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Abstract: Rice quality assessment is essential for meeting high-quality standards and consumer
demands. However, challenges remain in developing cost-effective and rapid techniques to assess
commercial rice grain quality traits. This paper presents the application of computer vision (CV) and
machine learning (ML) to classify commercial rice samples based on dimensionless morphometric
parameters and color parameters extracted using CV algorithms from digital images obtained from a
smartphone camera. The artificial neural network (ANN) model was developed using nine morpho-
colorimetric parameters to classify rice samples into 15 commercial rice types. Furthermore, the
ANN models were deployed and evaluated on a different imaging system to simulate their practical
applications under different conditions. Results showed that the best classification accuracy was
obtained using the Bayesian Regularization (BR) algorithm of the ANN with ten hidden neurons
at 91.6% (MSE = <0.01) and 88.5% (MSE = 0.01) for the training and testing stages, respectively,
with an overall accuracy of 90.7% (Model 2). Deployment also showed high accuracy (93.9%) in
the classification of the rice samples. The adoption by the industry of rapid, reliable, and accurate
methods, such as those presented here, may allow the incorporation of different morpho-colorimetric
traits in rice with consumer perception studies.

Keywords: artificial neural networks; morpho-colorimetry; smartphone; photogrammetry; object
of interest

1. Introduction

Commercial rice (Oryza sativa) is available in various grades to meet consumer needs
according to price and consumer preferences. The diverse rice germplasm consumed
worldwide has high variability in its quality traits and has been linked with the physico-
chemical properties of the rice grains [1–5]. These traits are related to consumer acceptance
of size and shape, color, odor/aroma, purity, homogeneity, and texture [6]. Raw rice quality
is commonly associated with consumer perception, mainly before purchasing the product.
It is evaluated visually based on the appearance of the rice grains, which is considered an
important factor affecting buying decisions [7,8]. For example, the length, uniformity of
size and shape, color, chalkiness, and percentage of broken rice were among the traits used
to evaluate consumer perception of rice quality [6–9]. Meanwhile, the appearance, taste,
aroma, and texture were the main quality parameters affecting consumer perception of the
cooked rice [6,10,11]. A study conducted by Jeesan and Seo [12] showed that the color cues
of cooked rice elicited consumer perceptions of the aroma, affected acceptance, and evoked
a range of emotional responses.

Rice-quality assessment is an essential routine in rice production to maintain high-
quality rice in the market and ensure high consumer acceptability. Standards for rice
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milling quality have been established to promote rice trading and marketing. According to
the United States Standards for Milled Rice [13], rice is graded into categories considering
(i) the maximum limits of the paddy kernel; (ii) the red rice; (iii) the chalky kernel; (iv) the
broken kernel and other types of rice; (v) the color requirements of milled rice; and (vi) the
minimum milling requirement. Besides, the Ministry of Agriculture in China established
the standard for milling quality (NY/T593-2013) to improve rice grain quality production,
emphasizing the standard requirements for different rice types such as indica and japonica
rice [14].

Rice quality is commonly determined through visual inspections and manual mea-
surements [1]. However, this approach is time-consuming, subjective, and prone to human
error. Currently, there are analytical instruments based on imaging techniques to automate
rice quality assessment, such as the Image-Rice Grain Scanner (Selgron, Blumenau, Brazil)
and the SeedCount SC5000 Image Analyzer (Next Instruments, Condell Park, City of
Canterbury-Bankstown, NSW, Australia). The Image-Rice Grain Scanner (Selgron, Blu-
menau, Brazil) provides 39 outputs of rice grain traits, including grain size, chalkiness,
grain defect, and milling quality based on three-dimensional measurement of the rice grain
images obtained from a camera [15]. Hence, it enables the rice breeder to select the desired
rice quality traits in a shorter time with high accuracy. Furthermore, the SeedCount SC5000
Image Analyzer was developed using a flatbed scanning system in reflectance mode to ob-
tain the individual rice sample images to measure the grain dimensions, chalkiness degree,
and elongation [16]. For instance, it was used to determine the length, width, and length-
to-width ratio of Australian wild rice [17] and chalkiness percentage in rice grains [18,19].
However, the lab-based instruments are costly and may hinder their application among
small enterprises, especially in developing countries. Therefore, it is important to develop
an alternative method using a rapid, reliable, cost-effective, and less complicated approach.

Emerging technologies such as computer vision (CV) and machine learning (ML)
techniques have been applied to classify images of rice varieties [20], whole and broken
rice grains [21], chalky rice [22,23], and discolored rice [24]. This technique requires
the image acquisition of rice samples and computer vision algorithms to pre-process,
analyze, and extract valuable information from the images to develop the classification
models. Software, such as Matlab (Mathworks, Inc. Natick, MA, USA) [25–27] and
LabVIEW (National Instruments, Austin, TX, USA) [28–30] and open-source libraries, such
as OpenCV (Intel, Santa Clara, CA, USA) [31–33] and Python (Python Software Foundation,
Wilmington, DE, USA) [34] are some of the most popular used among researchers. The
artificial neural networks (ANNs) for supervised ML are well-known for solving multiclass
classifications due to their ability to deal with non-linear data for pattern recognition to
obtain high accuracy. For example, the ANN models were used in previous studies to
classify mulberry fruit according to the ripeness levels [27], detect beer faults using the
electronic nose [35], and classify aphid infestation levels using the electronic nose and
near-infrared spectroscopy [36].

Rice from different cultivars differs in its physicochemical properties [4,37,38]. The
morpho-colorimetric parameters, such as the grain’s major and minor axis length; as-
pect ratio; perimeter; eccentricity; roundness; red, green, and blue (RGB); and CIELab
color spaces are key parameters that can be extracted using computer vision techniques.
These have been used in previous studies, for example, to classify rice grains according to
low-, medium-, and high-quality [39] and sound, broken, discolored, un-husked paddy,
deformed, and withered grains [24]. Besides, the fractal dimension (FD) obtained by imple-
menting the box-counting method has been used in previous research to classify grapevine
leaves of different cultivars [40], characterize pork loin, and salmon sliced tissue [41], and
analyze the microstructure of baked food products [42]. Hence, the FD could also be used as
a critical input parameter to classify rice grains morphometrically. Nevertheless, the work
on classifying rice using dimensionless parameters extracted automatically from digital
images has not been much reported, especially for an extensive range of commercial rice
samples. Moreover, little work has been conducted to evaluate the deployment accuracy
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of different conditions based on the developed model, resulting in a robust classification
model.

Recent advancements in new-generation smartphones with high-resolution cameras,
built-in sensors, powerful processors, and high-rate data transfer have enabled this tech-
nology adoption to be a cost-effective measurement and sensing tool. Hence, smartphone-
based applications with computer vision algorithms for agriculture and food sciences have
gained attention among researchers. These kinds of applications include the VitiCanopy
(The University of Adelaide, Adelaide, Australia), which allows winegrowers to estimate
the canopy vigor and porosity of the grapevines [43]; Plantix (PEAT GmbH, Berlin, Ger-
many) used to diagnose pests, diseases, and nutritional deficiencies in 30 types of crops [44];
and FruitSize (Central Queensland University, Queensland, Australia), used to measure
fruit size obtained from images captured from a smartphone camera [45]. Moreover, the
smartphone has been used in previous studies to, for example, capture rice grain images
for moisture content estimation for in-field application at harvest [46], detect milk adulter-
ation [32], assess dietary information based on food and drink images [47], and estimate
leaf area index (LAI) and plant height for canopy structures [48], which could be further
developed into a smartphone app. Therefore, smartphone technology advancement has
great potential to enable on-site measurement and rapid analysis at a lower cost, especially
for the agricultural and food industries.

This study presents a smartphone-based imaging system as a tool to acquire im-
ages, semi-automated CV algorithms, and ML for rapid assessment techniques to classify
commercial rice grains. This study used 15 commercial rice images to extract the morpho-
colorimetric parameters using the customized CV algorithms written in Matlab® R2021a.
The ML model based on pattern recognition of artificial neural networks (ANNs) was
developed to classify the commercial rice samples using morpho-colorimetric parameters
as inputs. The proposed method and the classification model were then retrained to deploy
the model in a different imaging condition to simulate real-time application. The proposed
method would form the foundation for a smartphone-based app as a viable alternative to
the conventional approach, a mobile, cost-effective, and user-friendly tool for the rapid
assessment of the rice quality traits associated with consumer perception.

2. Materials and Methods
2.1. Rice Samples

In this study, 15 commercial rice grain types were obtained from local retailers in
Australia (Table 1). The samples consisted of two main categories of rice on the market: the
white rice produced from whole-grain rice by a milling process to remove the outer bran
layer of the grain and whole-grain (unpolished) rice. For each sample, 2 g of whole kernels
were selected from each packet in triplicates, corresponding to a different total number of
rice grains per type.

Table 1. Details of commercial rice samples, including class ID, product category, type, origin, abbreviation, and the number
of grains per rice type in triplicates obtained using Lightbox 1.

Class ID Product Category Type Origin Abbreviation Number of Grains

1

White rice
(Polished rice)

Khoshihikari a Japan KHO 243
2 Sushi rice a Japan SRS 276
3 Bomba a Spain BMB 210
4 Calasparra a Spain CLP 263
5 Arborio b Italy ARB 126
6 Calrose b Australia CLS 230
7 Long-grain c Thailand LGW 195
8 Jasmine c Thailand JAS 297
9 Basmati c Pakistan BAS 330



Sensors 2021, 21, 6354 4 of 18

Table 1. Cont.

Class ID Product Category Type Origin Abbreviation Number of Grains

10

Whole grain rice
(Unpolished rice)

Biodynamic rice b Australia BDM 224
11 Medium grain b Australia MGB 212
12 Medium-grain—organic b India MOB 274
13 Doongara c Australia DGR 308
14 Black rice c Thailand BKR 317
15 Wild rice—organic c USA WRO 335

a short-grain; b medium-grain; c long-grain.

2.2. Image Acquisition

The images of rice samples were acquired using the rear camera (12-megapixel; focal
length, f = 26 mm; aperture = f /1.8) of an iPhone 11 (Apple Inc., Cupertino, CA, USA). The
Lightbox 1, a foldable lightbox tent with (Unbranded, Unhobest, China; dimensions: 40 cm
× 40 cm × 40 cm), consisting of two daylight LED strips with 70 LEDs each, was used to
acquire the images from the top opening at approximately 15 cm (Figure 1). The images
were obtained via an Adobe Lightroom application (v6.1.0 Adobe Inc., San Jose, CA, USA)
to allow a custom white balance using a white reference paper. A black background was
used to capture the white and brown rice, and white background was used for the black
and wild rice to provide good contrast between the foreground and background images.
The rice samples were arranged in non-touching and random positions to minimize noise
by touching and overlapping rice grains into the ANN modelling. However, the code
includes watershed segmentation procedures for deployment to facilitate extraction of
individual rice features even when touching each other or overlapping.
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tographic Group (JPG) format. Images captured using the smartphone were uploaded to 
the Matlab Drive® through Matlab Mobile for further processing using Matlab® R2021a on 
a personal computer (PC). 

Figure 1. Experimental setup for image acquisition consisting of (1) a lightbox; (2) 70 pieces of two
LED light strips; (3) a platform; (4) cardboard to place the grain for image acquisition; (5) rice samples;
(6) top opening of the lightbox used to acquire the images using a smartphone. LED = light-emitting
diode.

Figure 2 shows images obtained from each set of rice samples using the experimental
setup. The images were acquired at a 3024 × 4032 pixels resolution and saved in Joint
Photographic Group (JPG) format. Images captured using the smartphone were uploaded
to the Matlab Drive® through Matlab Mobile for further processing using Matlab® R2021a
on a personal computer (PC).
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labeled class ID correspond to the list in Table 1. Rice sample images shown in the figure were cropped for presentation
purposes only.

2.3. Image Pre-Processing, Segmentation and Extraction of Morpho-Colorimetric Features

The individual rice kernels were automatically analyzed to extract morpho-colorimetric
features from the images using customized CV algorithms modified from previous work
on leaf classification [25,40] in Matlab® R2021a. The overview of the process is presented
in Figure 3; it consists of the following steps: (i) image capturing and reading; (ii) image
pre-processing; (iii) image analysis; and (iv) feature extraction to retrieve the morpho-
colorimetric features of the rice grains.
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2.4. Morpho-Colorimetric Parameters of Commercial Rice Grains

Table 2 shows the five morphometric and four colorimetric parameters extracted from
the individual rice grain image. Unitless morphometric parameters were included in the
study to simplify the image-capturing step and allow the user to independently capture
the rice images in the lightbox at any object distance. The identification of single rice
seeds was based on blob analysis from binarized images, which identifies contours of
blobs to automatically label each grain to extract statistical shape measurements using
the regionprops function in Matlab® R2021a. From that analysis, automatic statistics are
calculated, such as centroid, the aspect ratio and the area-parameter ratio index, computed
using the major and minor axis length, area (A), and perimeter (P) of the rice images.
The fractal dimension (FD) of the rice grains was determined using the box-counting
method based on previously published work to recognize and analyze grapevine leaves [40]
and medicinal plant leaves to extract similar features [25]. The binarized image of rice
grains was also used as a mask on the original image to extract automatically colorimetric
parameters from each rice grain of CIELab and RGB color scales. The yellowness index was
computed from color scale parameters to determine the yellowness degree of the rice grains
based on the previous work conducted by Rhim et al. [49]. The extracted features from
the individual rice grains were automatically saved in Microsoft Excel Binary File Format
(.xls) and were used as inputs for ML model development to classify the 15 commercial
rice grains.

Table 2. The adimensional morpho-colorimetric features and indices that were used to develop the ML (machine learning)
model to classify 15 types of commercial rice grains.

Parameters Abbreviation Description

Fractal dimension FD Fractal dimension obtained from the box-counting method [40].

Circularity Cir Degree of object roundness, which returned the value between 0 to 1. The value 1
indicates a perfect circle.

Aspect ratio AR The ratio between major and minor axis length [50].
Extent Ext The ratio between the rice grain area and bounding box area.

Area-Perimeter Ratio
Index APIdx APIdx = [(A/P) − (A/P)min]/(A/P)max

CIELab color scale L, a and b Lightness (L), red to green color range (a), and yellow to blue color range (b) [40].
Yellowness Index YI Degree of yellowness [49].

2.5. Statistical Analysis

A one-way analysis of variance (ANOVA; p < 0.05) and Tukey’s Honestly Significant
Difference (HSD) post hoc test (α = 0.05) were conducted using Minitab 19.1 (Minitab
Inc., State College, PA, USA). It was performed to assess whether there were significant
differences between the means of the morpho-colorimetric parameters of the commercial
rice samples obtained using Lightbox 1.

Multivariate data analysis based on the principal component analysis (PCA) and
cluster analysis was conducted using a customized code written in Matlab® R2021a. The
main use of the PCA in this study was to find relationships between variables and samples
as they are constructed using covariance methods as a parameter engineering justification
for the ANN modelling presented [51–55]. Besides, cluster analysis helps to visualize the
relative grouping of commercial rice samples according to these parameters. This type
of analysis to support parameter engineering has been used in several ANN works for
food and beverage applications [56–58] and helps non-experts in AI or machine-learning
understand better the relationships between different parameters from the physicochemical
point of view. This type of multivariate data analysis also helps to clarify the “black-box”
properties of supervised machine learning such as ANN and to visualize that ANN correctly
estimates the targets and that they are not artifacts from non-related inputs.
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2.6. Machine Learning Modeling

The classification ML models were developed using the ANN algorithm for pattern
recognition using a customized code written in Matlab® R2021a. The model was developed
by testing 17 training algorithms (data not shown), which consisted of three types of main
functions: (i) backpropagation with Jacobian derivatives; (ii) backpropagation with gradient
derivatives; and (iii) supervised weight and bias training functions [59]. The optimum
classification algorithm was then selected by assessing the accuracy and performance of
the model, indicated based on mean squared error (MSE); to assess any signs of under-
or over-fitting, the MSE value for the training stage must be lower than the value for the
testing stage. Furthermore, the number of inputs must be <70% of the number of samples to
avoid over-fitting, which this model meets with only nine inputs [60–62]. Furthermore, the
receiver operating characteristic (ROC) curves were used to analyze the model’s sensitivity
(true positive rate) and specificity (true negative rate) to classify each type of rice [63]. A
neuron trimming exercise was conducted using ten, seven, five, and three hidden neurons
to find the optimal neuron number, followed by retraining the model several times to assess
the consistency of the results and find the best model based on accuracy and performance.
The number of neurons must also be considered to assess under- or over-fitting; a larger
number of neurons, usually >10, is more likely to lead to over-fitting, while a very low
number, usually below three, may lead to under-fitting [56].

In this study, Model 1 was developed using a data set extracted from the rice images
obtained from Lightbox 1. After the screening, the Bayesian Regularization (BR) with seven
neurons was selected because the model presented high accuracy, best performance, and
no under- or over-fitting signs. The model thus consisted of a two-layer feedforward neural
network with a sigmoid function using nine morpho-colorimetric parameters as inputs to
classify the grains according to 15 types of commercial rice (Figure 4). The data set from
the population of the rice grain samples for training and testing was randomly divided
into 70% (n = 2687) and 30% (n = 1152), respectively.
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Figure 4. Diagram of a neural network model (Model 1) of the Bayesian Regularization algorithm
with seven hidden neurons and sigmoid function showing nine inputs of morpho-colorimetric
parameters and 15 outputs of commercial rice grains. The abbreviations for the morpho-colorimetric
parameters (inputs) and commercial rice grains (outputs) are shown in Tables 1 and 2. w = weight;
b = bias.

2.7. Retraining and Deployment of the Machine Learning Model

A test was conducted to evaluate the deployment of the proposed method to simulate
the practical application in a different condition. Therefore, a new data set corresponding to
the 15 rice samples was acquired using Lightbox 2 (2D PhotoBench 120, Ortery Technologies
Inc., Irvine, CA, USA; Dimension = 61.0 cm × 61.0 cm × 71.1 cm) with 5700 K daylight LED
lighting, using similar approaches to those described in Section 2.2 with slight modification.
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The same smartphone was attached on a mini tripod at 15 cm from the samples. The
images were acquired using Adobe Lightroom to set a custom white balance using white
reference paper. Data from eight replicate images containing around 50 rice grains in an
image were acquired and extracted from the customized CV codes described in Section 2.3.

The new data from Lightbox 2 were fed to retrain the original Model 1 using the
steps mentioned earlier in Section 2.6; the retrained Model 1 was then named Model 2. It
was developed based on the nine morpho-colorimetric parameters as inputs to classify
15 commercial rice grains as targets, similar to the original Model 1 using a random data
division of 70% (n = 6887) for training and 30% (n = 2952) for testing data sets (Figure 5).
After testing the model on the 17 ANN algorithms, followed by the neuron trimming test,
the best model was obtained using the BR algorithms with a sigmoid activation function
and ten hidden neurons.
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Figure 5. Diagram of a neural network model (Model 2) of the Bayesian Regularization algorithm
with seven hidden neurons and sigmoid function showing nine inputs of morpho-colorimetric
parameters and 15 outputs of commercial rice grains. The abbreviation for morpho-colorimetric
parameters (inputs) and commercial rice grains (outputs) are shown in Tables 1 and 2. w = weight;
b = bias.

Deployment accuracy was tested using a new image captured for each type of rice
obtained from Lightbox 2 using the same procedure as those used to develop Model 2. The
image acquired using the smartphone was sent to Matlab Drive®, followed by the following
steps to process the retrieved image in a laptop computer to detect individual rice grains,
extract morpho-colorimetric features, and classify them according to their corresponding
class ID using the developed ML model embedded in the code. Finally, a decision image
was displayed with the labeled predicted class ID for each rice grain in the image. Figure 6
shows the flow diagram of the rice classification process.
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3. Results
3.1. Morpho-Colorimetric Parameters of Commercial Rice Grains

Table 3 shows the ANOVA results of the morpho-colorimetric parameters from the
dataset obtained using the foldable lightbox tent for each type of rice. Significant differences
(p < 0.05) were observed between the samples in all parameters. The mean values for the
FD obtained ranged from 1.57 (LGW) to 1.83 (BMB). The FD values were higher among
the short-grain samples (the KHO, the SRS, the BMB, and the CLP), while medium-grain
samples mainly had intermediate FD values.

The WRO had the lowest mean for Cir (0.46), while the short-grain rice samples, such
as the CLP (0.91) and the BMB (0.91), were among the samples with high mean values. The
AR is the ratio between the major and minor axis length and showed low mean values
among the short-grain rice samples (1.63–1.97) compared to the medium- and long-grain
rice samples (2.06–5.19). The short-grain rice samples such as the CLP (0.74), the BMB
(0.73), the KHO (0.72), and the SRS (0.72) were the rice samples with high mean values for
Ext, and the WRO (0.45) was the rice sample with the lowest Ext. The APIdx calculated
using the pixel area, and the perimeter ratio showed that the BAS (0.27) had the lowest
mean value among rice samples. Among all the samples, the WRO had a high AR value
and low values for Cir, Ext, and APIdx, showing that its size and shape were different from
the other types of rice, which are very long and narrow, reflecting its characteristics as a
long and slender-shaped grain.

The L mean value was higher for the white rice samples, such as the JAS (59.46), the
LGW (59.38), and the BAS (59.16), and lower L values were obtained for highly pigmented
rice, such as the BKR and the WRO (27.54 and 29.60, respectively). As opposed to the L, the
YI for the WRO and the BKR was higher than the white rice samples. The inverse trends for
the L and YI parameters described the rice grain’s lightness and yellowness, respectively. A
low positive value was observed in mean values of a for all white rice samples, and higher
mean values were obtained for both highly pigmented rice samples. The unpolished rice
samples had a higher b value compared to the white rice samples.

3.2. Multivariate Data Analysis

Figure 7a shows the PCA biplot for the nine morpho-colorimetric parameters and the
15 commercial rice samples from the data set obtained from the foldable light box tent. The
PCA explained the 82.7% total data variability (PC1: 59.8%; PC2: 22.90%). Based on factor
loadings (FL), principal component one (PC1) was characterized by AR (FL = 0.40) and
YI (FL = 0.34) on the positive side of the axis, whereas Ext (FL = −0.39), Cir (FL = −0.39),
and L (FL =−0.34) represented PC1 on the negative side. The principal component two
(PC2) was mainly represented by b (FL = 0.43) and Y1 (FL = 0.41) on the positive side, and
L (FL = −0.35) on the negative side.

The colorimetric parameters, such as YI, b, and a, were positively related and associated
with the BKR and, to a lesser extent, the brown rice samples, such as the MGB, the
DGR, and the BDM, which are located in the center of the PCA. In contrast, the L was
negatively related to the latter parameters and associated with the MOB (brown rice). The
morphometric parameters such as Ext, Cir, FD, and APIdx had a positive relationship
and were associated with most rice samples belonging to the short and medium grains.
Parameter AR was negatively related to the latter parameters and associated with the
long-grain rice (JAS, LGW, and BAS).

Figure 7b shows the cluster analysis using the Euclidean linkage of PCA based on the
nine morpho-colorimetric parameters to group the rice. The unpolished rice, the WRO, and
the BKR were found in the same group, while the rest of the rice samples were clustered in
a group. Likewise, Figure 7a showed groups of rice samples identified for black rice (BKR)
and wild rice (WRO), brown rice (DGR, MGB, and BDM), and long-grain (JAS, LGW, and
BAS) rice. However, there was no clear distinction between short-grain (BMB, CLP, KHO,
and SRS) and medium-grain (ARB and CLS) rice.
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Table 3. The mean and ± standard error (SE) values for morpho-colorimetric parameters of the commercial rice samples.

Rice Sample n FD SE Cir SE AR SE Ext SE APIdx SE L SE a SE b SE YI SE

KHO 243 1.82 a ±0.08 0.89 b ±0.02 1.63 h ±0.09 0.72 a ±0.04 0.70 c,d ±0.08 55.96 d ±1.61 1.93 e ±0.55 −1.61 f ±1.81 −4.17 i ±4.69
SRS 276 1.82 a ±0.08 0.90 a,b ±0.02 1.64 h ±0.10 0.72 a,b ±0.04 0.71 c,d ±0.08 53.80 f ±1.81 2.05 e ±0.17 −0.91 e ±0.42 −2.42 g,h ±1.12
BMB 210 1.83 a ±0.10 0.91 a,b ±0.04 1.61 h ±0.11 0.73 a ±0.05 0.75 c ±0.20 55.20 e ±1.75 1.89 e ±0.38 0.70 c ±0.65 1.78 e,f ±1.64
CLP 262 1.82 a ±0.12 0.91 a ±0.08 1.58 h ±0.16 0.74 a ±0.05 0.69 d ±0.31 54.62 e ±2.09 2.52 c ±0.37 −0.34 d ±0.40 −0.88 g ±1.05
ARB 126 1.66 c,d ±0.04 0.83 c ±0.02 1.94 g ±0.10 0.67 c ±0.05 1.17 a ±0.10 54.87 e ±1.71 1.34 f,g ±0.31 −0.16 d ±0.82 −0.40 f,g ±2.16
CLS 230 1.67 c ±0.18 0.83 c ±0.04 1.97 g ±0.20 0.68 c ±0.07 0.75 c ±0.07 56.71 c ±3.31 1.27 g ±0.52 −0.35 d ±1.01 −0.91 g ±2.52

LGW 195 1.57 f ±0.10 0.61 g ±0.04 3.32 c ±0.34 0.57 d,e ±0.13 0.46 f ±0.08 59.39 a ±1.06 1.31 g ±0.19 −1.82 f ±0.31 −4.38 i ±0.76
JAS 297 1.59 e,f ±0.10 0.64 f ±0.09 3.18 d ±0.47 0.59 d ±0.14 0.50 f ±0.21 59.50 a ±3.41 1.30 g ±0.40 −1.43 f ±0.36 −3.56 h,i ±0.50
BAS 330 1.58 f ±0.17 0.59 h ±0.11 3.59 b ±0.66 0.55 e ±0.15 0.27 h ±0.18 59.16 a ±1.47 1.52 f ±0.25 −1.53 f ±1.60 −3.71 h,i ±3.87
BDM 224 1.62 d,e ±0.16 0.82 c ±0.03 2.06 g ±0.18 0.69 b,c ±0.08 0.83 b ±0.11 53.10 g ±1.93 2.27 d ±0.30 3.91 b ±1.03 10.55 d ±2.88
MGB 212 1.59 e,f ±0.12 0.79 d ±0.06 2.27 f ±0.26 0.6 c ±0.10 0.71 c,d ±0.29 55.20 e ±1.46 1.97 e ±0.27 4.72 a ±2.02 12.22 c,d ±5.23
MOB 274 1.71 b ±0.17 0.78 d ±0.06 2.33 f ±0.31 0.67 c ±0.10 0.49 f ±0.11 58.01 b ±0.97 1.99 e ±0.20 1.08 c ±0.63 2.67 e ±1.57
DGR 308 1.59 e,f ±0.09 0.67 e ±0.03 3.06 e ±0.23 0.60 d ±0.12 0.63 e ±0.09 52.99 g ±1.65 1.51 f ±0.29 4.86 a ±1.81 13.18 c ±5.09
BKR 317 1.59 e,f ±0.09 0.60 g,h ±0.05 3.56 b ±0.39 0.56 e ±0.14 0.50 f ±0.11 27.54 i ±2.22 14.64 a ±1.32 4.97 a ±2.35 25.11 a ±10.43
WRO 335 1.66 c ±0.12 0.46 i ±0.05 5.19 a ±0.82 0.45 f ±0.16 0.39 g ±0.12 29.60 h ±2.32 7.95 b ±0.94 4.19 b ±2.88 19.59 b ±13.50

Mean values with different letters for each parameter indicate significant differences based on ANOVA (p < 0.001) and Tukey’s honestly significant difference (HSD) test (α < 0.05). Abbreviations of samples are
found in Table 1 and morpho-colorimetric parameters in Table 2.
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Figure 7. The multivariate data analysis for (a) principal component analysis (PCA) biplot for morpho-colorimetric
parameters of 17 commercial rice types, where PC1 = principal component one, PC2 = principal component two; and
(b) cluster analysis of the commercial rice samples based on morpho-colorimetric parameters. The abbreviations for
morpho-colorimetric parameters and rice samples are shown in Tables 1 and 2.

3.3. Machine Learning Modelling

Table 4 shows the statistical results of classifying the commercial rice grains based
on nine morpho-colorimetric parameters using the Bayesian Regularization algorithm.
Both classification models had high overall accuracies (>90%), with a lower MSE value for
training (MSE < 0.01) than testing (MSE = 0.01) stages. Moreover, comparable accuracy was
obtained for the training and testing stage for both models. This showed that the models
had no signs of under- or over-fitting.

Table 4. Statistical results of the ANN model using Bayesian Regularization algorithm of the artificial
neural network.

Stage Sample (n) Accuracy (%) Error (%) Performance
(MSE)

Model 1 (Neurons = 7)

Training 2687 95.0 5.0 <0.01
Validation - - - -

Testing 1152 87.8 12.2 0.01
Overall 3839 92.9 7.1 -

Model 2 (Neurons = 10)

Training 6887 91.6 8.4 <0.01
Validation - - - -

Testing 2952 88.5 11.5 0.01
Overall 9839 90.7 9.3

Figure 8 shows the receiver operating characteristic (ROC) curve of the true-positive
(sensitivity) versus the false-positive rates for both ANN models for classifying commercial
rice grains. Based on the plot, the curves are closer to the true-positive rate at the y-
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axis, showing that the classification model had high true-positive rates (sensitivity) for
classifying the rice samples correctly. It also showed that the models had a high predictive
power to classify into each type of rice.

Sensors 2021, 21, 6354 12 of 18 
 

 

  
(a) (b) 

Figure 8. The receiver operating characteristic (ROC) curve of the artificial neural network models to classify 15 commer-
cial rice samples using morpho-colorimetric parameters as inputs for (a) Model 1 and (b) Model 2. The abbreviations for 
rice samples are shown in Table 1. 

3.4. Evaluation of Commercial Rice Grains Classification Using ML 
The deployment accuracies of the developed models for classifying new data sets of 

rice samples are shown in Table 5. The model’s performance in classifying the rice samples 
(n = 50) showed a high mean accuracy of 93.9%. The results also showed that the model 
successfully classified all the rice samples according to their respective rice class with 
≥82%, which is acceptable for the application. 

Table 5. Results of deployment accuracy when tested on the new data set obtained from 2D Photo-
Bench 120 lightbox. The abbreviations for the rice samples are shown in Table 1. 

Rice Sample Class Deployment Accuracy (%) 
KHO 1 96.0 
SRS 2 94.2 
BMB 3 96.0 
CLP 4 82.0 
ARB 5 94.0 
CLS 6 94.0 

LGW 7 87.8 
JAS 8 98.0 
BAS 9 88.0 
BDM 10 94.0 
MGB 11 98.0 
MOB 12 92.0 
DGR 13 96.0 
BKR 14 98.0 
WRO 15 100.0 

 Mean (%) 93.9 

4. Discussion 
4.1. Morpho-Colorimetric Features 

The developed codes to extract nine morpho-colorimetric parameters were modified 
from previous works on leaf classifications for grapevine cultivars [40] and Chinese me-

Figure 8. The receiver operating characteristic (ROC) curve of the artificial neural network models to classify 15 commercial
rice samples using morpho-colorimetric parameters as inputs for (a) Model 1 and (b) Model 2. The abbreviations for rice
samples are shown in Table 1.

3.4. Evaluation of Commercial Rice Grains Classification Using ML

The deployment accuracies of the developed models for classifying new data sets
of rice samples are shown in Table 5. The model’s performance in classifying the rice
samples (n = 50) showed a high mean accuracy of 93.9%. The results also showed that the
model successfully classified all the rice samples according to their respective rice class
with ≥82%, which is acceptable for the application.

Table 5. Results of deployment accuracy when tested on the new data set obtained from 2D Photo-
Bench 120 lightbox. The abbreviations for the rice samples are shown in Table 1.

Rice Sample Class Deployment Accuracy (%)

KHO 1 96.0
SRS 2 94.2
BMB 3 96.0
CLP 4 82.0
ARB 5 94.0
CLS 6 94.0

LGW 7 87.8
JAS 8 98.0
BAS 9 88.0
BDM 10 94.0
MGB 11 98.0
MOB 12 92.0
DGR 13 96.0
BKR 14 98.0
WRO 15 100.0

Mean (%) 93.9
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4. Discussion
4.1. Morpho-Colorimetric Features

The developed codes to extract nine morpho-colorimetric parameters were modi-
fied from previous works on leaf classifications for grapevine cultivars [40] and Chinese
medicinal plants [25]. The novelty in this work was the incorporation of dimensionless
morphological parameters, so the distance of the camera from the rice grains can vary with
different setups. For fractal analysis parameters, the FD was formerly used by Jinorose
et al. [64] to examine the effect of the parboiling process and cooking time on the physical
changes of cooked rice grains based on image analysis. The morphometric parameters
could discriminate short-grain rice groups indicated by high mean values for FD, Cir, Ext,
APIdx, and low AR. Moreover, Cir and AR showed their potential as key parameters
for ML modeling in classifying the ARB and the CLS under a similar grouping. This is
in accordance with Calingacion et al. [37], who suggested that these types of rice were
categorized as medium-length with bold-shape grains.

The colorimetric parameters extracted from the rice showed that white rice and
unpolished rice vary because of the pigmentation on the bran layer of unpolished grain.
Besides, the ARB, the CLP, and the BMB rice samples used for risotto and paella have chalky
kernels that are more opaque than the translucent rice cultivars such as the LGW, JOM,
and JSR [65]. High pigmentation on the BKR and the WRO rice samples discriminated by
high a (redness) value were in accordance with previous research, which suggested that the
pigmentation for those types of rice was related to the reddish color on the rice grains [17,66].
The high pigmentation corresponds to the carotenoid and anthocyanin content, which is
linked with significant health benefits [67]. It is known that different colors of rice grains
may depend on several factors, such as the varieties, the milling degree, the aging, and the
parboiling process. A previous study showed that the relationship between the chalkiness
and the physicochemical properties in rice was reflected by high total-starch accumulation,
low total protein, and amino acids in the chalky part [68]. Besides, the milling process
to polish the brown rice by removing the bran layer for white rice production could also
affect the color variation in rice grains because different types of rice may be polished at
different milling degrees during the process [21,69]. Therefore, the significant differences
in grain pigmentation were considered relevant parameters to develop the classification
model when using supervised ML in the parameter engineering process of supervised ML
modeling.

4.2. Multivariate Data Analysis

Based on PCA and cluster analysis, it was found that most short- and medium-grain
rice samples were grouped, as shown by the high similarities among the rice samples,
which could be explained by their positive associations with FD, Cir, and Ext and negative
associations with AR. Commonly, the AR is used to categorize the rice into three shape
classes: bold (<2), medium (2.1–3), and slender (>3) [70]. This could be explained by
previous research conducted by Calingacion et al. [37], in which both short- and medium-
grain rice may have bold- and medium-shaped rice. As the PCA and cluster analysis
showed an unclear separation among the rice samples, it was important to explore the
potential of machine learning modeling to classify the rice.

4.3. Machine Learning Modeling

For ML models developed in this study, comparable MSE values were obtained for
the training and testing stage, implying that the developed model showed no signs of over-
fitting [71]. A similar finding from previous work was reported based on a comparative
empirical study between BR and LM algorithms to develop the ANN model for social data
prediction. The BR showed better performance than the LM algorithm for data prediction
and supported its performance in dealing with high complexity data [62].

A previous study reported the classification of three types of commercial Basmati rice
images using a k-Nearest Neighbor (k-NN) classifier based on morphometric parameters,
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such as the area, major axis, minor axis, eccentricity, and perimeter [72]. However, the
overall classification accuracy was 79%, which could lead to poor estimation during de-
ployment. Moreover, using specific dimensions from rice may jeopardize the accuracy of
models using different settings, especially camera distance from the objects of interest. In
contrast, Anami et al. [73] compared classification models developed using the Multilayer
Back Propagation Neural Network (BPNN), the Support Vector Machine (SVM), and k-NN
to classify five levels of adulteration in bulk paddy grain. The latter model was developed
using the combination of color and texture parameters extracted from the images. The
BPNN model was identified as the best model to classify the rice adulteration level at an
average of 93.31%. However, it required a high number of input data (40 principal com-
ponent coefficients) compared to the present study, which used only nine easily derived
morpho-colorimetric inputs to obtain a comparable accuracy. Therefore, this study demon-
strates the importance of selecting the appropriate inputs, classifiers, training algorithms,
and hyperparameters to optimize the classification accuracy, which may help avoid under-
and over-fitting and mitigate the high computational requirements.

The default data division of 70% for training and 30% for testing was used in the
study as they represented a sufficient number of samples in each category. This method
uses independent sets of samples for each stage and evaluates the overall accuracy by
including all samples. A similar data division to develop ANN models was used in
previous studies [35,59,74]. Besides, several retraining attempts were conducted to assess
the consistency of the results, obtaining similar results in every attempt. Furthermore, the
deployment using new data further validates the accuracy and performance of the model.

4.4. Deployment of the Classification Machine Learning Model

One of the challenges of supporting practical application in a different controlled
environment is the high sensitivity to lighting conditions and camera settings, contributing
to high misclassification when testing on a new data set obtained under different conditions.
Therefore, Model 2 was developed using the new data sets obtained from Lightbox 2 to
evaluate the deployment accuracy of the initial Model 1. The high deployment accuracy
showed that the developed model based on adimensional morphological parameters is
robust and reliable. Unlike the existing classification models, the ANN model developed
in this study included a comprehensive and complex range of commercial rice samples
as targets, including white, brown, black, and wild rice. Therefore, the model appears to
exhibit robustness in classifying the different commercial rice grains available globally in
the market.

The advantage of using dimensionless parameters is that the user is allowed to capture
images without strict settings. The demonstrated method is independent of the type of
camera and the camera’s distance from the object. Moreover, the classification model was
developed using two lightbox systems, increasing model generalizability and adaptability
to new data.

The work in this study is highly significant to the rice industry as the extracted
morpho-colorimetric parameters were associated with consumer perceptions of raw [6–9]
and cooked rice [6,10,11] quality. Therefore, these parameters could predict consumer
perceptions of rice associated with the appearance quality traits for rice types. Further-
more, the automatic extraction of features and ANN modelling will help the industry to
certify rice types and prevent adulteration [75]; furthermore, the ANN modelling based on
feature extraction as inputs could also be used to target consumer perception and quality
parameters as it has been performed for other food and beverage products [57,59,76].

This grain-by-grain scale approach proposed for quality assurance may avoid manual
analysis and destructive assessment and save time compared to traditional descriptive
sensory analysis with trained panelists. The effort of utilizing a smartphone camera to
capture the images paired with a semi-automated CV algorithm could accelerate this
development, making it cost-effective, user-friendly, rapid, and convenient. Moreover,
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since the smartphone is portable, it can also support on-site assessment instead of using
specialized equipment in the laboratory.

5. Conclusions

This study showed the development of a cost-effective and rapid method to classify
commercial rice samples obtained from a smartphone camera. It was achieved by integrat-
ing CV algorithms to extract morpho-colorimetric parameters and ML to classify 15 types
of commercial rice grains. High classification accuracies were obtained based on ML
models developed using the dimensionless parameters as inputs captured from different
lightboxes, which increases model generalization. Further studies are required to link these
easily obtained parameters with other quality traits and compositional parameters of rice
grains that are important for the industry. Moreover, the methodologies proposed in this
study can be applied by the industry to develop a smartphone application integrated with
cloud-based computing to automatically assess consumer perception associated with rice
quality traits and in real-time. The latter is achieved by acquiring consumer sensory percep-
tions through images of rice and cooked rice. This can benefit the industry in monitoring
rice quality conveniently along the rice supply chains as well as at the consumer end.
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