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SUMMARY
Recent technological advances in multi-omics and bioinformatics provide an opportunity to develop preci-
sion health assessments, which require big data and relevant bioinformatic methods. Here we collect
multi-omics data from 4,277 individuals. We calculate the correlations between pairwise features from
cross-sectional data and then generate 11 biological functional modules (BFMs) in males and 12 BFMs in fe-
males using a community detection algorithm. Using the features in the BFM associated with cardiometa-
bolic health, carotid plaques can be predicted accurately in an independent dataset. We developed a model
by comparing individual data with the health baseline in BFMs to assess health status (BFM-ash). Then we
apply themodel to chronic patients andmodify the BFM-ashmodel to assess the effects of consuming grape
seed extract as a dietary supplement. Finally, anomalous BFMs are identified for each subject. Our BFMs and
BFM-ash model have huge prospects for application in precision health assessment.
INTRODUCTION

Systems medicine is a global and holistic approach to under-

standing the basis of human health and disease.1 To achieve

this understanding, it is thought that multi-omics profiling should

be combined with clinical measurements in an interdisciplinary

approach to integrate the data. Currently, medicine is devel-

oping toward predictive, preventive, personalized, and partici-

patory approaches because of the development of systems

biology and digital technology.1 Unlike reactive healthcare, pre-

ventive medicine could reduce healthcare costs and improve

health.2 In recent years, advanced technologies, such as high-

throughput sequencing andmass spectrometry, have drastically

decreased the costs of measuring biological data. Accordingly,

multiple studies have begun to utilize multi-omics profiling to

investigate health and disease issues.3–7 Compared with tradi-

tional studies, investigations based on multi-omics data could

be used to unravel biological problems such as genetic and envi-
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ronmental determinants, which could improve health assess-

ments and promote mechanistic discoveries.8–11

In recent years, multi-omics profiling has been increasingly

used in disease research. Multi-dimensional data have been

extensively used to understand basic biological principles and

processes and uncover causative factors.3,12,13 Two studies of

type 2 diabetes (T2D) used longitudinal multi-omics data; one

focused on prediabetes and identified that the measurements

changed over time and in response to perturbations,4 and the

other focused on individuals at risk of T2D and found more

than 67 clinically actionable health discoveries.5 A study system-

atically explored functional dysbiosis of the gut microbiome dur-

ing active inflammatory bowel disease by following 132 subjects

using multi-omics of the gut microbial ecosystem.14 However,

most studies have so far focused on diseases, and few have

leveraged omics technologies to research healthy people or

those in very early stages of disease. Price et al.6 identified

many correlation networks between multi-omics features based
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C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:niechao@genomics.cn
https://doi.org/10.1016/j.xcrm.2022.100847
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2022.100847&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article
ll

OPEN ACCESS
on 108 subjects and then constructed a community structure us-

ing the Girvan and Newman (GN) algorithm, one of the commu-

nity detection methods.15,16 Using the same strategy, Shomor-

ony et al.17 assessed data for 1,253 individuals to construct

correlationmoduleswith the Louvain algorithm, another commu-

nity detection method18 and reported potential biomarkers for

cardiometabolic health and gut microbiome health. These types

of investigations are critical for developing preventive medicine;

however, larger sample sizes and more multi-omics data are

required to precisely evaluate the interconnections among fea-

tures. The methodology required to harness the findings associ-

ated with multi-omics data to assess individual health status is

lacking and urgently needed.

In this study, we collected multi-omics profiling data. We

investigated the correlations of pairwise features from inter-

omics data and identified dozens of biological functional mod-

ules (BFMs) by the community detection method. We developed

a method to assess individual health status using functional

modules. The effects of dietary intervention were precisely as-

sessed by thesemodules. The correlations andmodules provide

a theoretical basis for future studies to improve our understand-

ing of health and disease.

RESULTS

Project design and summary of multi-omics data
This study aimed to develop methods for analyzing and harness-

ing multi-omics data to evaluate the health status of individuals.

The study was carried out in five stages. Multi-omics data were

first collected from a large cohort of participants. Then pairwise

inter-omics correlations were calculated, and BFMs were identi-

fied with a community detection algorithm. A method utilizing

BFMs to assess health status (BFM-ash) was developed, and

two applications were presented, using the BFMs and the

BFM-ash method (Figure 1A).

Our study included 4,277 participants (age range, 20–70

years; 51% males, 49% females) and 1,240 measurements

derived from multi-omics data (Figure 1B; Table S1). Briefly, for

each participant, blood was collected and used for whole-

genome sequencing (WGS), immune repertoire sequencing

(IR-seq), and targeted metabolomics profiling (including amino

acids, microelements, vitamins, and hormones). Urine and blood

samples were used for clinical laboratory tests (labs). Stool sam-

ples were collected and used for gut metagenomics sequencing

(metagenomics). Facial skin measurement (FSM), electrocardi-

ography (ECG), physical fitness assessment (PFA), and body

composition analysis (BCA) were conducted, and psychological

questionnaires and lifestyle questionnaires were completed. The

three sequencing datasets, includingWGS, IR-seq, andmetage-

nomics, were processed by relevant tools to generate features.

Single-nucleotide polymorphisms (SNPs) were identified from

WGS. Then, polygenic risk scores (PRSs) for 405 diseases and

quantitative traits were calculated based on SNPs reported in

previous studies (Table S1) that were selected from the National

Human Genome Research Institute (NHGRI) catalog of genome-

wide association studies (GWASs).19 For IR-seq, which captures

the large T cell receptor b (TRB) repertoire, raw data were

analyzed by IMonitor20 to calculate four diversity indices,
2 Cell Reports Medicine 3, 100847, December 20, 2022
including clone and gene levels, and then 34 disease scores

(for which the frequencies of disease-associated TRB clones

were found in the sample) were calculated according to three

manually curated databases: VDJdb,21 TBAdb,22 and McPAS-

TCR.23 78 species and 518 gut microbial modules (GMMs)

were identified from the metagenomics data. More details are

presented in the STAR Methods.

Mass correlations in males and females were generated
from multi-omics data
We found that many features significantly differed between male

and female participants (Figure S1). At least 25% of the features

were significantly different (padj < 0.001), except in the PRS (Fig-

ure 1C). More than 90% of features in the BCA were significantly

different, but no gender difference was found for 99%of the PRS

features (Figure 1C). Thus, the results highlight the importance of

stratification by sex for further analysis. Next, for each dataset

stratified by sex, we investigated the inter-omics correlations

of pairwise features from two data sections. For each pairwise

feature, the data were normalized and processed together, as

shown in our detailed workflow (Figure S2A; STAR Methods).

The original data types of features, including continuous vari-

ables and three discrete variables, could be changed based on

the count of zero or categories. According to the variable types,

linear regression or one of the different types of logistic regres-

sion was used to calculate age-adjusted correlations of pairwise

features based on 1,000 resampled samples with 501 iterations

(Figure S2B; STAR Methods).

To improve accuracy, we only used highly significant correla-

tions (padj < 0.001) for further analyses. The correlations created

an inter-omics network (Figures 1D, S3, and S4A). The male

network comprised 1,189 nodes and 4,905 edges, demon-

strating a fairly strong connection between sections (Figure S3A).

There were strong associations between BCA and the other nine

sections, with the proportion of significant correlations ranging

from 7.8%–35% (Figure 1E). A large number of significant corre-

lations (n = 2,632, 0.8%) was found between the PRS and meta-

genomics and between the PRS and psychology (n = 381, 6.3%)

(Figure 1E). It has been reported that some gut bacterial species

are enriched in many diseases,4,14,24,25 and some diseases have

psychological symptoms.26 The female correlation network

showed dense connections between sections (Figures S3B and

S4A). Like the male network, there were strong associations be-

tween BCA and other sections, and the largest number of signif-

icant correlations (n = 1945, 0.59%) was found between the PRS

and metagenomics (Figure S4B). However, there were some dif-

ferences. For example, more correlations (105, 39%) were found

between BCA and FSM, and no correlation was observed be-

tween BCA and hormones in the female network (Figure S4B).

Some of these correlations have been documented previously

in the literature. For example, vitamin E is positively correlated

with total cholesterol, low-density lipoprotein (LDL), and triglyc-

erides (Figure S5A; Tables S2 and S3), which have been reported

to be associated with themetabolism of vitamin E.27 Taurine was

positively correlated with platelet distribution width in the blood

(Figure S5A), consistent with reports that taurine is related

to the aggregation and stability of platelets.28,29 Smoking condi-

tions and the frequency of smoking were positively correlated



Figure 1. Project design, sex differences, and inter-omics correlations of pairwise features from two sections of a large cohort

(A) Project design: HE dataset and healthy examination dataset.

(B) Schematic of the data collected in the study. Fourteen sections of data were collected for each sample.

(C) Feature comparison between males and females for each section. A random sampling of 1,000 individuals was used to compare each feature (analysis of

covariance [ANCOVA] test, age as the covariate). padj, adjusted p value; ns, non-significant. *padj < 0.05, **padj < 0.01, ***padj < 0.001.

(D) Top 1,000 correlations of pairwise features from two sections. A random sampling of 1,000 individuals was used to calculate the correlations for each pairwise

feature by linear or logistic regression with age as a covariate. This resampling and calculation step was repeated 501 times, and the median value was taken as

the final result. The orange line represents a positive correlation significant at padj < 0.001, and the blue line represents a negative correlation.

(E) The number of significant correlations (padj < 0.001) between data sections. The percentages shown are the proportion of significant correlations of all possible

pairwise correlations between data sections.
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Figure 2. Networks of all BFMs in males

(A) All nodes and edges of BFMs inmales. BFMswere constructed by the Louvainmethod, and overlapping nodeswere added. The network in the circle is a BFM,

and the top three features ranked by node centrality are listed below the network. The size of the node represents the centrality. The black line represents a

positive correlation between paired features, and the gray line represents a negative correlation.

(B) Statistics in each section for each BFM. The boxplot shows the centralities of nodes (left y axis), and the red line shows the number of nodes (right y axis) in

each section.

(C) Network and annotation for BFM 7 in males.
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with blood cadmium levels in males (Figure S5A), consistent with

reports of cadmium accumulation in the bodies of smokers.30

Some features were measured in labs and also existed in quan-

titative PRS, and we found positive correlations between them

(Figure S5B), such as platelet distribution width and alkaline

phosphatase. Other significant correlations (with small p values)

reported in the literature are shown in Tables S2 and S3. We also

found so far undocumented correlations (Figure S5C); for

instance, phosphoethanolamine in plasma positively correlated

with the platelet count. Multiple correlations between genetic

traits and gut microbiota were found in the star networks,

including known and novel correlations (Figure S5D). To validate

the correlations found in our study, an independent dataset from

a health examination (HE) project (STAR Methods) involving

older people (mean age, 58) was used. The dataset contained

data from 86 men, and 121 measurements overlapped with the

features in our study. The correlations between any pairwise fea-

tures of 121measurements were calculated by the samemethod

(Figure S2) and were compared with those in our cohort (Fig-

ure S7B). The measurements covered five of the abovemen-

tioned correlations (Figures S5A–S5C), yielding consistent re-

sults (Figure S5E). We also examined the top 20 correlations

ranked by the padj values in our study, and 19 were significantly

correlated (p < 0.05) in the HE dataset (Table S4). These results
4 Cell Reports Medicine 3, 100847, December 20, 2022
demonstrated that the correlations in our study were reliable.

Given that the HE dataset involved elderly participants, we found

specific correlations (Figure S7B; Table S5), such as progester-

one and zinc, that were not found in younger populations.

Multi-omics functional module identification from the
correlation networks
In the large correlation network that consisted of features, the

densely connected features in the network may be related with

similar biological function and were considered BFMs. To iden-

tify the BFMs, the Louvain community detection algorithm,18

well recognized for its good performance,31–33 was used to clus-

ter the nodes in the first step. Then the node initially assigned to a

BFM was assigned to another BFM when the node was strongly

connectedwith nodes in another BFM.More details are provided

in the STAR Methods. Finally, 11 BFMs in males and 12 BFMs in

females with at least four vertices were identified from the cross-

sectional inter-omics networks, with 13 nodes in males and 10

nodes in females appearing simultaneously in multiple BFMs

(Figures 2A and S6A; Tables S2, S3, S6, and S7). Eigenvector

centrality, a measure that reflects a node’s influence in the

network, was calculated for every node in the BFMs. The

BFMs were dominated by features from multiple sections with

different centralities (Figures 2B and S6B). The BFMs in males
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comprised 109 nodes and 279 edges on average; the largest

BFM contained 201 nodes and 522 edges, and the smallest

BFM contained 15 nodes and 21 edges (Tables S2 and S6). A

comparison of the BFMs between males and females indicated

distinct compositions of nodes and edges in most BFMs, which

implied significant difference between males and females

(Table S8). To check the accuracy of the BFMs, another commu-

nity detection algorithm, GN,15,16 was used to identify BFMs.

Most BFMs identified by the two methods showed a relatively

high similarity (Table S9).

BFM annotation of biological functions
Four different annotation methods were used to explore the

functions of the BFMs: interpretation of the top 10% of nodes

ranked by centrality, GMMs annotated by Kyoto Encyclopedia

of Genes and Genomes (KEGG) analysis, bacterial species an-

notated by MicrobiomeAnalyst,34 and metabolic pathway anal-

ysis by MetaboAnalyst.35 Based on our findings, the BFMs

were inferred to have different biological functions (Tables S10

and S11). For example, in males, BFM 0 was characterized by

cardiometabolic health features, such as triglycerides, high-den-

sity lipoprotein (HDL) cholesterol, and LDL; BFM 1 contained

multiple features related to hemoglobin; BFM 3 comprised

mainly psychological features and disease traits; BFM 4 was

associated with platelets; and BFM 6 contained multiple fea-

tures associated with inflammation. Most features in BFM 7

were associated with immunity, including immune cells and dis-

ease scores calculated from the IR-seq data (Figure 2C). The

node with the highest centrality in BFM 7 was the percentage

of lymphocytes from laboratory measurements (Table S6). Fea-

tures associated with immune cells comprised three sections

of data: laboratory data (the percentage of lymphocytes and

neutrophils), IR-seq data (the summary of immune clone num-

ber), and WGS data (the PRSs of myeloid white cell counts,

lymphocyte percentage of leukocytes, neutrophil percentage

of leukocytes, and granulocyte counts). These features were

strongly correlated with each other, creating the framework of

the network (Figure 2C). Eight infectious disease scores calcu-

lated from IR-seq, such as cytomegalovirus, influenza, hepatitis

C virus, and tuberculosis, and total pathogen scores existed in

BFM 7 (Figure 2C), which reflects the history of infection or the

ability to resist pathogens by T cell receptors (TCRs). Analysis

using MicrobiomeAnalyst34 on bacterial species revealed a sig-

nificant enrichment in function associated with granulocytes

and leukocytes (Figure 2C). Thus, we concluded that BFM 7 in

males was associated with immunity. the BFMs in females

were annotated using the same strategy (Figure S6; Table S11).

BFM 0 was interpreted as cardiometabolic health and
validated with an independent dataset
Two recent multi-omics studies reported markers of cardiometa-

bolic disease,6,17 and 10 of these were identified in our data. We

found that all were included in BFM 0 in males, 8 were enriched

in BFM 0 in females (Figures 3A and S7A), and both BFMs were

interpreted as cardiometabolic health in our study. Within the

BFMs, the features most connected to previously reported cardi-

ometabolic markers36–41 were identified, including 10 features in

males and 9 in females (Figures 3A and S7A), except for the num-
ber of pores on the side face (PSF). The clustering of cardiometa-

bolic markers in BFM 0 indicates that the biological network has

inherent structures that community detection algorithms can

identify. Next, to validate the interpreted function of BFM 0 in

males,weusedan independentHEdataset to evaluate it. This da-

taset contained data from 41menwith carotid plaques (CPs) that

reflect the risk of cardiovascular diseases (CVDs)42,43 and data

from 45 men without CPs. A total of 118 measurements overlap-

ped with features in our data, including 60 features in BFM 0 in

males that we interpreted as cardiometabolic health and 58 fea-

tures in other BFMs. Compared with the 58 features in other

BFMs, more features in BFM 0 (n = 60) were found to be different

between groups with and without CPs (Figure 3B), indicating that

the features in BFM0 are associatedwith cardiometabolic health.

The top 5 significantly different features were monocyte count,

serine, threonine, number of neutrophils, and isoleucine (Fig-

ure 3C). Then we used the 60 features found in BFM 0 to classify

the status of CPs using the random forest model. The area under

the receiver operating characteristic (ROC) curve (AUC) of 10-fold

cross-validationwas 76.4% (Figure 3D). As a control, the other 58

features that were excluded in BFM 0 were used to classify the

status of CPs by the samemethod, and the AUCwas 62.4% (Fig-

ure 3E). The AUC of CP prediction could be increased if more fea-

tures in BFM 0 were involved. Overall, our results demonstrate

that it is plausible to interpret BFM0 inmales as a cardiometabolic

health-associated module.

BFM-ash method development to precisely assess
health status
It is widely acknowledged that the health status of body systems,

such as immunity and cardiovascular function, differs for each

person. To precisely evaluate the body systems, we developed

amethod called BFM-ash, based on BFMs (Figure 4A). The large

network of BFM (109 nodes on average) was divided into multi-

ple smaller, tightly connected networks, called sub-BFMs, by the

Louvain method. First, we defined two healthy baselines: a

benchmark group (the absolute healthy baseline) and peer con-

trols (which represent the relatively healthy baseline). The former

was defined by selecting young and healthy individuals from our

cohort based on strict criteria (STAR Methods), including 450

males and 507 females. The latter was defined by selecting 20

healthy individuals from our cohort (outside the benchmark

group), and the individuals had the same age and sex with the

sample required for assessment. The healthy reference range

differed for different ages, especially the elderly. Accordingly,

age- and sex-matched controls were required. The principle of

this method was to compare two distributions of similarity dis-

tances: one is between the sample required for assessment

and the benchmark group, which shows the distance from the

absolute healthy baseline; the other is between the controls

and the benchmark group. The two distributions can be

compared to determine whether BFM is anomalous. BFM-ash

mainly includes three steps (Figure 4A). The first step involves

identification of anomalous BFMs. Specifically, for each BFM,

Euclidean distances weighted by feature centrality were calcu-

lated based on the features between the test sample and each

sex-matched sample in the benchmark group as well as be-

tween each healthy control and each sex-matched sample in
Cell Reports Medicine 3, 100847, December 20, 2022 5



Figure 3. CP prediction and measurement prediction using the features from the BFMs

(A) Sub-network in BFM 0 in males. The blue nodes are markers associated with cardiometabolic disease from two published studies, and the red nodes are the

features closely connected with the markers (each red node connected at least six blue nodes).

(B and C) A total of 118 features were compared between the CP group and the control group (two-sided t test). Sixty features were in BFM 0 of males, and other

features were distributed in other BFMs. The counts of features with significant differences between the two groups in BFM 0 (B) and the five discrepant features

(with p < 0.01) are shown.

(D) ROC curve showing the classification performance of a classifier for the CP and control groups by 5-repeated 10-fold cross-validation using 60 features

included in BFM 0 of males.

(E) ROC curve showing the classification performance of a classifier for the CP and control groups by 5-repeated 10-fold cross-validation using 58 features

excluded in BFM 0 of males. The AUC and 95% confidence interval (CI) are listed.
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the benchmark group; then, for each BFM, the risk score and

p value were calculated in terms of the similarity distances.

Finally, an anomalous BFMwas identified when the distributions

of the two types of similarity distances were significantly

different. In the second step, for the identified anomalous

BFM,we looked into the sub-BFMs and identified the anomalous

sub-BFMs according to the analysis procedure conducted in the

first step. For the third step, a feature score that reflects the de-

gree of normality (%0) or anomaly (>0) was calculated for each

feature in the anomalous sub-BFM and was then displayed in

the network. More details are provided in the STAR Methods.

Theoretically, the composition of the benchmark group did not

affect the anomalous BFM identification in BFM-ash. To test

this, we randomly selected individuals as the benchmark group

and then identified the consistent anomalous BFMs for two sam-

ples (Figures 4B and S8).

BFM application for assessing the health status of
patients
In our cohort, eight women with complete data available had a

previous history of gastroenteritis (n = 2), gastritis (n = 4), and

tuberculosis (n = 2). We used the BFM-ash method to assess

these patients. For the two patients with gastroenteritis, three

anomalous BFMs, including BFM 0, 4, and 7, were found; the
6 Cell Reports Medicine 3, 100847, December 20, 2022
similarity distances between the patients and benchmark group

were significantly larger than between the controls and bench-

mark group (Figure 4B), which implies that the biological func-

tions of the three BFMs became worse than the controls. After

comparing the similarity distances of the sub-BFMs in the three

BFMs, one anomalous sub-BFM in BFM 0 and multiple anoma-

lous sub-BFMs in BFM 4 and 7 were identified (Figure S9). Given

that the scores of most nodes in these anomalous sub-BFMs

were larger than 0 (Figures 4C, S10, and S11A), these nodes

were regarded as anomalous features. For BFM 4, 22 of 26

GMMs in sub-BFM 1 were regarded as anomalous features in

at least one patient, and 13 GMMs were anomalous in both pa-

tients (Figure 4C). According to KEGG database analysis, nine of

the 13 GMMs were enriched in saccharide, polyol, and lipid

transport system (Figure 4C). For BFM 7, all 13 GMMs in sub-

BFM 0 were anomalous in at least one patient, and the function

of all GMMs was associated with environmental information

processing (Figure S11B). Overall, the anomalous sub-BFMs

identified in gastroenteritis mainly contained gut microbiota,

consistent with previous reports showing that the intestinal mi-

crobiome is altered in gastroenteritis.44,45 On the other hand,

the feature score was independent of BFMs/sub-BFMs, and

only represented the degree of normality or anomaly for a single

feature. Thus, it could be used for evaluation of the BFM-ash



Figure 4. Assessment of gastroenteritis and tuberculosis by the BFM-ash method

(A) The pipeline of the BFM-ash method. The similarity distance was calculated by Euclidean distance weighted by feature centrality between the test or controls

and the samples of the benchmark group. A feature score for each feature was calculated for the anomalous BFMs/sub-BFMs.

(B) Comparison of the similarity distance in each BFM for the two patients with gastroenteritis (one-tailed t test).

(C) The network of anomalous sub-BFM 1 in BFM 4 for two patients with gastroenteritis. The left panel shows the distance comparison for sub-BFM 1. The right

panel shows the annotation summary of the GMMs from the KEGG database. The nodes in the network were classified into four groups: feature score > 0 in both

patients (red), feature score > 0 in one patient (pink), feature score% 0 in both patients (blue), and no data (gray). Node size represents the average feature score in

the two patients. The line width represents the regression coefficient. The solid line represents positive correlation. A dashed line represents negative correlation.

(D) The distribution of feature scores for all features in the two patients with gastroenteritis.

(E) The number of features in BFMs and sub-BFMs. The left number of ‘‘/’’ is the number of features with a feature score of more than 0.8, and the right number of

‘‘/’’ is the number of all features in the sample. The text marked in red represents anomalous BFMs or sub-BFMs.

(F) Comparison of the similarity distance in each BFM for the two patients with tuberculosis (one-tailed t test).
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method. In the two patients with gastroenteritis, 18% of features

had a feature score larger than 0.8 (Figure 4D), which showed

these features’ high degree of anomaly. We then found that

most features were enriched in anomalous BFMs/sub-BFMs

(Figure 4E). However, some BFMs/sub-BFMs, such as BFM 9

in S1, sub-BFM 2/sub-BFM 4 of BFM 4, and sub-BFM 6 of

BFM 7 in S2 (Figure 4E), were detected as anomalies by the

BFM-ash method even though there were few or even none of

these features (Figure 4E), which suggest the superiority of com-

bined features in BFMs/sub-BFMs compared with a single

feature for disease evaluation.

Next, the four patients with gastritis were analyzed using the

same method. BFM 0 and BFM 4 were also anomalous in two

of the four patients (Figure S12), similar to the results for patients

with gastroenteritis, which may be due to the strong correlation

between the two diseases. Although BFM 9 was anomalous in

three patients, there was no significant difference in all sub-

BFMs (Figure S13). For patients with tuberculosis, BFM 3 and

sub-BFM 0 of BFM 3 were identified as anomalous (Figures 5F
and S14A). In sub-BFM 0, two features related to platelets and

lymphocyte count were identified as anomalous features (feature

score > 0) in both patients (Figure S14B). Platelets have been re-

ported to regulate inflammation and destruction in tubercu-

losis.46 Our results demonstrate that the BFM-ash method can

be used to evaluate individualized health status and identify

common characteristics between multiple patients.

BFM application for assessment of dietary intervention
It remains unclear how to precisely evaluate the effects of inter-

ventions such as sports, vaccines, and diet. Our BFM-ash

method based on multi-omics data could be used to evaluate

the effects on human bodies. We designed a dietary intervention

project (Figure 5A) where four participants (age, 36–50) in the

case group took grape seed extract (GSE) (95% polyphenols)

as a daily supplement, and three participants (age, 42–45) in

the control group took starch as a placebo for 3 months. Blood,

urine, and stool samples were collected at three different time

points, includingpre-intervention (T0), 3monthsafter intervention
Cell Reports Medicine 3, 100847, December 20, 2022 7



Figure 5. Systematic assessment of GSE intervention using BFMs

(A) Schematic of GSE intervention.

(B and C) The similarity distance between each participant and each sample of the benchmark group at three time points in three BFMs for the case group (B) and

control group (C). The arrow indicates the direction of distance change comparedwith T0. The dot represents themedian similarity distance. Each line represents

a participant, and the p value was obtained by paired Mann-Whitney test. ***p < 1e�3.

(D) Comparison between the case and control groups by change of similarity distance in four BFMs. For each participant (each boxplot), the change of similarity

distance was defined as the distance at T1 or T2 minus that at T0. The p value was obtained by t test based on each participant’s median value.

(E) The networks of sub-BFM 3 and 5 in BFM 7 at T1. Node size represents the absolute value of the intervention score; the nodes were classified into three

groups: intervention score < 0 (red), intervention score > 0 (blue), and no data (gray). The line width represents the regression coefficient. The solid line represents

positive correlation. The dashed line represents negative correlation.

(F) Summary of 21 GMM (intervention score < 0) annotations from the KEGG database.
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(T1), and 3months after termination of intervention (T2). A total of

737multi-omics features weremeasured for each individual. The

data were processed by the modified BFM-ash method (STAR

Methods). Compared with T0, the similarity distances of all sam-

ples in the case group decreased significantly at T1 in three

BFMs, including BFM 6, 7, and 10. At T2, although the distances

in most samples in the three BFMs recovered, a significant

decrease was found in 66.7% of the samples compared with

T0 (Figures 5BandS15). In contrast, in the control group, the sim-

ilarity distances of most samples increased at T1 and T2

compared with T0 in most BFMs (Figures 5C and S16). The dis-

tances increased in some BFMs might be induced by climate
8 Cell Reports Medicine 3, 100847, December 20, 2022
change across different seasons. That’s because the bacteria

associated with seasonal change and the vitamin as one of

seasonally fluctuating factors to modulate gut microbiome47

have been found in these BFMs of control group (Figure S17).

Next, by comparing the change in similarity distances between

the case and control groups, we found that BFM 6, 7, 9, and 10

were significantly different at T1, and the differences remained

in BFM 6, 7, and 9 at T2 (Figures 5D and S18). Given that

decreased distances in BFM imply a health status closer to the

benchmark group, our results illustrated that body functions

related to anomalous BFMs were improved after 3 months of

diet intervention, and the effect was still observed in most
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samples 3 months after intervention termination. Then, sub-

BFMs in the four BFMs were compared between the case and

control groups, and five anomalous sub-BFMs were identified

(Figure S19). Instead of the feature score, we defined an interven-

tion score for each feature toquantify thedegree of changeby the

intervention (STARMethods). The intervention positively affected

the feature when the intervention score was less than zero. The

intervention scores of most nodes in the four BFMs were less

than zero, especially for the anomalous sub-BFMs, andmost fea-

tures were from the metagenomics section of our data

(Figures S20, S21, S22, and S23). We then examined anomalous

sub-BFM3 and 5 in BFM7, and 23 of 27 features had intervention

scores less than zero, including 5-methyltetrahydrofolate and 21

GMMs (Figure 5E). Three of the 21 GMMs with high scores were

related to phosphate and amino acid transport systems, and the

function of 16GMMswas attributed to environmental information

processing (Figure 5F). At T2, 16 of the 23 features had scores

less than zero (Figure S24D). In the anomalous sub-BFM 0 and

5 in BFM 6, the intervention scores were less than zero in 10 of

11 features at T1, three of them were related to aromatic degra-

dation, and the feature with the highest score was related to the

two-component regulatory system of environmental information

processing (Figure S24AC). At T2, nine of the 10 features in both

sub-BFMs had intervention scores less than zero (Figure S24B).

The effect of GSE intervention on the human body is primarily

mediated by the gut microbiome, which enables the body to

maintain abetter and healthier status. TheGSEproanthocyanidin

has been reported to affect metabolic health by modulating the

gut microbiota in rats.48

DISCUSSION

In this study, we used 4,277 samples with multi-omics data to

construct dozens of BFMs. We sought to annotate the biological

functions of the modules and finally used the BFMs to assess in-

dividual health status. First, our data generated significant cross-

sectional correlations between males and females separately

because many features were different between sexes. The large

sample size enabled us to divide the data intomales and females.

Age was another confounding factor affecting the features and

was used as a covariate for correlation analysis. Because all par-

ticipantscame fromonecityandhad thesameancestry, ancestral

origin was not considered. In two recentmulti-omics studies, sex,

age, and/or ancestry were considered for correlation calcula-

tion.6,17 Given the intricacy and heterogeneity of the multi-omics

data, we developed a detailed workflow to process the data,

and multiple regression methods were used, such as linear

regression, logistic regression, ordinal logistic regression, and

multinomial logistic regression. To compare the results, the

same sample size (n = 1,000) was used, and 501 iterations were

conducted for regression analysis. These steps ensured that

robust and reliable correlations were generated. We identified

some correlations that have not been reported in the literature.

We used an independent dataset from the HE dataset to validate

partial correlations.Although thedatasetwassmall andcontained

limited measurements, most significantly different correlations

were validated in this dataset. The correlations identified in this

study could provide novel insights for future studies.
We used community detection algorithms to construct the

BFMs, given that biological networks are similar to social net-

works. We used the Louvain18 algorithm to construct the initial

modules, and then the nodes were allowed to belong to multiple

BFMs. Except for biological annotation of the BFMs by several

tools, the independent dataset from the HE dataset also proved

that BFM 0 of males was related to cardiometabolic health

because the features in BFM 0 could predict the participants

with or without CP, a marker for CVDs.42,43 Thus, the BFMs

created by this method were reliable and meaningful. We also

used the GN15,16 algorithm to reconstruct the BFMs and

compared the results. The average similarity of edges in the

BFMs was approximately 37%, suggesting that many features

were included in discrepant BFMs. The discrepancy may be

attributed to the different algorithms used. It is widely acknowl-

edged that the Louvain algorithm uses a heuristic method for

maximizing modularity by dividing a node or network into any

number of communities, whereas the GN algorithm first uses

the betweenness centrality to construct networks and then

uses the modularity to correct the networks. The two methods

detect disjoint communities in which every node belongs to

one community; however, biological features may be involved

in multiple biological functions. Thus, algorithms that detect

overlapping communities are more suitable for biological multi-

omics data. Based on previous studies,31,49 we selected the

top three most commonly used tools that detect overlapping

communities, CFinder,50 Svinet,51 and SLPA,52 to validate our

multi-omics data. However, the modules detected by the three

methods exhibited significant heterogeneity (data not shown).

In brief, the sizes of the BFMs detected by CFinder depended

on the parameter k, and the BFM corresponding to a large k rep-

resenting more reliable results contained few features. For the

results by Svinet, one-third of the features could not be assigned

to any BFMs, andmore than half of the features in the BFMswere

overlapping nodes. The BFMs detected by SLPA contained few

overlapping nodes, and the sizes of the BFMs were largely un-

even. The test results demonstrated that current overlapping

community detection methods are not suitable for multi-omics

biological data, possibly because of the complexity of overlap-

ping functions in biological data and the difference between bio-

logical data and human activity data. In the present study, we did

not choose currently available algorithms to detect overlapping

communities. Instead, we only identified the overlapping nodes

between the BFMs according to the connections between no-

des. However, biological data should be processed by a suitable

algorithm that considers the biological characteristics. Related

algorithms are likely to be developed in the next few years with

increasing availability of multi-omics data.

We developed the BFM-ash method based on BFMs to

assess the detailed health status of individuals. In this respect,

BFMs representing certain biological functions were used as a

basic unit for evaluation. The BFMs were derived from multi-

omics data integration, which provided more information than

traditional single-omics data. Although no single feature was

abnormal based on clinical criteria, the combined features in

BFM could identify the anomaly. Thus, the BFM-ash method

has more advantages than traditional methods. For the BFM-

ash method, it was necessary to construct a benchmark group
Cell Reports Medicine 3, 100847, December 20, 2022 9
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consisting of young and healthy participants as the absolute

healthy baseline and select healthy peer controls as the relative

healthy baseline. For sample assessment, two baseline refer-

ences were used for accuracy, given that the healthy reference

range for features was different at different ages. The two base-

line references were crucial in BFM-ash, and several issues

should be noted. First, to assess samples from different races

or ancestry, a new benchmark group and peer controls from

the same background would be better. Second, because some

features, such as the gut microbiota, might be affected by the

seasons,53–55 a benchmark group consisting of samples from

different seasons would be better for accurate assessment.

Third, for the BFM-ash method, it was assumed that a shorter

distance to the health baseline indicated a better health status.

That is reasonable for the general population because the

benchmark group consisted of young and healthy individuals.

However, very few people, such as athletes, have an exceptional

health status, but some features may be outside of the normal

reference range of the benchmark group, generating a longer

distance to the baseline and inaccurate assessment. These ap-

plications using the BFM-ash method depend on whether all

BFMs have been fully annotated to biological functions. Howev-

er, because of the limitations of the current study, some BFMs or

sub-BFMs were not fully annotated. It is highly conceivable that

all BFMs will be annotated comprehensively in future studies.

The GSE intervention substantiated the performance of the

modified BFM-ash method. Accordingly, BFM-ash could be

used to evaluate other interventions, such as sports and drugs.

DuringGSE intervention, we tried to evaluate the benefits of inter-

vention by comparing the similarity distances at different time

points. Decreased distance in several BFMs and sub-BFMs sug-

gested that improvements in health status were associated with

modulations in the gut microbiome. In the control group, the dis-

tances of most samples gradually increased at T1 and T2

compared with T0. Bacterial species diversity was comparable

at T0, T1, andT2 in thecontrol group (data not shown). These find-

ings may be attributed to the fact that some gut bacteria and

GMMs are affected by climate change in different seasons. T0

was in June (summer), and T2 was in December (winter), so the

humidity and temperature are different during these two seasons.

Multiple studieshave reported that gutmicrobial communitycom-

positions exhibit significant differences in different seasons,53–55

andsomebacteriawere found inourBFMs. Vitamins also contrib-

uted to the change in distance in the control group, and one study

reported that it is one of the seasonally fluctuating factors to

modulate thegutmicrobiome.47 The control groupwasnecessary

in thiscase toobtainmore reliable findings.However,weconcede

that the limited samples in the control group increased the uncer-

tainty, and so more samples would be much better.

In systems medicine, multi-omics data are necessary for

comprehensively evaluating individual health status, which could

unravel biological problems.11 Thus, more dimensional data,

such as genome, transcriptome, epi-genome, proteome, meta-

genome, immunome, metabolome, and phenotype date, are

required. However, because our cohort had a large sample

size, factors such as sample storage/transportation and cost

had to be considered. To facilitate future applications, data

that are easily detectable and easily obtained, such as routine
10 Cell Reports Medicine 3, 100847, December 20, 2022
HEs, were analyzed in the present study, whereas transcriptom-

ics, epi-genomics, and proteomics data were excluded. In this

study, we included TCR repertoire sequencing and gut metage-

nomic sequencing. It is widely acknowledged that the TCR

repertoire forms a dynamic adaptive immune system to protect

the body, whereas the dynamic gut microbiota regulates the

health of the human body, which are the core data for health

assessment. Diverse datasets are indispensable because co-

horts vary in age, sex, race, environment, lifestyle, dietary habits,

etc. With more dimensional and diverse datasets, it will be

possible to create an overall reference of the health state. Last,

individual longitudinal data for large cohorts are valuable for de-

tecting disease early. As more datasets become available and

studies are performed, more systematic methods will be devel-

oped to precisely monitor individual health status and promote

the development of precision medicine.

Limitations of the study
The limitations of this study are as follows. First, although our

cohort included multi-omics data, some important data, such

as transcriptomics, epi-genomics, and proteomics data, are ab-

sent. More dimensional data could create an overall reference of

the health state. For the disease assessment and GSE interven-

tion, the sample size was too small, which restricted us to finding

more common results and could increase the uncertainty of the

results. Second, although an overlapping community detection

algorithm for identifying BFMs is more suitable for biological

data because each biological feature may be involved in multiple

biological functions, we found that the currently available algo-

rithms to detect overlapping communities generate very

confusing results. Instead, we only identified overlapping nodes

according to the connections between nodes. We believe that

suitable algorithms for biological data are likely to be developed

with increasing availability of multi-omics data in the future.

Third, although we developed 23 BFMs, currently some BFMs

have not been fully annotated to biological functions because

of the limitations of associated published studies, which may

restrict us from a good biological interpretation of anomalous

BFMs identified by the BFM-ash method. It is highly conceivable

that all BFMs will be annotated to the biological functions in

future studies. Fourth, with the BFM-ash method, we assumed

that a shorter distance to the healthy baseline indicated a better

health status. However, a few people, such as athletes, may

have an exceptional health status but a long distance to the

health baseline, which may result in inaccurate assessment.
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d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All Chinese volunteers were recruited for the multi-omic study during a health examination from March to May in 2017. Blood, urine

and stool samples were collected from the participants. Body composition analysis, an electrocardiogram test and a facial skin

assessment were performed for each individual. The participants underwent National Fitness Assessment testing for the physical

fitness assessment and completed psychological questionnaires and lifestyle questionnaires with inhouse apps on smart phones.

The blood samples were used for whole-genome sequencing (WGS), immune repertoire sequencing (IR-Seq) and targeted metab-

olomic profiling (including amino acids, microelements, vitamins and hormones). Both the blood and urine samples were used for

clinical laboratory tests. The stool samples were used for gut metagenomic sequencing. Finally, we collected data for 4,277 individ-

uals (2085 male; 2,192 female) in this study, and the data were classified into 14 sections. Partial individuals were missing data in one

or several sections. The studywas approved by the Institutional ReviewBoards (IRBs) at BGI-Shenzhen, and all participants provided

written informed consent at enrollment.

METHOD DETAILS

Whole-genome sequencing and polygenic risk score prediction
The buffy coat was isolated from the whole blood sample, and then DNA was extracted with the HiPure Blood DNA Mini Kit 553

(Magen, Cat. no. D3111) following the manufacturer’s protocol. Two hundred nanograms of DNA for each sample was used for

library preparation for WGS and was then processed for single-end 100 bp sequencing using the BGISEQ-500 platform.56

Each sample was sequenced to an average of 30x for the whole genome. We removed the reads with low-quality bases (base

quality<5) and adapter sequences. The clean reads were aligned to the human genome reference GRCh38/hg38 by BWA

(v0.7.15)57 with default parameters. PCR duplicates were marked with Picardtools (v1.62), and variants were called with the

Genome Analysis Toolkit (GATK, v3.8),58 including BaseRecalibrator and HaplotypeCaller. The variants were required to meet

the following criteria: (i) genotyping rate >99%; (ii) Hardy-Weinberg equilibrium (HWE) p > 10�5; and (iii) minor allele frequencies

(MAFs) > 1%. The samples were required to meet the following criteria: (i) variant calling rate >98%; (ii) heterozygosity < three

standard deviations; and (ii) exclusion of related individuals by pairwise identity by descent (IBD, Pi-hat < 0.125) calculated by

PLINK (v1.07).59

The National HumanGenomeResearch Institute (NHGRI) Catalog of genome-wide association studies (GWAS) provides a curated

collection of human GWAS comprising thousands of genetic traits.19 To calculate the polygenic risk score (PRS) more accurately, we

applied several screening procedures to extract the GWAS used in this study: (i) we kept studies with a sample size of at least 5,000

individuals; (ii) provided that multiple studies investigated the same trait with different descriptions, we grouped studies by experi-

mental factor ontology (EFO) IDs and then used the EFO ID as a surrogate for each trait; (iii) in the event that the variant was examined

inmultiancestry populations for the same trait, we preferentially kept odds ratios/beta coefficients fromAsian ancestry studies; (iv) for

quantitative traits, to avoid errors related to different studies using inconsistent units for beta coefficients, we selected the publication

with the largest sample size; and (v) we used only single nucleotide polymorphisms (SNPs) for all traits, and we excluded the traits

associated with three or fewer SNPs. Finally, we retained 405 genetic traits for further analysis, including 144 disease traits and 261

quantitative traits (Table S1). After that, we calculated the PRS for each trait. One SNP was retained in the linkage disequilibrium

block.We added the number of risk alleles, weighted by respective log odds ratios or beta-coefficients, across each individual, which

is listed as follows:

PRS =
Xn

i

bi � ci

Where a given trait includes n loci, ci represents the copies of the risk allele and birepresents the beta coefficient or odds ratio in the ith

locus.

Gut metagenomic sequencing
Fecal samples were collected with theMGIEasy Kit and processed to extract DNA using theMetaHIT protocol.24 Five hundred nano-

grams of DNA were used for library preparation and then sequenced for single-end 100 bp using the BGISEQ-500 platform.60 After

removing low-quality reads,60 all other high-quality reads were aligned against hg38 with SOAP (v2.22, identity>=0.9)61 to delete the
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human host DNA. Then, the retained reads were aligned to the integrated gene catalog (IGC)62 using SOAP (v2.22, identity>=0.95).

The relative abundance of genes for each sample was calculated24 as follows:

gi =

xi
LiP
j

�
xi
Li

�
where gi is the relative abundance of gene i, xi is the number of mapped reads in gene i, and Li is the gene length.

The relative abundance of microbial species was calculated using MetaPhlAn263 for all samples. Additionally, Kyoto Encyclopedia

of Genes and Genomes (KEGG) orthology (KO) profiles were obtained according to KO-associated genes with relative abundance.62

The KO module, which we termed the gut metabolic module (GMM), was calculated by the sum of the relative abundances of asso-

ciated KOs according to the KEGG database (release 84.0, genes from animals or plants were excluded). Finally, the profile of spe-

cies frequencies and the profile of GMM frequencies that presentedmore than 500 samples were used for furthermulti-omic analysis.

Immune repertoire sequencing
The gDNA was extracted from peripheral blood (PB). For each sample, 1.2 mg gDNA was used to capture the TCR b repertoire using

the multi-plex PCR method that we previously described.64–66 The PCR products were sequenced for single-end 100 bp using the

BGISEQ-500 platform. The raw readswere processed by our developed tool IMonitor (v1.4.0)20 with default parameters. In brief, low-

quality reads were filtered out; the variable (V), diversity (D) and joining (J) genes were assigned to clean reads according to the align-

ment between the reads and reference sequences from the IMGT database; after correcting sequencing errors, complementarity-

determining region 3 (CDR3) was identified, and putative amino acid sequences of CDR3 were translated. Then, the sequences

derived from cross-sample pollution were filtered out using our previously described method.65 Finally, 1 million productive TCR

b sequences were selected at random from each sample for further analysis. Four indices were calculated, including VJ gene usage

diversity (VJ gene pairing profile calculated by Shannon index), immune clone number (the unique number of amino acid CDR3 se-

quences), immune clone diversity (frequencies of amino acid CDR3 sequences calculated by Shannon index) and immune clone

evenness (frequencies of amino acid CDR3 sequences calculated by Pielou’s evenness index).

Most diseases can induce an immune response, and disease-associated memory T cells might exist in the body for a very long

time. Accordingly, the immune repertoire profile encodes the disease history. Currently, three manually curated databases collect

the disease-associated TCRs derived from published studies: VDJdb,21 McPAS-TCR23 and TBAdb.22 Therefore, we used these da-

tabases to annotate our immune repertoire data. We obtained 108 diseases, including infectious diseases, autoimmune diseases,

cancers, and allergies, from the three databases. We developed an in-house program to calculate the disease score for each sample

using the three databases. The disease score was defined as the proportion of disease-associated CDR3s from the databases found

in the sample. One Levenshtein distance between the CDR3s in the sample and the CDR3s in the databases was allowed. For each

sample, only the top 5000 CDR3s ranked by frequency were used to calculate the disease score.

Quantitative measurement of blood metabolites
The methods for measuring blood metabolites, including amino acids, hormones, vitamins, microelements and heavy metals, were

described in detail by Jie et al.67 Briefly, we detected the amino acids from 40 mL plasma using ultra-high pressure liquid chroma-

tography (UHPLC) coupled to an AB Sciex Qtrap 5,500 mass spectrometer (MS) (AB Sciex, US) with an electrospray ionization

(ESI) source; to measure hormones, 250 mL plasma was used and detected via UHPLC-MS (AB Sciex Qtrap 5,500) with an atmo-

spheric pressure chemical ionization (APCI) source; water-soluble vitamins were detected from 200 mL plasma via UPLC-MS (Waters

Xevo TQ-S Triple Quad, Waters, US) with an ESI source; and fat-soluble vitamins were detected from 250 mL plasma via UPLC-MS

(AB Sciex Qtrap 4,500, AB Sciex, US) with an APCI source; we detected the microelements and heavy metals in 200 mL whole blood

via an Agilent 7,700x ICP-MS (Agilent Technologies, Japan) equippedwith an octupole reaction system (ORS). UPLC-MSwas used in

positive ion mode. All measured items are shown in Table S1.

Clinical laboratory tests
The blood and urine samples underwent clinical laboratory tests at a licensed physical examination center. The test included basic

blood tests, such as the proportion of all types of cells, and blood biochemistry tests associated with lipids, liver function, renal func-

tion, fasting blood glucose, etc. Additionally, the participants underwent the 14C-urea breath test to measure Helicobacter pylori

infection. Finally, 44 measurements were included (Table S1).

Body composition analysis with inbody
Quantitativemeasurement of body composition was performedwith Inbody (TANITAMC-980MA, China), and a total of 17 itemswere

measured for each individual (Table S1).

Physical fitness assessment
Physical fitness was assessed using the revised 2003 version of the National Physical Fitness Standards for Adults, including vital

capacity, step index, grip strength test by hand, timed push-up test (male), timed sit-up test (female), vertical jump test, sit-and-reach
e3 Cell Reports Medicine 3, 100847, December 20, 2022
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test, reaction time and eye-closed and single-legged standing. All fitness indicators are derived from rawmeasurements following the

guidelines.

Facial skin assessment with VISIA
Facial skin features were assessed by the VISIA Complexion Analysis System (Canfield Imaging Systems, Fairfield, NJ, USA). The

volunteer’s face without makeup was placed in fixed support, and the eyes were closed during the photographing process. Images

were taken in two different views (front and left lateral 37�) to obtain the skin characteristic indicators from both the subjects’ cheeks

and forehead skin. The indicators included spots, pores, wrinkles, texture, UV spots, porphyrins, brown spots and red areas.

Lifestyle questionnaire
The collection of lifestyle data mainly depended on the subjects filling out the questionnaire. The content of the questionnaire re-

flected the subjects’ lifestyle habits. The participants completed a self-administered questionnaire about personal habits (including

17 multiple-choice questions, Table S1) through an in-house app on their mobile phone.

Psychological questionnaire
The participants were required to complete two questionnaires to assess psychological symptoms and resilience, including the

Symptom Checklist 90 (SCL-90)68 and the Connor-Davidson Resilience Scale (CD-RISC).69 The SCL-90 consists of a series of 90

items of symptoms, and each item is rated with regard to severity ranging from 0 (none) to 4 (extreme). The SCL-90 includes ten

symptom dimensions, including somatization, obsessive-compulsive, interpersonal sensitivity, depression, anxiety, hostility, phobic

anxiety, paranoid ideation, psychoticism and others such as sleep and diet. Each dimension generated a score, and then the sum of

all the scores created a total score of psychological symptoms (Table S1). For the CD-RISC, 25 items are included, and each item is

rated on a 5-point scale ranging from 0 to 4, with a higher score reflecting greater resilience. There are three dimensions, which are

related to optimism, strength and toughness. There are scores in each dimension and a total score of psychological resilience

(Table S1).

Samples detected for carotid plaques
Another healthy examination (HE) dataset was obtained consisting of older people (mean age: 58) that underwent B-mode ultrasound

imaging andmagnetic resonance imaging (MRI) to detect whether they have carotid plaques (CPs). In this study, the participants with

CP detected by one of the two methods were used as the case group, and the participants without CP were used as the control

group. We used the data of 41 men in the case group and 45 men in the control group, as these participants also performed other

tests, including clinical laboratory tests, bloodmetabolites (amino acids, microelements, vitamins and hormones), body composition

analysis and electrocardiogram tests.

Dietary intervention samples
Seven Chinese volunteers in the city of Shenzhen took part in the dietary intervention project in 2017. All participants were relatively

healthy (no disease was diagnosed). Four volunteers (females, who were 36, 43, 45 and 50 years old, respectively) in the case group

took grape seed extract (GSE) (95% polyphenols, GNC HERBAL PLUS) as a daily supplement, while three volunteers (females, who

were 42, 43 and 45 years old, respectively) in the control group took starch as a placebo for three months. Each volunteer took

8.34 mg orally once a day. Blood, urine and stool samples were collected from three timepoints, including pre-intervention (T0,

June 2017), three months post-intervention (T1, September 2017) and three months after intervention termination (T2, December

2017). The seven volunteers were required to complete the physical fitness assessment at the three time points. The collected sam-

ples were used for clinical laboratory tests, blood metabolites (amino acids, microelements, vitamins and hormones), IR-Seq and

metagenomics. Finally, 737 features from multi-omics were measured for each individual.

Data pre-processing and correlation network construction
The multi-omic data were manually checked for errors by data type and normal ranges. The data were separated by gender, and all

data analyses in this study were conducted separately for males and females. Next, to calculate the correlations of pairwise inter-

omic features from two data sections, paired features were processed together to redefine variable types (Figure S2A). First,

each variable was assigned to an initial variable type according to its source. The types included continuous variables, binary discrete

variables, multiple ordered discrete variables and multiple unordered discrete variables. Then, for continuous variables, we removed

outliers outside three standard deviations away from the mean; we deleted the paired features if the values with zero were in more

than 50%of subjects or if the number of subjects was less than 150; then, if the valueswith zerowere in less than 20%of subjects, the

values were converted to a normal distribution using inverse normal rank transformation, or the variable type was assigned to binary

or multiple categorical fields. For discrete variables, we deleted the paired features if the number of subjects was less than 150; cat-

egories with fewer than 20 subjects were deleted; then, the new variable type could be determined according to the number of cat-

egories. Finally, a feature initially assigned to a continuous variable could be reassigned to a discrete variable, andmultiple ordered or

unordered variables could be reassigned to a binary discrete variable.
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To detect the associations of pairwise inter-omic features from two data sections, multiple regressionmodels were used according

to the redefined variable types (Figure S2B). Specifically, if there was a continuous variable (as an independent variable), linear

regression (R package: stats-3.4.1, lm) was prior to choosing; then if there was a binary discrete variable (as independent variable),

logistic regression (R package: stats-3.4.1, glm) was used; then if one of two multiple discrete variables were the ordered type (as an

independent variable), ordinal logistic regression (OLR, R package: MASS-7.3.51.3, polr) was used; last, if both variables were mul-

tiple unordered discrete types, multinomial logistic regression (MLR, R package: nnet-7.3.12, multinom) was used. For both OLR and

MLR, we performed the analyses twice with the independent and dependent variables exchanged each time, and we used the me-

dian beta coefficients as the final result frommultiple beta coefficients and p values. Age as a covariate for all types of regression. All

participants were Chinese people from the same ancestry and country, so ancestry was not used as a covariate. Lifestyle was an

independent source of data in our study. To make it more comparable between the associations, we randomly resampled 1,000 in-

dividuals with replacements for each paired variable to calculate the association and conducted 501 iterations. The median beta co-

efficient of 501 results and the corresponding p value were used as the final result. All p values were then corrected with the false

discovery rate (FDR).

Generating biological function modules
To identify densely connected modules, we performed community detection with the Louvain algorithm (python-louvain, v0.13)

through greedy and heuristic optimization of modularity locally.18 The associations of pairwise inter-omic features with

padj < 0.001 were used as input and the negative logarithm with base 10 of padj values (� log10) was used as the weight. Briefly,

in the beginning, a single node was regarded as a community; then, nodes were iteratively merged to increase the gain in modularity.

Finally, if themodularity did not increase, the clusters were regarded as the final communities. However, nodes are placed in only one

community using the Louvain method, which is inconsistent with the fact that a feature could be involved in multiple biological func-

tions. Thus, we assigned the nodes to a new community if the node degree was more than 30% of the mean degree of the top 3

central nodes in the new community. The node degree was defined as the number of associations with the node. We called the final

community the BFM. Then, we computed nodes’ weighted eigenvector centrality using NetworkX (v2.4).70 The higher centrality re-

flects that it is more likely to be the hub of the BFM. All BFM networks in the study were visualized in Cytoscape.71

Additionally, the BFMs were generated by another community detection method called the Girvan and Newman (GN) algo-

rithm.15,16 We used the same data as Louvain used as input, including the associations (padj < 0.001) and the weight ( � log
padj

10 Þ.
The codes of the GN method used are provided in a previously published paper.6

BFM annotation
To interpret the biological functions of each BFM, we performed enrichment analysis on microbiome KO modules using a

hypergeometric distribution test, and bacterial species were annotated by Taxon Set Enrichment Analysis (TSEA) of the online

MicrobiomeAnalyst.34 Features of metabolites were annotated by metabolic pathway analysis by online MetaboAnalyst (v4.0).35

Additionally, the top 10% of nodes (features) ranked by centrality were focused on functions. Finally, we tried to summarize the func-

tion of BFM.

Carotid plaque classification
Features were divided into cardiometabolic sets (in BFM 0) and non-cardiometabolic sets (in other BFM 0). Each feature was scaled

by Z-score and then transformed to a normal distribution by Box-Cox. A random forest model (R3.4.1, randomForest 4.6–12 pack-

age) was used to classify individuals with CP or without CP. Age was added as one feature. Then, we performed 5 repeated 10-fold

cross-validation to evaluate the classification accuracy for each set. The performance of this classifier was evaluated by AUC

(R 3.4.1, pROC package).

Health status precise assessment by BFM-ash method
First, two steps had to be completed before using the BFM-ash method, listed as follows:

(a) Constructing sub-BFMs: Given that each BFM contains too many features, the BFMs were divided into multiple sub-BFMs by

the Louvain method (python-louvain, v0.13) for a more precise assessment of health status. For each BFM, the significant as-

sociations and negative logarithm of padj (� log
padj

10 , as weight) were used as input.

(b) Constructing the benchmark group: A young and healthy group was selected from the cohort of 4,277 subjects. The subjects

had to meet the following criteria: (i) no self-reported disease; (ii) more than 80% of all features in clinical laboratory tests and

blood metabolites were in the normal reference range; and (iii) ages from 20 to 30 years old. Finally, we selected 450 men and

507 women as the benchmark group.

Next, we can use the BFM method to assess health status. It includes seven steps listed as follows:

1) Selecting peer controls: For a test sample, we first selected several (such as 10) gender- and age-matched and healthy sam-

ples as the controls from the cohort of 4,277 subjects.
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2) Scaling data: For each feature, the data were scaled with Z-scores. However, for features of metagenomic data, the logarithm

of the value was used.

3) Calculating BFM similarity distances: In each BFM, the distance between one sample i from test or control samples and one

sample j from the benchmark group was calculated using the average weighted Euclidean distance listed in Equation 1.

similarity distanceði; jÞ =
1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k = 1

ððxi;k � vj;kÞ �wkÞ2
s

k˛ ð1;mÞ (Equation 1)

Wherem is the feature count in BFM; xi;k is the value of feature k in sample i (test or control); vj;k is the value of feature k in sample j of

benchmark group; and wk is the centrality of feature (node) k in BFM.

4) Comparing BFM similarity distances and calculating the risk score: We set n samples in the benchmark group and q samples

in the control. The test sample obtained n distances, while the control samples obtained q*n distances. The two distance

distributions from the test and control samples were tested with a one-tailed Mann-Whitney test, and we identified signif-

icantly different BFMs. The risk score was calculated for each BFM and was defined as the mean of similarity distances.

5) Calculating sub-BFM similarity distances: For the significantly different BFMs, the sub-BFM distance was calculated accord-

ing to the features in the sub-BFM and Equation 1.

6) Comparing sub-BFM distances and calculating the risk score: As in step 4), we identified the significantly different sub-

BFMs.

7) Calculating node feature score: For the significantly different sub-BFMs, we calculated the feature score for each node using

the following Equation 2:

feature scoreði; kÞ =
��xi;k�� � 1

q

Xq
l = 1

��cl;k

�� (Equation 2)

Where q is the number of control samples; xi;k is the value of feature k in test sample i; cl;k is the value of feature k in sample j of the

control.

8) Network visualization: The network was visualized in Cytoscape.71

Dietary intervention assessment by the modified BFM-ash method
For the GSE intervention in our study, one subject had three timepoint samples and a control group, and we mainly paid attention to

the change after the intervention. We modified the BFM-ash method in two aspects:

1) We did not compare the similarity distances directly; instead, we focused on the change in similarity distances. It was defined

as the similarity distance in T1 or T2 minus that in T0.

Change of similarity distance = distance
�
iðkÞ; j

�
� distance

�
iðT0Þ; j

�
(Equation 3)

where distanceði; jÞ is the above Equation 1; iðT0Þ and iðkÞ (k ={T1,T2}) are the time points k and T0 for individual i; sample j is from the

benchmark group.

2) We did not calculate the feature score for each node; instead, we defined an intervention score for each node and listed the

formula (4).

DcaseðkÞ =
1

N1

XN1
i = 1

���xi;k�� � ���xð0Þi;k

����
DcontrolðkÞ =
1

N2

XN2
l = 1

���cl;k

�� � ���cð0Þ
l;k

����
intervention scoreðkÞ = DcaseðkÞ � DcontrolðkÞ (Equation 4)

WhereN1 is the number of samples in the case group;N2 is the number of samples in the control group; xi;k is the value of feature k in

sample i (at T1 or T2) in the case group; cl;k is the value of feature k in sample j (at T1 or T2) of the control; and x
ð0Þ
i;k and c

ð0Þ
i;k are the

samples at T0 in the case and control groups, respectively.
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QUANTIFICATION AND STATISTICAL ANALYSIS

To compare the features between males and females, for every feature, we randomly sampled 1,000 individuals with replacement

from each gender, and performed a one-way ANCOVA with age as the covariate. Gender was as the independent variable and

each feature was as the dependent variable. For analysis of HE dataset, we performed a two-sided t-test to compare each feature

between case and control. A two-sided t-test was used in Figure 5D. In BFM-ash method, the two distribution of similarity distances

were compared with one-sided t-test. Other analyses in the study were done by Mann-Whitney U-test. The p values were corrected

for multiple testing using Benjamini & Hochberg. All statistical analysis was performed using R packages. The statistical tests and

report significant difference p values were showed in the figure legends.
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