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Abstract

Human skeletal muscle fibers exist across a continuum of slow! fast-twitch. The amount

of each fiber type (FT) influences muscle performance but remains largely unexplored in

elite athletes, particularly from strength/power sports. To address this nescience, vastus

lateralis (VL) biopsies were performed on World/Olympic (female, n = 6, “WCF”) and

National-caliber (female, n = 9, “NCF”; and male, n = 6, “NCM”) American weightlifters. Par-

ticipant accolades included 3 Olympic Games, 19 World Championships, 25 National rec-

ords, and >170 National/International medals. Samples were analyzed for myosin heavy

chain (MHC) content via SDS-PAGE using two distinct techniques: single fiber (SF) distribu-

tion (%) and homogenate (HG) composition. The main finding was that these athletes dis-

played the highest pure MHC IIa concentrations ever reported in healthy VL (23±9% I, 5±3%

I/IIa, 67±13% IIa, and 6±10% IIa/IIx), with WCF expressing a notable 71±17% (NCF = 67

±8%, NCM = 63±16%). No pure MHC IIx were found with SF. Secondary analysis revealed

the heavyweights accounted for 91% of the MHC IIa/IIx fibers, which caused a correlation

between this FT and body mass. Additionally, when compared to SF, HG overestimated

MHC I (23±9 vs. 31±9%) and IIx (0±0 vs. 3±6%) by misclassifying I/IIa fibers as I and IIa/IIx

fibers as IIx, highlighting the limitation of HG as a measure of isoform distribution. These

results collectively suggest that athlete caliber (World vs. National) and/or years competing

in the sport determine FT% more than sex, particularly for MHC IIa. The extreme fast-twitch

myofiber abundance likely explains how elite weightlifters generate high forces in rapid time-

frames.

Introduction

Italian physician Stefano Lorenzini made the first distinction of “red” and “white” muscle

fibers (myofibers) in 1678, and almost 200 years later (1873) French histologist Louis-Antoine

Ranvier confirmed the existence of two distinct myofiber types in vertebrate skeletal muscle.

Reintroduction of the skeletal muscle biopsy procedure in 1962 [1] allowed scientists to begin

exploring the topic in athletes and resulted in the discovery that each FT is comprised of a
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unique MHC isoform signature. Human skeletal muscle therefore contains three pure (MHC

I, IIa, and IIx) and several hybrid (single myofibers that co-expresses multiple MHC isoforms)

FTs [2]. The pure and hybrid FTs combine to form a robust slow! fast continuum (MHC I

! I/IIa! IIa! IIa/IIx! IIx) with each displaying specific morphological, metabolic, and

contractile properties [3–6]. FT% (the relative quantity of each FT in a given muscle) influ-

ences whole muscle function [7] and is often highly correlated with athletic performance [3, 7–

13].

Extensive evidence indicates endurance athletes possess a slow-twitch myofiber majority [9,

10, 12, 14, 15], yet comparatively, far few investigations have explored FT in speed, power, or

strength athletes. Initial research in the 1970–80’s found that resistance-trained men expressed

high quantities (~60–65%) of fast-twitch fibers [11, 12, 15, 16], which was substantiated by

later studies on elite powerlifters [17] and national-caliber (‘Olympic’) weightlifters [8]. This

work provided an important foundation, but used sub-elite participants [18] and/or laboratory

methods that failed to accurately resolve the highly prevalent hybrids [19–21]—which compro-

mises measurement fidelity and produces erroneous FT% conclusions [19, 22–25]. More pre-

cise techniques were developed in the early 1990’s that allowed proper quantification of FT%

by analyzing each SF.

Since this time only 13 studies (Table 1) implemented SF in young speed, power, or

strength-trained individuals [5, 13, 19, 20, 22, 23, 25–30], and only 3 included females (n = 13,

total). Only 5/13 included athletes: unknown-caliber male sprinters (n = 6) [25], male soccer

players (n = 8) [24], elite female track and field athletes from a combination of pole vault, hep-

tathlon, 100 and 400 m hurdles, and long jump events (n = 6) [20], National-caliber male

bodybuilders (n = 8) [19], and a former World-champion male sprinter (n = 1) [13]. Accu-

rately accounting for the full FT spectrum resulted in all five studies finding far lower MHC IIa

concentrations than expected (52%, 30%, 16%, 39%, and 34%, respectively). The extremely low

16% found by Parcell et al. (2003) [20] is possibly explained by sex as females are often pur-

ported to possess more slow-twitch fibers than men [31, 32]. Such sex-specific phenotypes are

often the case in murine models [31], but the topic remains unexplored in athletes. Moreover,

Table 1. Summary of literature reporting SF MHC FT% from the VL in young speed, power, or strength-trained individuals.

Reference Subjects Condition MHC Distribution (%)

I I/IIa IIa IIa/IIx IIx I/IIa/IIx

Andersen (1994) Sprinting; 6M (23y) Post 12-week RE & Interval Training 41 1 52 5 0 0

Andersen (1994) Soccer; 8M (23y) National Players Post 12-week RE Training 59 3 30 9 0 <1

Williamson (2001) Non Ath;

6M (25y) 6F (21 y)

Post 12-week RE Training 30 35 5 3 59 52 5 12 0 0 0 0

Parcell (2003) Track & Field; 6F (23y) Division I / Interntional—Caliber 57 9 16 14 1 1

Raue (2005) Non Ath; 6M (24y) 6M (24y) Post-Con RE Post-Ecc RE 38 25 1 7 34 39 27 25 0 2 <1 <1

Parcell (2005) Non Ath; 10M (22y) Post 8-week Sprint Cycle Training 34 8 44 12 0 2

Malisoux (2006) Non Ath; 8M (23) Post 8-week Plyometric Training 28 5 42 26 2 0

Kesidis (2008) Bodybuilding; 8M (26 y) National-Caliber 35 19 39 7 0 0

Trappe (2015) Sprinting; 1M (? y) Previously World Champion 24 5 34 9 24 0

Murach (2016) Non Ath; 9M (25y) Resistance Trained 17 10 60 11 <1 <1

Bagley (2017) Non Ath; 15M (25y) Resistance Trained 20 10 58 11 1 1

Arevalo (2017) Non Ath; 13M (24y) Resistance Trained 28 9 60 3 <1 <1

Tobias (2017) Non Ath; 1F (32y) Concurrently Trained 45 13 31 9 0 2

M = Male; F = Female; y = Year; RE = Resistance exercise; Non Ath = Not a competitive athlete; Track & Field = athletes from a combination of pole vault, heptathlon,

100 and 400 m hurdles, and long jump events; Con = Concentric, Ecc = Eccentric; Concurrently Trained = combined endurance and resistance training

https://doi.org/10.1371/journal.pone.0207975.t001
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these data are difficult to interpret as the athletes sampled were from a combination of several

dissimilar events.

Numerous other knowledge gaps persist because in over 50 years of human muscle FT

research only two studies have utilized SF with elite (i.e., world or international) athletes (one

male sprinter and six female track and field) and no research has done so with any strength or

power athletes. Thus, the purpose of this study was to examine the FT% of elite weightlifters to

provide novel insight into the phenotype of competitive female and male strength and power

athletes.

Methods

Experimental approach to the problem

Twenty-one elite (‘Olympic’) Weightlifters (15 female, 6 male) underwent resting VL biopsies

between 2–96 hours after competing in either the International Weightlifting Federation

World Championships or the USA Weightlifting American Open Finals (2017). All proce-

dures and risks were explained to the athletes prior to obtaining written consent and complet-

ing medical and exercise history questionnaires. Performance records (taken from this event)

in the snatch and clean and jerk (1RM), competition medals, and other accolades were gath-

ered from personal interviews and publically available records from these or other sanctioned

meets. Each muscle sample was analyzed for MHC content using two distinct FT techniques:

SF and HG. The California State University, Fullerton Institutional Review Board approved all

experimental procedures prior to any testing and consent was received in oral and written

format.

Participants

Participants were subdivided into three categories; WCF (n = 6 female), NCF (n = 9), and

NCM (n = 6). Athletes were considered “World-caliber” if they were on the most recent Olym-

pic or World team and competed at the most recent national event. Athletes were considered

“National-caliber” if they were top 5 placers at the 2017 American Open Finals meet but had

never been on a World or Olympic team. Athletes spanned multiple weight categories, had a

minimum of two years of national competition experience, had competed exclusively for the

United States of America, and were otherwise eligible for all American national meets

(Table 2). Athlete accolades at the time of data collection included participation in 3 Olympic

Games, 19 World Championships, 11 Pan American Championships, 49 National Champion-

ships, 32 American Opens, 8 University National Championships, and 25 Junior World/Pan

American/National Championships. Participants also held 25 national records and>170

Table 2. Descriptive information of elite female and male American weightlifters.

Age (y) Body Mass (kg) Height (cm) Years Competing Snatch Relative 1RM Clean & Jerk Relative 1RM

WCF 28.2 ± 3.6� 81.2 ± 36.0 164.0 ± 11.1 7.7 ± 4.7�ǂ 1.32 ± 0.31� 1.69 ± 0.40�

NCF 23.6 ± 3.9 66.6 ± 11.0 164.8 ± 7.0 3.8 ± 0.8 1.29 ± 0.18ǂ 1.68 ± 0.19ǂ
NCM 26.0 ± 2.4 85.3 ± 26.9 169.0 ± 9.0 3.3 ± .08 1.64 ± 0.25 2.04 ± 0.29

Average 25.6 ± 3.8 76.1 ± 25.0 165.8 ± 8.7 4.8 ± 3.1 1.40 ± 0.28 1.79 ± .032

Data are described as mean ± standard deviation. y = years. Relative 1RM = competition record one repetition maximum divided by body mass. Years

competing = number of years competing in USA Weightlifting sanctioned meets.

� = significantly different than NCF.

ǂ = significantly different than NCM. Significant = p < 0.05 .

https://doi.org/10.1371/journal.pone.0207975.t002
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national/international medals either at the time of the study or in the past. One athlete had

tested positive for substances prohibited by the World Anti-Doping Agency and was sus-

pended from the sport for two years prior to participating in the study.

Procedures

Muscle biopsies. Following 30 minutes of supine rest, athletes underwent a mid-muscle

belly (approximately halfway between the greater trochanter and patella) biopsy of the VL. A

detailed description of the biopsy procedure has been previously described by our lab [9, 22,

23, 33]. Briefly, a small area of the thigh was numbed by injection of a local anesthetic (Xylo-

caine/Lidocaine without epinephrine). An approximately ¼ inch incision was made in the

superficial cutaneous tissues. Muscle samples were obtained using the Bergström technique

with suction [1], immediately cleansed of excess blood and connective tissue, divided into

approximately 10–15 mg strips, placed into cold skinning solution (125 mM K propionate, 2.0

mM EGTA, 4.0 mM ATP, 1.0 mM MgCl2, 20.0 mM imidazole [pH 7.0], and 50% [vol ml/vol

ml] glycerol), and stored at -20˚ C for at least one week. Each sample was split such that a por-

tion (~5 mg) could be used for SF or HG. The incision site was cleaned, pulled closed with a

sterile Band-Aid, and covered with sterile gauze and cohesive bandage tape.

MHC FT identification. All biopsy samples were analyzed for MHC via SDS-PAGE using

two distinct techniques: SF and HG. For SF, individual fibers (N = 2,147; 102 ± 3 fibers per ath-

lete) were mechanically isolated with fine tweezers under a light microscope and placed in

80 μl of sodium dodecyl sulfate (SDS) buffer (1% SDS, 23 mM EDTA, 0.008% bromophenol

blue, 15% glycerol, and 715 mM b-mercaptoethanol [pH 6.8]). HG samples (~5 mg) were

hand homogenized and then diluted between 1:10 to 1:50 based on sample amount and pro-

tein quantity. As described in detail elsewhere [5, 9, 22, 23, 27], 1–2 μl aliquots of both SF or

HG (run separately) were then loaded into individual wells in a 3.5% loading and 5% separat-

ing gel (SDS-PAGE), run at 5˚C for 15.5 hours (SE 600 Series; Hoefer, San Francisco, CA,

USA), and silver stained for MHC identification. The SF approach used known molecular

weights and standards to identify the MHC isoform (MHC I, I/IIa, IIa, IIa/IIx, and IIx) of each

individual myofiber. This enabled the most accurate calculation of the FT% within the muscle

sample [21]. HG utilized densitometry (ImageJ, National Institutes of Health, Bethesda, MD)

to quantify the relative MHC protein composition (i.e., percent area occupied by each pure

isoform; MHC I, IIa, and IIx) of each sample, which is highly correlated with FT area [34].

Thus, SF indicates how frequently each isoform exists but cannot address how much area each

FT occupies within the muscle. HG addresses the latter, but cannot delineate hybrids, therefore

inaccurately quantifying FT% [9, 21–25, 27].

Statistical analysis

Potential differences between groups in descriptive information were examined via ANOVA.

For SF, potential differences in FT% between groups were assessed via a 3 (group: WCF, NCF,

NCM) x 4 (fiber type: MHC I, I/IIa, IIa, IIa/IIx) ANOVA. For HG, potential differences in FT

composition between groups were examined via a 3 (group: WCF, NCF, NCM) x 3 (fiber type:

MHC I, IIa, IIx) ANOVA. Comparison of SF vs. HG was accomplished by a 2 (group: SF, HG)

x 3 (fiber type: MHC I, IIa, IIx) ANOVA. Effect size was calculated with Cohen’s D

(0.2 = small difference, 0.5 = medium difference, and 0.8 = large difference) to identify the

magnitude of difference between two groups. Pearson Product Moment Correlations (r) were

assessed for WCF, NCF, and NCM between 1RM, body mass, and SF FT%. All individual FT

data are reported in Table 3. Data are reported as mean ± standard deviation (SD), unless

Fiber type in elite weightlifters
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otherwise noted. Significance was established a priori at an alpha level of p< 0.05. All analyses

were performed with SPSS (SPSS Statistics Version 24, IBM).

Results

Descriptive

WCF were significantly older than NCF, but not NCM (Table 2). WCF also had significantly

more years of sport competition experience than NCF and NCM. NCM exceeded both WCF

and NCF in relative strength in both the snatch 1RM and clean and jerk 1RM.

SF distribution

FT% for all lifters combined was 23 ± 9% I, 5 ± 3% I/IIa, 67 ± 13% IIa, and 6 ± 10% IIa/IIx. No

MHC IIx or I/IIa/IIx fibers were identified. No significant differences existed between groups,

despite WCF possessing 8% (absolute, not percent difference) less MHC I than NCF (d = 0.88)

and NCM (d = 0.78) (Fig 1). The difference in MHC IIa between WCF and NCM (also 8%)

was also not statistically significant, but had a moderate effect size (d = 0.50). The vast majority

of the MHC IIa/IIx fibers (91%) belonged to just five lifters, all of whom competed in the

heavyweight or super heavyweight categories (� 90 kg for women and�105 kg for men). This

produced significant correlations between body mass and MHC IIa/IIx frequency for WCF

Table 3. Individual FT% of elite female and male American weightlifters. Data are reported as a percentage.

MHC I MHC I/IIa MHC IIa MHC IIa/IIx MHC IIx

Athlete SF HG SF SF HG SF SF HG

WCF

1 13 31 7 74 69 7 0 0

2 39 34 13 48 66 0 0 0

3 18 21 2 79 79 1 0 0

4 9 19 2 89 81 0 0 0

5 12 22 4 85 78 0 0 0

6� 10 17 9 52 70 28 0 13

NCF

7 23 38 1 76 62 0 0 0

8� 14 18 1 63 68 22 0 15

9 32 43 6 62 57 0 0 0

10 29 39 8 58 61 4 0 0

11 20 26 2 78 74 0 0 0

12 29 46 5 66 54 0 0 0

13 25 30 2 73 70 0 0 0

14 19 25 6 74 75 0 0 0

15 34 35 6 56 65 4 0 0

NCM

16 29 40 8 63 60 0 0 0

17 26 37 1 73 63 0 0 0

18 32 44 3 65 56 0 0 0

19 7 18 3 84 82 6 0 0

20� 26 36 3 54 57 17 0 7

21� 29 33 2 37 49 32 0 18

� Denotes athlete in the heavyweight (or super) (>90 kg for women and >105 kg for men) category.

https://doi.org/10.1371/journal.pone.0207975.t003
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(r = 0.919, p = 0.010) and NCF (r = 0.826, p = 0.006) and a trend for NCM (r = 0.757,

p = 0.080).

HG composition

FT composition for all lifters combined was 31 ± 9% I, 67 ± 9% IIa, and 3 ± 6% IIx. MHC I

tended (p = 0.08) to be lower in WCF (24 ± 7%) than NCF (33 ± 9%, p = 0.125, d = 1.14) and

NCM (35 ± 9%, p = 0.106, d = 1.33), yet MHC IIa was significantly higher (p = 0.046) in WCF

(74 ± 6%) than NCM (61 ± 11%, p = 0.043, d = 1.39), but not NCF (65 ± 7%, p = 0.145,

d = 1.28) and. FT was significantly different (p< 0.001) between SF and HG for MHC I

(p = 0.005) and MHC IIx (p = 0.046), but not MHC IIa. SF MHC IIa/IIx and HG MHC IIx

were highly correlated (r = 0.96, p< 0. 001). No correlations existed for SF or HG between FT

% and snatch or clean and jerk relative 1RM when analyzed as subgroups or when combined

together.

Discussion

The current study resulted in the most detailed investigation of muscle phenotype in Olympic

and World-caliber anaerobic athletes published to date. These data are the first comparison of

World vs. National-caliber athletes at the SF level. Additionally, they enabled the most precise

description of FT% in strength or power sport competitors, and the first ever in females. The

Fig 1. MHC FT% of elite American weightlifters. Data are reported as a percentage ± standard deviation.

https://doi.org/10.1371/journal.pone.0207975.g001
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primary finding was that the pure MHC IIa abundance was the highest in healthy muscle (VL)

ever reported, especially for females. This finding suggests athlete caliber and/or years compet-

ing in the sport influence FT% more than sex per se and also questions the pronouncement

that male athletes possess more fast-twitch myofibers than females. Secondary findings

revealed that our utilization of two different typing methods confirmed the limitations of HG

for FT% (inappropriately categorizes MHC I/IIa as MHC I and MHC IIa/IIx as MHC IIx) and

also allowed identification of a previously undocumented relationship between body mass and

MHC IIa/IIx concentrations. The unique morphology and phenotypes in our participants

highlight the need to further study elite anaerobic athletes, particularly females.

WCF contained the highest concentration of MHC IIa (71%) reported in the literature to

our knowledge. NCF (67%) and NCM (63%) also possessed more MHC IIa than previous

research in competitive male bodybuilders (40%) [16, 19] as well as male power/weightlifters

[8, 11, 12, 15, 16, 18], elite female pole vaulters, heptathletes, 100 and 400 m hurdlers, and long

jumpers (20), elite male hammer throwers [35], and resistance-trained men [18, 19, 22, 23, 27,

29, 36], which all ranged from 50–60%. Only six previous studies using SF have found pure

MHC IIa concentrations of>50%, with just two reporting 60% (Table 1). The resulting mini-

mal MHC I (~17–25%) in our athletes was strikingly lower than the previously described track

and field athletes (57%) [20] and National-caliber bodybuilders (35%) [19]. These pronounced

differences are likely explained by the substantial dissimilarities in training styles (e.g., external

loading strategies, contraction type and velocity, training frequency, etc.) between the various

sports. More research is therefore needed to continue delineating the subtle but significant dif-

ferences in FT% between athletes from a range of anaerobic sports and the specific role each

training approach might play in altering MHC I and IIa distribution.

Although the differences in FT% between our three groups did not reach statistical signifi-

cance, large effect sizes were evident and MHC IIa frequencies of 74%-89% occurred in 66% of

WCF but only in 44% and 33% of NCF and NCM, respectively. Thus, scientists should further

examine how FT% may separate World from National-level athletes as it would enhance our

understanding of the physiological factors determining maximal human performance. For

example, the only published report on a world-record holding anaerobic athlete found a FT

profile remarkably different from our study or any other previous research in elite sprinters

[13]. The minimal exploration in this area makes it difficult to determine if such a separation

in FT profile between elite subgroups is a true and consistent phenomenon or merely an arti-

fact of too little research.

Our groups differed in two other important characteristics; sex and years competing in the

sport. Sex comparisons between athletes remain tenuous [31, 37] because nearly all investiga-

tions utilize non-gold standard FT% methods [21] and sedentary [38, 39] or “recreationally

active” individuals [32]. Not only do our findings contradict the claim that women possess

more slow-twitch myofibers than men [40], they illustrate the opposite when accounting for

talent level (WCF < NCF = NCM). WCF had also been competing in the sport for ~5 years

longer than both NCF and NCM. The current cross-sectional study-design precludes direct

analysis, but extensive research affords strong support for exercise history as a critical determi-

nate of FT% [2, 9, 26, 28, 30, 41–44]. Chronic exercise generally decreases hybrids [30, 42] and

induces style-specific shifts in FT% such as increases in MHC I with endurance [9, 43, 45] or

MHC IIa with sprint [28], plyometric [26], or strength training [36, 43, 44, 46]. For example,

one study reported an increase in MHC IIa from 46% to 60% following 19 weeks of resistance

training [36]. MHC IIa/IIx fibers appear particularly responsible for exercise-induced

increases in MHC IIa and are thus uncommon in exercise-trained individuals [9, 20, 22–25,

29, 43]. A reduction of MHC IIx in favor of IIa following chronic resistance exercise is also

purported extensively in the literature [28, 34], yet the overwhelming majority of this evidence
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comes from experiments with methodologies (e.g. HG) directly shown here and elsewhere [9,

24, 25, 47] to produce erroneous FT% conclusions.

Most research from the 1970’s– 2000’s utilized either ATPase histochemistry or HG

SDS-PAGE to determine FT% [8, 14–17, 24, 25, 34, 36]. Similar to SF, histochemistry allows

assessment of individual fibers for calculation of percent distribution, yet it does not enable

simultaneous delineate of hybrids [36]. HG suffers the same drawback and actually indicates

FT area/composition [34] more so than distribution making it greatly influenced by the size of

each fiber; which is not uniform across all FTs (particularly in resistance trained individuals)

[48]. All three approaches hold strong merit and are often correlated to each other [34, 49] and

performance [8], but are clearly not interchangeable for maximally precise FT% assessment. In

the current study, HG accurately quantified MHC IIa (within 0–4%), but not I or IIx. MHC I

was overestimated by 8% percent (23 vs. 31%), which is largely explained by the non-differen-

tiated MHC I/IIa fibers (5%). HG also greatly exaggerated MHC IIx, particularly in individuals

with>4% MHC IIa/IIx. The inability of HG to account for MHC IIa/IIx explains why MHC

IIx appear common in some studies [50] even though the actual abundance of pure MHC IIx

fibers in healthy human skeletal muscle is extraordinarily rare; typically <0.1% [9, 22–25, 27]

and 0 of the>2,100 isolated fibers from the current sample. Thus, the seeming conversion of

MHC IIx to IIa with exercise is more precisely IIa/IIx changing to IIa.

MHC IIa/IIx hybrids are typically inversely associated with muscle health and physical

activity [2, 9, 30, 43, 47, 51–54]. Yet, the heavyweights (male and female) expressed irregularly

high concentrations (24%) and accounted for 91% of all MHC IIa/IIx myofibers, explaining

the correlations between body mass and MHC IIa/IIx quantities. Terzis and colleagues (2010)

noted a similar abnormal abundance of MHC IIx (typed via HG, so likely IIa/IIx) in six large

(116 kg, body fat composition >22%), but presumably highly strength-trained throwers [35].

Body composition was not assessed in the current study and little research exists on well-

trained, but high body mass individuals. Not knowing the amount of muscle vs. fat on these

larger participants limits the ability to speculate on potential mechanisms. Thus, additional

studies with a larger sample size across a broader spectrum of physical size are required to

truly interpret the correlations between body mass and MHC IIa/IIx prevalence and to explore

possible mechanisms.

Another juxtaposition was that of FT% and performance. Previous work in 94 kg male

competitive weightlifters found strong correlations between FT composition (via HG) and the

percentage of total area in a muscle that each FT occupies to both snatch 1RM and vertical

jump height [8], but not clean and jerk 1RM. We failed to identify any such correlations (when

all subjects were combined or sub-grouped), but also utilized multiple sexes and weight classes.

Thus, while FT% differed between our groups, that factor alone did not predict performance

among our lifters. Several possible explanations exist for this discrepancy. First, FT area may

determine whole muscle strength more than FT%. Second, neither studies found correlations

to the clean and jerk, which is heavier and slower than the snatch or vertical jump. This com-

pliments previous isokinetic research [23] and indicates FT% does not predict performance on

strength tasks among strength-trained individuals. FT% probably determines movement

speed more than force production [7]. Further speculation on this point is unwarranted as lim-

itations prohibited the ability to assess FT-specific size or contractile properties, which likely

differed significantly across our groups [55] and are known to changes with training [3, 48].

Conclusion

This study provides novel insight into the muscle phenotype of elite competitive strength and

power athletes and highlights the need for more research in this area. The extreme fast-twitch
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abundance partially explains how elite weightlifters are able to generate high forces in short

time-frames. Our data also indicate that athlete caliber and years competing in the sport dic-

tate FT% more than sex per se, but more work is needed to draw firm conclusions as a single

biopsy may not perfectly represent the entire muscle [56]. Most athletes contained few hybrids

and no MHC IIx or I/IIa/IIx, except the heavyweights who possessed atypically high quantities

of IIa/IIx. Future research should use high fidelity techniques to explore FT-specific distribu-

tion, size, and contractile properties in female and male athletes of various caliber, sports, and

body size; ideally across several years of competition. The resulting data could have practical

significance if it enabled experimentation of differing training volumes or recovery protocols

based on athlete-specific FT properties [57]. Scientifically, our findings importantly contribute

to the knowledge-base of fiber type-specific physiology.
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