (capsule
network)-based model, named CapsNh-Kcr, for Kcr site prediction, particularly focusing on non-
histone proteins. Based on the independent results, the proposed model achieves an AUC of 0.9120, which
is approximately 6% higher than that of previous nhKcr model in the prediction of Kcr sites on non-
histone proteins. Further, we revealed, for the first time, that the proposed model can represent obvious
motif distribution across Kcr sites in non-histone proteins. The source code (in Python) is publicly avail-
able at https://github.com/Jhabindra-bioinfo/CapsNh-Kcr.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Lysine crotonylation (Kcr) is an important type of PTM widely
detected in histone and non-histone proteins, and was initially
identified in histone proteins through a comprehensive analysis
of proteins in human somatic and mouse germ cells [1]. According
to the study, crotonylation is enriched in the enhancer and pro-
moter regions in both germinal and human somatic cells, indicat-
ing that histone Kcr may play a key role as an indicator of gene
expression [1]. Kcr plays a crucial role in diverse diseases and bio-
logical processes, such as gene transcription regulation, spermato-
genesis, tissue injury, inflammation, carcinogenesis,
neuropsychiatric disease, telomere maintenance, cancer, and HIV
latency [2–11]. Similarly, crotonylated non-histone proteins have
been detected and described in recent studies [12–15], and were
found to be involved in cellular organization, cell cycling, and cel-
lular organization [15]. Therefore, accurate prediction of Kcr sites
and detection of their patterns across Kcr sites are important for
understanding the regulation of proteins in human biology.
Advanced experimental technologies, such as high-performance
liquid chromatography-tandem mass spectrometry, stable isotope
labeling by amino acids in cell culture labeling, affinity enrichment,
and specific antibodies, are popular experimental methods for pre-
dicting and detecting Kcr sites [16]. Although such advanced pro-
teomics technologies can detect Kcr sites directly and effectively,
they are labor-intensive and expensive. Therefore, modern artifi-
cial intelligence (AI)-based algorithms have been considered as
alternative approaches for Kcr site identification. Over the past
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few years, several computational methods have been developed to
identify Kcr sites based on amino acid sequences. Most of the tools
use conventional machine learning (CML) with a small number of
samples for prediction either on histone or mixed histone and
non-histone proteins, whereas very few tools are available that uti-
lize a large number of datasets either on mixed histone and non-
histone or non-histone only, using deep learning (DL) methods.
Detailed information on these models is presented in Table 1.

As mentioned in Table 1, many of the computational models are
based on conventional machine learning (ML), which utilizes a
small number of training samples for histone proteins. Some deep
learning methods are used with a large number of training samples
for histone and non-histone proteins. Very recently, in 2021, a
bioinformatics tool named nhKcr [28] used a larger number of
non-histone protein samples to train the DL method in which
CNN was used as a classifier. Although the performance is accept-
able, the visualization of deeper layers of the CNN is difficult
because the pooling operation loses the information for several
locations in a given dataset. Such complexities can be replaced
by a CapsNet [29] strategy by replacing scalar-output features with
vector-output and max-pooling operations with a routing process
[29].

Although the ML and DL approaches showed good performance
in the prediction of Kcr sites on histone, mixed histone, and non-
histone proteins, improvements can be made from a certain per-
spective. (i) The aforementioned ML methods rely on manual fea-
ture extraction approaches; however, such difficulties can be
solved using DL methods [30]. (ii) With improvements in several
experimental technologies, data production for peptide mapping
in histones and non-histones has significantly improved. However,
ML models have not accepted this critical issue and lack systematic
investigation and assessment of available features [25,27]. (iii) In
contrast, DL-based models such as Deep-Kcr [25], BERT-Kcr [26],
and DeepCap-Kcr [27] adopt an automatic feature selection
approach; however, these tools are designed particularly for pre-
dicting Kcr sites in mixed histone and non-histone proteins. Predic-
tive tools for Kcr sites on mixed histone and non-histone proteins
might not provide accurate information of Kcr sites if the data
cover only histone or non-histone proteins. To address this issue,
the nhKcr tool [28] was recently developed using a large number
Table 1
Characteristics of the existing computational methods and tools for Kcr site prediction.

Methods/Tools ML category Models/Classifiers

CrotPred [17] CML Discrete Hidden Markov
Model (DHMM)

Position-weight [18] CML Support Vector Machine (SVM)

CKSAAP CrotSite [19] CML SVM

iKcr-PseEns [20] CML Random Forest (RF)

iCrotoK-PseAAC [21] CML Artificial Neural Network (ANN

LightGBM-CroSite [22] CML LightGBM

Rulan et.al [23] CML SVM, RF

predML-Site [24] CML SVM

Deep-Kcr [25] DL Convolutional
Neural Network (CNN)

BERT-Kcr [26] DL BiLSTM

DeepCap-Kcr [27] DL Capsule Network (CapsNets)

nhKcr [28] DL CNN
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of datasets derived from non-histone proteins only. However, the
tool still disremembers significant issues, such as prediction per-
formance and extraction of biological meaning (motif detection)
from a large amount of data, which is significant for several biolog-
ical and research tasks. The tool, nhKcr [28], utilized a CNN for fea-
ture engineering and final prediction of Kcr sites; however, the
pooling operation used in CNN forces the loss of spatial informa-
tion in a given peptide sequence, which causes the problem of find-
ing accurate motifs across the Kcr sites [31].

To address the above-mentioned drawbacks of the existing
computational models for identifying Kcr sites, we proposed a
novel DL model based on Capsule Network (CapsNets), which
was motivated by previous CapsNets-based bioinformatics studies
[32–35]. Our proposed model utilizes the CapsNet strategy, which
consists of two key concepts. The first concept is the initial feature
extraction using CNN layers. The second major concept involves
the addition of capsules to a CNN that serve as hierarchical rela-
tionships of features to enable the use of the model to increase
learning efficiency. In this step, we apply dynamic routing between
capsules (number of neurons) instead of the max pooling opera-
tion, as in the traditional CNN. This concept not only provides accu-
rate biological (motif) information across Kcr sites, but also a
strong discriminant power in distinguishing between classes (Kcr
and non-Kcr).
2. Material and methods

2.1. Dataset

For training and independent testing, the proposed CapsNh-Kcr
model, an experimentally verified dataset, was adopted from a
recent previous study, nhKcr [28]. A total of 19,287 Kcr sites were
identified in 4,230 human nonhistone proteins across HeLa, lung,
A549, and HCT116 cells [12–16]. The CD HIT [36] software was
used to remove the sequence redundancy with a threshold of 30
%. Finally, 15,603 positive (Kcr site-containing sequences)
sequences and 164,709 negative (non-Kcr site-containing
sequences) samples were obtained. The 15,603 negative samples
were randomly selected from 164,709 negative dataset. To train
and test our proposed model, 12,262 positive and 12,262 negative
Year Protein type Number of training samples

2015 Histone 169 Kcr
847 non-Kcr

2017 Histone 169 Kcr
847 non-Kcr

2017 Histone 169 Kcr
847 non-Kcr

2018 Histone 169 Kcr
847 non-Kcr

) 2019 Histone 169 Kcr
847 non-Kcr

2020 Histone 159 Kcr
847 non-Kcr

2020 Histone 167 Kcr
388 non-Kcr

2020 Histone 115 Kcr
6,279 non-Kcr

2020 Mixed histone 6,975 Kcr
and non-histone 6,975 non-Kcr

2021 Mixed histone 6,975 Kcr
and non-histone 6,975 non-Kcr

2021 Mixed histone 6,975 Kcr
and non-histone 6,975 non-Kcr

2021 Non-histone 12,262 Kcr
60,101 non-Kcr
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samples were used, while for the independent test, 3,341 positive
and 3,341 negative sequence were used. Training and testing data-
set are not overlaped. All samples used in this study share the win-
dow size of 29.
2.2. Overall framework of the proposed model

Deep learning-based strategies, such as CNNs, have made
breakthroughs in many fields, including computer vision [37] and
bioinformatics [38–40], and significantly outperformed many con-
ventional curated feature extraction ML models. However, these
strategies have some limitations, such as the invariance caused
by pooling processes and the inability to identify spatial relation-
ships between features [41]. To solve these problems, Sabour
et al. proposed a novel deep learning theory widely known as the
capsule network (CapsNet) [29,42]. The main idea of the CapsNet
model is a capsule (a group of neurons) whose activity vector rep-
resents the instantiation parameters of a specific type of entity,
such as an object or an object part [29]; this means that the length
of the activity vector represents the probability that the entity
exists, and the instantiation parameters are represented by its (ac-
tivity vector’s) orientation. When a lower level of capsules makes
predictions and agrees multiple times, a higher level of capsules
becomes active. Thus, a lower-level capsule prefers to send its pre-
diction (output) to a higher-level capsule. A detailed theoretical
explanation and the working principle of a CNN-based feed-
forward CapsNet were described by [27].

The simplified architecture of the proposed CapsNh-Kcr model
is shown in Fig. 1, and is similar to the nature of the initial CapsNet
proposed by Sabour et al. [29]. Our model consisted of three main
layers: 1D convolutional (conv1D), PrimaryCaps (Pri-
maryCaps_Conv1D), and a fully connected layer (KcrCaps). As
shown in Fig. 1, in the initial step, all amino acid sequences are
encoded with widely used binary or one-hot encoding schemes
to be fed into a CNN layer for initial feature extraction from a given
raw sequence. In the next step, core layers named PrimaryCaps and
KcrCaps are used for further feature abstraction. In the first step,
the CNN layer is designed to increase the prediction power of the
proposed CapsNet.

The hyperparameters of the model were tuned using a grid-
search method. The tuned hyperparameters of the model
included the number of layers, number of filters, filter size,
and dropout rate. From the hyperparameter tuning method,
one convolution layer was determined to be suitable before
Fig. 1. Overview of the propo
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being fed into the PrimaryCaps, which also maintains 32 filters
of size 7 (kernels) with a stride of one, and a ReLU as an activa-
tion function to update the weights. This initial layer was fol-
lowed by a dropout layer at a rate of 0.7 to control the overfit.
Another layer, PrimaryCaps, is based on a convolutional layer,
which has 16 channels of convolutional capsules, and each cap-
sule (272 capsules in total) consists of 8 convolutional units,
each of which is the result of a size 7 1D convolutional kernel.
Accordingly, PrimaryCaps has [17,16] 8D vector capsules, and
each capsule in the [17,1] grid shares its weight with other cap-
sules. These capsules were represented by probabilities. To scale
the length (probability) of each capsule to [0 1], a nonlinear
squash activation function was used [29]. Of note, the process
of dynamic routing between capsules is used at this stage, or
between PrimaryCaps and KcrCaps. The last layer, KcrCaps, had
an 8D capsule in each of the two classes (positive and negative).
In positive capsules, the Kcr sites were contained, while the neg-
ative capsules indicated the probability of non-Kcr sites. Finally,
L2 norms were used to rescale the positive and negative output
vectors of capsules resulting from KcrCaps.
2.3. Software and model training

To build the model, an open-source Python library Keras
(https://keras.io/) using TensorFlow backend was used. Python
version 3.7.4 and Keras version 2.2.4 were used to train the pro-
posed model. To train the model, we used the widely applied K-
fold cross-validation (CV) method [43], where k was tuned to 5.
The final results were obtained from an averaged 5-fold. To guide
overfitting during model training, an early stopping method was
applied [44]. In our case, this method was applied when the gener-
alization loss increased over 10 successive epochs. The learning
rate and batch size were set to 0.001 and 128, respectively, and
the optimizer was Adam [45]. The binary cross-entropy was uti-
lized as a loss function [46]. The total number of trainable param-
eters of the model was 68,128.
2.4. Evaluation parameters

Four metrics can be employed to measure the performance of
the proposed model: the Matthew correlation coefficient (MCC),
accuracy (ACC), specificity (SP), and sensitivity (SN). The numerical
expression of these metrics are given in Eqs. (1)–(4) are widely
sed model, CapsNh-Kcr.
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used in binary classification problems in many bioinformatics tasks
[47,48].

Sn ¼ TP
TP þ FN

ð1Þ

Sp ¼ TN
TN þ FP

ð2Þ

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

ð3Þ

MCC ¼ ðTP � TNÞ � ðFP � FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp ð4Þ

where TP, FP, TN, and FN are the true positive, false positive, true
negative, and false negative values, respectively. In this study, the
area under the receiver operating characteristics curve (AUC-ROC)
matrix was used to evaluate the overall performance quality of
the model. A higher AUC value indicates better model performance.

3. Results

3.1. Performance of the model using the training data

The proposed model was evaluated using 12,262 balanced
training samples and the same number of negative samples, indi-
cating that the model learned from balanced data. Our primary
focus was not only to distinguish the Kcr sites from the given large
number of non-Kcr samples, as in the previous model Nh-Kcr
([28]), but also to identify a possible biological significance from
the balanced data; this is because the capsule network does not
require a large number of samples to learn the information from
the given sequence, as required by other DL models, such as CNN
[27,29]. Therefore, we used balanced data for the prediction and
investigation of the Kcr sites. For the training data, the model
Fig. 2. Model performance in training; a) ROC curves and their corresponding AUC va
respectively.
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achieved Sn = 0.8794, Sp = 0.8817, Acc = 0.8806, and
MCC = 0.7611. These results were obtained from the averaged 5-
fold CV. The ROC curve and its corresponding AUC values in five-
fold CV are shown in Fig. 2 (a). The obtained average AUC was
0.90, with standard deviation of 0.01, which is approximately 2%
greater than the existing model Nh-Kcr [28]. The main reason for
the model’s higher performance is due to the accurate feature vec-
tors for Kcr sites being captured by the CapsNets strategy; evi-
dently, these final 8D capsule vectors were captured in KcrCaps
layer. To depict this visually, the features captured by the first layer
(Conv1D) and the last layer (KcrCaps) were computed using t-
distributed stochastic neighbor embedding (t-SNE) [49] in the
Scikit-Python (https://scikit-learn.org) library, as displayed in
Fig. 2 (b) and (c), respectively, where the red and blue circles sym-
bolize Kcrs and non-Kcrs, respectively. This demonstration shows
that KcrCaps learns robust features compared to the CNN used in
the first layer.
3.2. Model performance using unseen data and comparison with a
previous model

To confirm whether CapsNh-Kcr could distinguish Kcr and non-
Kcr from unseen (independent) data, the model was run with a
dataset that contained 3,341 positive and 3,341 negative
sequences; the model obtained Sn = 0.8834, Sp = 0.8764,
Acc = 0.8799, and MCC = 0.7597. To demonstrate the superiority
of our model on the balanced dataset, a comparison with the pre-
vious model, nhKcr [28], was performed. This model and our model
utilize the same window size as the data for non-histone proteins.
Although the developers of nhKcr provided the final results, the
results were based on an unbalanced dataset. Therefore, in this
study, we recomputed the previous model based on the informa-
tion (source code and web server) provided by the authors and
ran their model on a balanced independent dataset. A comparison
of our model with nhKcr is presented in Table 2 and Fig. 3. As
lues in 5-fold CV. b) and c), t-SNE visualization of the Conv1D and KcrCaps layer,



Table 2
Comparison of nhKcr and CapsNh-Kcr in terms of five major metrices on an independent dataset.

Models Acc Sn Sp MCC AUC

nhkcr 0.7606 0.7848 0.7365 0.7366 0.8501
CapsNh-Kcr 0.8799 0.8834 0.8764 0.7597 0.9120

Fig. 3. Comparison of the ROC curves and AUC values between nhKcr and our
model on independent dataset; the image demonstrates that our model is accurate
in the prediction of Kcr-sites in non-histone proteins.
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shown in Table 2, CapsNh-Kcr outperformed their model in terms
of all metrics, that is, Acc, Sn, Sp, MCC, and AUC. Particularly, the
proposed model obtained an AUC of 0.9120, which was approxi-
mately 6 % higher than that of nhKcr model in the prediction of
Kcr sites on non-histone proteins.

Of note, for fair comparison and practical use of our model, we
did not compare our model with the aforementioned (in Table 1)
existing computational models, except nhKcr, because other mod-
els are particularly designed to identify Kcr sites on either histone
proteins or mixed histone and non-histone proteins..

We computed the t-SNE to visualize the layers to ensure that
KcrCaps captures the robust feature to distinguish between Kcrs
and non-Kcrs on an unseen (independent) dataset. A visual repre-
sentation of the t-SNE computation in the 2D plot is shown in
Fig. 4. The images demonstrate that the Kcr sites are more clearly
visible using features learned by KcrCaps, even though few
sequences overlap compared to the features captured in the first
layer (Conv1D).
Fig. 4. t-SNE visualization of layers of the proposed model o
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3.3. Learnt motifs

Another main goal of this computational task is to interpret the
trained model that might have various hidden or learned informa-
tion that can explore Kcr information more clearly in non-histone
proteins. To the best of our knowledge, this computational model
is the first to be designed to extract clear biological significance
(motifs) across Kcr sites in non-histone proteins. First, we gener-
ated the sequence pattern captured by the first-layer (Conv1D) fil-
ters. The layer comprises a set of filters, each of which can be
assumed to be a position weight meter. Each filter (in total, 32 fil-
ters) across the input sequences encoded by one-hot encoding out-
puts a non-linear similarity score at each position, known as a
feature map. These feature patterns can be effectively interpreted.
Because we used a filter size of seven, the motifs (amino acid
sequence patterns) were captured with a length of seven. We con-
verted the generated PWM to sequence logos (motifs) [50]. A visual
representation of the motifs captured by filters 1, 2, 7, 8, 13, 16, 17,
18, 19, 21, 22, and 31 in Conv1D is shown in Fig. 5.

Second, to investigate the features captured by individual cap-
sules in PrimaryCaps, sequence logos were generated according
to each capsule’s response to the input amino acid sequences.
We fed all the peptides through all the capsules in PrimaryCaps
(272 capsules in total), and aligned the peptides in response to a
positive capsule in KcrCaps with a capsule length greater than a
threshold of 0.5. Of note, the peptides aligned only positive cap-
sules in KcrCaps responsible for Kcr sites information’s. Thus, we
generated PWMs for these aligned peptides to transform them into
sequence motifs (logos); the visual representation of these motifs
is depicted in Fig. 5 (b). Not all capsules had values greater than
0.5. Of the 272 capsules, only 187 provided greater than or equal
to 0.5. We then compared the learned motifs of each capsule in
KcrCaps with the ground-truth motifs KExxxK, EKxxxxxK, and
KxxxEK. Several studies have claimed that these ground-truth
motifs are identified as significantly overrepresented hotspots for
Kcr sites [13,15,27,28]. As shown in Fig. 6, the motifs learned by
capsules 45, 101, 109, 170, 245, and 254 agree with the ground-
n the independent dataset: a) Conv1D and b) KcrCaps.



Fig. 5. Sequence motif captured by some filters in the first layer (Conv1D) of the proposed model, shows that the amino acids K, E, and R are frequently overrepresented. Note
the underrepresented (lower case are ignored when plotting the sequence logo).

Fig. 6. Comparison of the motifs learnt by our models with ground-truth motifs of Kcr sites in proteins. (a) ground-truth motifs, (b) motifs captures by capsules (45, 101, 109,
170, 245, and 254) in KcrCaps, compared to ground-truth, showing that KcrCaps captured obvious motifs for the representation of Kcr sites.
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truth (KExxxK in Fig. 6 (a)) motifs. Further, the proposed model can
learn the sequence patterns (motifs) effectively.
4. Discussion

Although capsule networks are still in the development phase,
this strategy solves various bioinformatics tasks [32–35]. In this
study, we identified some important benefits of using a capsule
network. The capsule strategy is better suited for feature learning
for Kcr site prediction in nonhistone proteins compared to the
CNN used in the previous study with nhKcr. Second, the motifs
converted by the internal capsules were very obvious when com-
paring ground-truth motifs, revealing its effectiveness for learning
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motifs across Kcr sites. However, it is not easy to represent clear
motifs in other DL models, such as CNN. In a CNN, the max-
pooling operation influences the ability to build hierarchical motif
representations [31]; this is due to the max pooling loss of the spa-
tial information of the features and the inability to interact one fea-
ture with another feature. In such cases, capturing motifs from
deeper layers in the CNN is complicated.

The trained model is effective for interpretation, analogous toin
silicostatistical mutagenesis analysis. Data contain many features,
and mutations can occur in a specific feature without varying the
remaining features. Mutation is observed at the output of the net-
works by taking the absolute difference between the predictions of
the mutated and reference sequences. For this analysis, the impact
of the mutation is shown in the heat map in Fig. 7; this shows the



Fig. 7. Heatmap Visualization of in silico mutation.
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mutation visualization in the independent dataset. The mutation at
positions 11 to 18 changed the prediction probability by approxi-
mately 10 %, and position 15 had the highest effect. Moreover,
the mutations to K, F, R, and W almost changed the prediction
probability by approximately 10 %.
5. Conclusion

In this study, we proposed a DL model that can identify Kcr sites
in non-histone proteins. The proposed model adopts a CNN-based
CapsNet strategy. The results revealed that the strategy used in our
model outperformed the previous model, nhKcr, which was based
on the well-known DL model CNN. From a biological perspective,
the model showed effective properties that can explore the inter-
nal data distribution across given amino acid sequences, and could
capture the obvious motif across Kcr sites in a given dataset. Spe-
cially, this study proved that the biological significance such as
sequence motifs in protein sequences can be sought effectively
through our applied strategy. Further research is warranted,
although the binary cross-entropy as a loss function used in this
study helped in improving the performance, different loss func-
tions can be tested. Even though our study claims the Kcr patterns
in non-histone proteins computationally, a comprehensive study
through a wet lab experiment is also recommended to map these
newly discovered Kcr sites. As a final point, we believe that the
proposed model and strategy would be beneficial for other bioin-
formatics tasks and research.
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