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Abstract b-Hairpins in enzyme, a kind of special protein with catalytic functions, contain many

binding sites which are essential for the functions of enzyme. With the increasing number of

observed enzyme protein sequences, it is of especial importance to use bioinformatics techniques

to quickly and accurately identify the b-hairpin in enzyme protein for further advanced annotation

of structure and function of enzyme. In this work, the proposed method was trained and tested on a

non-redundant enzyme b-hairpin database containing 2818 b-hairpins and 1098 non-b-hairpins.
With 5-fold cross-validation on the training dataset, the overall accuracy of 90.08% and Matthew’s

correlation coefficient (Mcc) of 0.74 were obtained, while on the independent test dataset, the over-

all accuracy of 88.93% and Mcc of 0.76 were achieved. Furthermore, the method was validated on

845 b-hairpins with ligand binding sites. With 5-fold cross-validation on the training dataset and

independent test on the test dataset, the overall accuracies were 85.82% (Mcc of 0.71) and

84.78% (Mcc of 0.70), respectively. With an integration of mRMR feature selection and SVM algo-

rithm, a reasonable high accuracy was achieved, indicating the method to be an effective tool for the

further studies of b-hairpins in enzymes structure. Additionally, as a novelty for function prediction

of enzymes, b-hairpins with ligand binding sites were predicted. Based on this work, a web server

was constructed to predict b-hairpin motifs in enzymes (http://202.207.29.251:8080/).
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Super secondary structure is a building block of the tertiary
structure of protein, and this geometrical arrangement of the

local space structure was constructed by two or several sec-
ondary structure units that are connected by loop. In definition
of b-hairpin patterns, an adjacent anti-parallel b-strand con-

nects with another by one or more hydrogen bonds; otherwise,
the patterns were called non-b-hairpins (Kuhn et al., 2004).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sjbs.2016.11.014&domain=pdf
http://202.207.29.251:8080/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Because b-hairpin is a simple arrangement of the b-strand
and includes rich folding information, correctly identifying b-
hairpin will contribute to fold recognition and structure assem-

bly (Jenny et al., 1995; Wintjens et al., 1996). In recent decades,
varied studies of theoretical prediction on b-hairpin have been
developed. In 2002, the artificial neural network (ANN) was

employed to predict b-hairpins contained in 534 proteins with
a prediction accuracy of 47.7% (Cruz et al., 2002).

In 2004, an ANN algorithm was applied to identify local

hairpins and non-local diverging turns from 2209 proteins,
and an accuracy of 75.9% was obtained (Kuhn et al., 2004).
Then the support vector machine (SVM) was used to predict
b-hairpins in a database of 2880 proteins (EVA), and an accu-

racy of 79.2% (with a Mcc of 0.59) was achieved (Kumar et al.,
2005).

In 2008, based on composite vector, SVM was applied to

predict b-hairpins in ArchDB40 (including 3088 proteins)
and EVA database, the accuracies of cross-validation and
independent testing were 79.9% and 83.3%, and the corre-

sponding Mcc values were 0.59 and 0.67, respectively (Hu
and Li, 2008a). In 2010, a method of quadratic discriminant
(QD) with improved composite vector was developed to pre-

dict b-hairpins in ArchDB40 and EVA database (Hu et al.,
2010). With a 5-fold cross-validation and independent test,
the overall accuracies reached to 83.1% (with the Mcc values
of 0.59) and 80.7% (with the Mcc values of 0.61), respectively.

In 2013, Random Forest algorithm was applied to predicted b-
hairpin motifs in ArchDB40 dataset, based on 5-fold cross-
validation, and the overall accuracy was up to 83.3% (with

Matthew’s correlation coefficient of 0.59). Additionally, with
the same features and testing method, SVM algorithm was
used as a comparison with the Random Forest; however, the

prediction performance was not so well. (Jia et al., 2013). In
2015, based on the chemical shifts, an algorithm called quad-
ratic discriminant was developed to identify beta-hairpin

motifs, and the prediction results with sensitivity of 92%, the
specificity of 94%, and Mathew’s correlation coefficient of
0.85 were obtained (Feng and Kou, 2015).

Previous studies of b-hairpins prediction were based on all

kinds of proteins. However, b-hairpins in different kinds of
proteins have their particular properties, especially in enzymes
protein. There is no doubt that the processes of digestion,

absorption, respiration, motion and reproduction in organism
all belong to enzymatic reaction. Almost all of the chemical
reactions of metabolism in cell are catalysis of enzymes. Mean-

while, enzymes are also the critical important structure with
known drug targets. All functions of enzymes, including sig-
nals relay, transport and catalysis, rely on the other molecules
combined with enzymes, namely ligands. With binding ligands,

enzyme can perform and regulate its functions directly, stabi-
lize structure and lead to changes of conformation in order
to influence the microenvironment, and in turn to control

the protein functions indirectly. In enzymatic reactions, the
ligand conformation ally fit into the ligand binding sites of
the enzymes, which plays a critical role in controlling the spa-

tial arrangements and orientations of the substrates in the
active site. And the ligand specificities of enzymes are deter-
mined by these conformational restrictions. b-hairpin is simple

arrangement of the b-strand, and a cooperative interaction
between the two strands of the b-hairpin loop often plays
important role in ligand binding of enzyme, for example, diver-
gent b-hairpins in proximity of the active sites of ABH2 and
ABH3 are central for substrate specificities. Swapping hairpins
between the enzymes resulted in hybrid proteins resembling the
donor proteins (Lee et al., 2005). For another example,

remarkable binding ligands including FAD, ATP, NAD and
metal ions Zn2+, Ca2+, Mg2+, etc. are also contained in b-
hairpin of enzyme proteins. FAD, the coenzyme of oxidore-

ductase, is involved in several important metabolic reactions
of carbohydrate and lipid and amino acid. In tricarboxylic acid
cycle, when accepting protons and turning into FADH2, FAD

is oxidized as FAD+ in the respiratory chain (Stryer et al.,
2011). NAD is the coenzyme of dehydrogenase. When acting
on the CH-OH group of donor with NAD+ or NADP+ as
acceptor, it will result in the enzymic reaction of glycerophos-

pholipid metabolism (Edgar and Bell, 1978). Zn2+ acts as the
role of Lewis acid in pancreatic carboxypeptidase which
belongs to lyase, and the inductive effect of attracting electrons

makes the local substrate present positive electricity. Thus, it is
easy for OH� or H2O to nucleophilic attack with substrate,
and lead to the hydrolysis of substrate. So Zn2+ is important

for the biological process of protein hydrolysis (Fruton, 1999).
Because enzymes have their own properties and the b-hairpins
in enzymes often contain ligand binding sites, the prediction of

b-hairpins in enzyme protein would be more significant. In this
paper, an effort was made to achieve this purpose.

A total of 2818 b-hairpins and 1098 non-b-hairpins in
enzymes protein were obtained as research objects. Six

groups of features were extracted from the information of
original sequence and predicted secondary structure. After
the optimization of the original features by the criterion of

minimum redundancy maximum relevance (mRMR), 245
out of 906 original features were selected and input into
SVM for prediction. Experimental results show that the

selected features can achieve the best performance. Addition-
ally, our method was used to predict the 845 b-hairpins
containing ligand binding sites, and good results were

obtained.
2. Materials and methods

2.1. Materials

2.1.1. Enzyme b-hairpin database

As the classification of the structure of protein loops, ArchDB
database (http://sbi.imim.es/cgi-bin/archdb/loops.pl) was gen-

erated from proteins with known structure. The data were
derived from DSSP (Sander and Kabasch, 1983) and reorga-
nized by Oliva et al. (1997), Espadaler et al. (2004) and

Bonet et al. (2014). According to the regulation secondary
structures connected by loops, the super secondary structures
can be classified into five types: alpha-alpha, beta-beta link,

beta-beta hairpin, alpha-beta and beta-alpha. Among them,
beta-beta hairpin was taken as beta-hairpin and beta-beta link
as non-b-hairpin (Hu and Li, 2008a; Hu et al., 2010). ArchDB
database contained four sub-datasets: ArchDB_95,

ArchDB_40, ArchDB_EC and ArchDB_KI, which has been
previously used to predict b-hairpins. In this work, Arch-
DB_EC was selected, which contains protein chains with

known enzyme function and the structure resolution <3.0 Å,
among which arbitrary two sequences have a percentage iden-
tity about 75%. The non-redundant Enzyme b-hairpin data-

base was constructed as the following steps:

http://sbi.imim.es/cgi-bin/archdb/loops.pl


The b-hairpin motifs prediction from enzymes 1363
I. 1781 protein chains ‘PDB-ID’ were obtained from Arch-
DB_EC, among which each had more than one b-hairpin. II.
The structures of the 1781 protein chains were extracted from

PDB (http://www.rcsb.org/pdb/). III. By using BLAST soft-
ware (Tatusova and Madden, 1999) to filter the redundant
sequences from the 1781 protein, 1080 protein chains were

reserved, and the sequence identity between each two proteins
was not higher than 25%. According to international enzyme
classification, the 1080 protein chains belong to 7 types, and

the number of proteins in each type was as follows: 1. Oxidore-
ductase (200), 2. Transferase (266), 3. Hydrolase (331), 4. lyase
(76), 5. Isomerase (49), 6. Ligase (55), 7. The others (103)
(mutase, tyrosine kinase, etc.). (http://202.207.29.251:8080/)

IV. 2846 b-hairpins and 1186 non-b-hairpins were obtained
from the 1080 protein sequences. Among these b-hairpins,
861 motifs contained ligand binding sites.

A statistical analysis was made on the 2846 b-hairpins and
1186 non-b-hairpins. As shown in Fig. 1, the shortest and long-
est loop lengths for b-hairpins and non-b-hairpins were 1 and

32, respectively. About 97% of the original motifs have the
patterns with loop length of 2–12, and then this portion was
reserved as the research object. Overall, 2818 b-hairpins and

1098 non-b-hairpins were reserved, accounting for 99% and
92% of the original motifs, respectively. Within the reserved
2818 b-hairpins, 845 b-hairpins contain ligand binding sites,
which account for 98% of the original 861b-hairpins with

ligand binding sites.
Note: The abscissa represents different loop lengths and

ordinate represents the number of motifs with different loop

lengths. The dark and gray histograms represent the distribu-
tions of b-hairpins and non-b-hairpins, respectively.

2.1.2. Experimental enzyme b-hairpin database

To test the prediction ability of our approach, a dataset inde-
pendent from ArchDB_EC database was built and the pro-
cesses were as follows.

I. 89 proteins’ PDB-ID containing 306 chains with structure
resolution <3.0 Å were randomly selected from ENZYME
(http://enzyme.expasy.org/). II. The structures of the 306 pro-

tein chains were extracted from PDB database.III. BLAST
software was used to filter the redundant proteins, and 110
protein chains were kept at last, in which the sequence identity
of arbitrarily protein chain with another was below 25%. IV.

DSSP software was used to assign secondary structure to each
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Fig. 1 The distribution of the numbers
amino acid (Sander and Kabasch, 1983), where the DSSP
labels of ‘H’, ‘G’ and ‘I’ were converted as a-helix(H), ‘E’
and ‘B’ as b-strand(E), ‘T’, ‘S’ and ‘ ’(space) as coil(C). 525

ECE (b-strand coil b-strand) patterns were obtained by sec-
ondary structure assignment from DSSP. The number of pat-
terns with loop length of 2–12 was 448. V. PROMOTIF

software (Hutchinson and Thornton, 1996) was used to locate
b-hairpins in the 110 protein chains. Among the 448 patterns,
228 were assigned as b-hairpins by PROMOTIF; the rest 220

patterns were assigned as non-b-hairpins.

2.2. Methods

2.2.1. Feature extraction

The average pattern length of b-hairpins and non-b-hairpins
was 14.9 and 13.4, respectively. Following the guideline of pre-

vious studies (Hu and Li, 2008a), the pattern length with 15
amino acids residues was selected as the best fixed-length pat-
tern. For each b-hairpin and non-b-hairpin, the fixed-length

pattern was generated using the scheme described below: Set
loop as the center of the pattern; If length of pattern was less
than 15, we appended the residues flanking the peptide in the

primary sequence at both ends; If the value of loop length
was even, the loops of left-hand side keep one more amino acid
residue than those of right-hand side.

Referring to our group’s studies (Hu and Li, 2008a; Hu

et al., 2010), amino acid composition was an efficient parame-
ter for identifying b-hairpins. Also, amino acid dipeptide com-
position was also powerful feature for it can represent the

correlation between two adjacent amino acids. Moreover, pre-
dicted secondary structure and hydropathy characteristic clas-
sification for amino acids have been commonly utilized in the

identification of b-hairpins as parameters. These parameters
were beneficial to promote the prediction results. In order to
collect as much classify information as possible, six groups

of features to represent identification information were
extracted by two the following methods.
2.2.2. Original feature extraction based on the best fixed-length

patterns

Three groups of parameters were extracted here: amino acid
compositions of each position (21 * 15 = 315, 21 include 20
types amino acid and one terminal residues), hydropathy
13 14 15 16 17 18 19 20 21 22 23 24 25
p length

β-hairpin

Non-β-hairpin

of motifs with different loop lengths.

http://www.rcsb.org/pdb/
http://202.207.29.251:8080/
http://enzyme.expasy.org/


Table 1 The number of features of six groups after selection

by mRMR.

Feature Original number Selected number

1. AACP 315 74

2. HCP 105 30

3. PSSP 60 23

4. ACC 20 5

5. HC 6 4

6. AACD 400 109

Total 906 245

AACP: amino acid compositions of each position; HCP:

hydropathy characteristics for amino acid of each position; PSSP:

predicted secondary structures of each position; ACC: amino acid

composition; HC: hydropathy characteristics for amino acid;

AACD: amino acid contiguous dipeptides composition.
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characteristics for amino acid of each position (7 * 15 = 105)
and predicted secondary structures of each position
(4 * 15 = 60).

2.2.3. Original feature extraction based on the original patterns

Within this approach, another three groups of features were
extracted: amino acid composition (20), hydropathy character-

istics for amino acid (6) and amino acid contiguous dipeptides
composition (400).

Taken together, a total of 906 features were extracted for

prediction. Three features of predicted secondary structure
were from PSIPRED (McGuffin et al., 2000) (http://bioinf.
cs.ucl.ac.uk/psipred/), which predict secondary structure infor-

mation from original sequences. PSIPRED outputs E, H and
C represent b-strand, a-helix and coil, respectively. The 6 fea-
tures of hydropathy characteristics (Pánek et al., 2005) are

described in Fig. 2.

2.2.4. Feature optimization

Feature optimization is a key issue in pattern classification,

which significantly influences the prediction power of one clas-
sifier. Protein sequence information can be represented by mul-
tidimensional features, but there were many redundant or

irrelevant features, which may make it difficult to construct a
classifier. Hence, to improve the prediction performance, the
primary goals of feature optimization were to optimize predic-
tive characters, remove noise, reduce feature dimension and

avoid over fitting.
mRMR (Maximum Relevance Minimum Redundancy)

algorithm is a criterion of features optimization proposed by

Peng et al. (2005). The core idea of mRMR is to calculate
the relevance between features and classified targets and the
redundancy between different features by using mutual

information.
Suppose there are two random variables X and Y. Their

probability densities are P(x) and P(y) and joint probability
density is P(x, y). The mutual information value between X

and Y is calculated using the following equation:

Iðx; yÞ ¼
X
i

X
j

pðxi; yjÞ log
pðxi; yjÞ
pðxiÞpðyjÞ

ð1Þ

According to the maximum relevance criterion, the mutual
information value of feature xi with the target class C should

be maximum. The top m features that have the maximum
Fig. 2 Hydropathy characteristics for amino acids.
mutual information values with target classes usually are
selected as feature subset. The maximum relevance is defined

as follows:

maxðDÞ; D ¼ 1

jSj
X
xi2S

IðXi;CÞ ð2Þ

where D represents the relevance of the subset S with m
features.

However, there are still many redundant features in the

subset selected by maximum relevance criterion. When a fea-
ture highly depends on another and one was removed, the
class-discriminative power would not change obviously. There-

fore, it is necessary to take the minimum redundancy criterion
based on the maximum relevance of features into consider. The
minimum redundancy is defined as follows:

minðRÞ; R ¼ 1

jSj2
X

xi ;xj2S
IðXi;XjÞ ð3Þ

Combining the above two criteria, mRMR optimization
criterion has the following simple form:

maxðUÞ; U ¼ D� R ð4Þ
In our study, we used the criterion of mRMR to filter the

906 features extracted from b-hairpins and non-b-hairpins.
The value of U for each feature was obtained and sorted.

Depended on the abundant prediction results, the prediction
gets the best performance when reserving the top 245 features.
Table 1 shows the selected features as follows.

2.2.5. Support vector machine

As a machine learning algorithm proposed by Vapnik (1995,
1998), SVM has been proposed in many previous reports, such

as protein structure prediction (Hu and Li, 2008a, 2008b), pro-
tein sub-cellular localization (Chou and Cai, 2002) and classi-
fication of protein folding (Ding and Dubchak, 2001; Shi et al.,

2006; Liu et al., 2012). SVM algorithm searches for a linear
separating hyperplane with the maximal margin, and ensures
accuracy of classification as well. The minimal error classifica-
tion model generated by SVM through training dataset of def-

inite samples can guarantee the same performance for
independent testing dataset. To extend SVM from linear filed
to nonlinear, Vapnik (1995, 1998) map input features into a

higher dimensional Hilbert space by using kernel function

http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/


Table 2 The predictive results with different dimensions of features selected by mRMR.

Dimension Acc (%) Mcc SnH (%) SnNH (%) SpH (%) SpNH (%)

20 86.97 0.67 92.49 72.81 89.72 79.08

50 86.59 0.66 91.43 74.18 90.08 77.13

100 87.28 0.68 92.17 74.72 90.34 78.81

150 89.04 0.72 93.98 76.36 91.07 83.18

200 89.96 0.74 94.94 77.18 91.44 85.60

245 90.08 0.74 95.47 76.22 91.15 86.78

300 89.77 0.73 95.47 75.13 90.78 86.61

350 89.73 0.73 96.22 73.08 90.17 88.28

400 89.19 0.74 97.01 72.50 88.97 91.41

450 88.16 0.69 97.87 63.25 87.23 92.04

500 84.45 0.59 98.88 47.40 82.83 94.29

Fig. 3 Flowchart of the prediction process for 5-fold cross-validation and independent test.
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and then construct optimal hyperplane in this space. The cal-
culating formulation of optimal hyperplane is shown below:

hðxÞ ¼ sgn
Xk
j¼1

ajkðX;XiÞ þ b

 !
ð5Þ

where k(X, Xi) is called the kernel function. It generally has the
following four types: Liner;

kXiXj ¼ XT
i Xj ð6Þ

Polynomial; Radial basis function (RBF); Sigmoid.

KðXi;XjÞ ¼ XT
i Xj þ 1

� �d ð7Þ

KðXi;XjÞ ¼ exp �g Xi � Xj

�� ��2� �
ð8Þ

KðXi;XjÞ ¼ tanh XT
i Xj

� �þ c ð9Þ
SVM has been implemented as software by many research-

ers, such as libsvm, mysvm and svmlight. Here libsvm-2.93
package (http://www.Csie.ntu.edu.tw/cjlin/libsvm) was used
and RBF was chosen as the kernel function in calculation.

The top 245 features selected by mRMR were input into
SVM after scaling the values of features in training dataset,
and then an approach of gird-search was used to determine
the best value of C (8.0) and gamma (0.03125) parameters.
Finally a classifier was established. This classifier was used to

predict b-hairpins and non-b-hairpins in the testing dataset
and evaluate its ability of generalization.

2.2.6. Performance measures

This paper used standard measures adopted by previous stud-
ies of b-hairpins prediction to estimate the performance of our
method: accuracy of prediction (Acc), Matthews’ correlation

coefficient (Mcc), sensitivity of b-hairpin (SnH), sensitivity of
non-b-hairpin (SnNH), specificity of b-hairpin (SpH), and
specificity of non-b-hairpin (SpNH). Above values were calcu-

lated by the following:

Acc ¼ pþ r

pþ rþ oþ u
ð10Þ

Mcc ¼ p� r� o� uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ oÞðpþ uÞðrþ oÞðrþ oÞp ð11Þ

SnH ¼ p

pþ u
ð12Þ

SnNH ¼ r

rþ u
ð13Þ

http://www.Csie.ntu.edu.tw/cjlin/libsvm


Table 3 The prediction results for 5-fold cross-validation and independent test.

Acc (%) Mcc SnH (%) SnNH (%) SpH (%) SpNH (%)

Training dataset 90.08 0.74 95.47 76.22 91.15 86.78

Testing dataset 88.93 0.76 90.61 85.18 93.16 80.29

Hu’s (ArchDB) 83.1 0.59 91.3 64.3 85.4 76.4

Hu’s (EVA) 80.7 0.61 83.4 77.4 81.8 79.3

Table 4 The testing results of b-hairpins in the enzyme experimental sequence dataset.

Acc (%) Mcc SnH (%) SnNH (%) SpH (%) SpNH (%)

DSSP 85.93 0.74 79.15 97.57 98.24 73.18

PSIPRED 70.67 0.41 73.07 68.64 66.27 75.14
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SpH ¼ p

pþ o
ð14Þ

SpNH ¼ r

rþ u
ð15Þ

Here p and r denote the number of correctly predicted
sequence segments for b-hairpins and non-b-hairpins, respec-
tively. u donates the number of b-hairpins segments predicted
as non-b-hairpins, o donate the number of non-b-hairpins pre-
dicted as b-hairpins.

3. Results and discussion

3.1. Prediction for b-hairpins in enzymes

2818 b-hairpins and 1098 non-b-hairpins were randomly
divided into training dataset (1879 b-hairpins and 732 non-b-
hairpins) and testing dataset (939 b-hairpins and 366 non-b-
hairpins). mRMR criterion optimized 906 original features
from information of sequence and predicted secondary

structure.
The mRMR can obtain serial subsets comprising features

sorted by the values of U. When selecting the subsets with

top n features, the predictive results will be different. In this
paper, denoting the number of features, the value of n was
between 20 and 500. The top n features were inputted into
SVM for prediction. Finally, the predicted results by using 5-

fold cross-validation on training dataset were obtained. Some
of prediction performance was shown as follows (Table 2).

It can be seen that the predicted results were optimum when

the number of selected features was 245, and higher or lower
number of features will result in declining performance,
demonstrating the importance of feature optimization. So

these 245 optimal features were used as the final predictive
features.

The flowchart of the prediction process of 5-fold cross-
validation for training dataset and independent test for testing

dataset is shown in Fig. 3. Table 3 shows the prediction
performance.

Note: 906 original features from training dataset were

extracted, and then 245 features were selected by mRMR.
With 5-fold cross-validation, the optimum features were

input into SVM. A classifier was established with a training
model and through 5 times circulation, an output of 5-fold
cross-validation for training set was obtained. Then 906 origi-

nal features and optimized 245 features by mRMR from test-
ing dataset were obtained in the same way. Based on the
predictive model obtained from training set, 245 features from

testing dataset were input into the SVM classifier for indepen-
dent test. At last an output of testing set was obtained.

The predicted results show that on training dataset with 5-

fold cross-validation, the accuracy was 90.08%, Mcc was 0.74,
and the sensitivity and the specificity for b-hairpin were
95.47% and 91.15%, respectively. The prediction accuracy
and Mcc of independent test on testing dataset were 88.93%,

0.76, respectively. The sensitivity and the specificity for b-
hairpin were 90.61% and 93.16%, respectively.

As our method was developed to predict b-hairpins in

enzymes for the first time, there was no comparison with pre-
vious studies. But we listed the best results of Hu et al. (2010)
using QD method to predict b-hairpins without considering

the kinds of proteins, with a 5-fold cross-validation on
ArchDB_40 dataset, the accuracy was 83.1%, Mcc was 0.59,
on EVA dataset, the accuracy was 80.7%, and Mcc was
0.61. It can be obviously seen that the performances obtained

were better than those of Hu et al.

3.2. Prediction for b-hairpins on an enzyme experimental
sequence dataset

In order to test the predictive ability of our method in real con-
dition, the proposed method was tested on a dataset of b-
hairpins and non-b-hairpins in an enzyme experimental
sequences dataset built by our group. This dataset contains
228 b-hairpins and 220 non-b-hairpins assigned by DSSP

and PROMOTIF software, which was used as independent
testing dataset. The prediction model was constructed by using
the former 2818 b-hairpins and 1098 non-b-hairpins as training
dataset, and the model was then used to predict the b-hairpin
from the experimental sequences. The accuracy was 85.93%
with Mcc of 0.74, and the sensitivity and the specificity for
b-hairpin were 79.15% and 98.24%, respectively (Table 4).

Actually, it is known that many enzyme proteins only have
sequence information while with no observed secondary struc-
ture information, so we used predicted secondary structure to

get the ECE pattern. In this way, 430 ECE patterns were



Fig. 4 A testing sample [PDB: protein 1OID (A)] of the sequence level in the testing set.

Table 5 The predictive results of b-hairpins with ligand binding sites for 5-fold cross-validation and independent test.

Acc (%) Mcc SnH (%) SnNH (%) SpH (%) SpNH (%)

Training dataset 85.82 0.71 82.09 88.66 84.79 86.53

Testing dataset 84.78 0.70 85.39 86.05 81.13 89.34
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obtained by predicted secondary structure from PSIPRED
software, and the number of patterns with loop length of 2–

12 was 341. Among the 341 patterns, 172 were assigned as b-
hairpins by PROMOTIF software and the rest 169 patterns
were assigned as non-b-hairpins. These data were used as inde-

pendent testing dataset. The accuracy was 70.67% with Mcc of
0.41, and the sensitivity and the specificity for b-hairpin were
73.07% and 66.27%, respectively (Table 4). A sample (PDB:

protein 1OID (A)) was given to explain the two different test-
ing data (Fig. 4). It was obvious that the testing results of b-
hairpins assigned by DSSP were better than those of b-
hairpins assigned by PSIPRED. The reason behind this may

be that DSSP can give the secondary structure more accu-
rately, and this lays a foundation for the predictive process.
Consequently, the predicted accuracy of ECE patterns based

on better prediction of secondary structure was related to the
prediction accuracy of b-hairpins directly. If the performance
of the prediction of secondary structure can be improved,

the prediction of b-hairpins will gain better results.
Note: The first three rows are amino acid sequence,

observed secondary structure from DSSP and predicted sec-
ondary structure from PSIPRED, respectively. The other rows

are ECE pattern predicted by PSIPRED; symbols of b, #, $
and * denote the b-hairpin assigned by PROMOTIF, the exact
match, non-exact match, the correctly predicted b-hairpin and

non-b-hairpin by our method, respectively.

3.3. Prediction for b-hairpins in enzymes with ligand binding
sites

Furthermore, 245 features were input into SVM to predict b-
hairpins with ligand binding sites: 845 b-hairpins with ligand
binding sites and 1098 non-b-hairpins were randomly divided
into training dataset (563 b-hairpins and 732 non-b-hairpins)
and testing dataset (282 b-hairpins and 366 non-b-hairpins).
The predicted results on training dataset (5-fold cross-
validation) and testing dataset (independent test) are shown

in Table 5.
It was shown that with 5-fold cross-validation on training

dataset, the accuracy was 85.82% (Mcc of 0.71), and the sen-

sitivity and the specificity for b-hairpin were 82.09% and
84.79%, respectively. For testing dataset in an independent
test, the accuracy was 84.78% (Mcc of 0.70), and the sensitivity
and the specificity for b-hairpin were 85.39% and 81.13%,

respectively. Because the ligand binding site was crucial for
activation of enzymatic reaction, the work will have important
guiding significance for the experimental study of enzymes

structure and function.
So far, the researches on enzyme mostly focus on the clas-

sification between enzyme and the non-enzyme (Cristian et al.,

2008), and the identification of enzyme subclasses (Cai and
Chou, 2005; Shi and Hu, 2010). There have been no reports
about identification of the b-hairpin motifs in enzymes. In this
work, taking into account the specific properties of b-hairpins
in enzymes, we extracted the sequence information and pre-
dicted secondary structure information. Based the combined
features, we adopted SVM algorithm in the prediction of b-
hairpins in enzymes. The reasonable high prediction accuracy
indicates that our method can be a valid tool for the further
studies of b-hairpins in enzymes structure. What’s more, this

paper predicted b-hairpins with ligand binding sites, which
was also a novelty for function prediction of enzymes. During
the prediction process, we used mRMR criterion to filter fea-

tures for the large number of original features and much
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redundant information among the features that may bring
problem of over fitting.

4. Conclusion

In this work, we constructed a dataset for b-hairpin in enzyme
proteins from ArchDB_EC database, and b-hairpins contain-
ing ligand binding site also were given. We then constructed
a testing dataset from ENZYME database that was completely
irrelevant with ArchDB_EC database. For feature extraction,

we only used sequence information and predicted secondary
structure information. In case of over fitting, we used mRMR
to optimize feature and reduce dimension. Some better results

were obtained when feature optimization-based support vector
machine method was used to recognize the b-hairpin motifs in
enzymes.

In our future work, the comprehensive factors that facili-
tate the formation of b-hairpin motifs in enzymes are still need
to investigate and used for the further prediction. Optimal
dataset including more abundant experimental samples would

be conducted, and extracting more relative biological features
and using more valid algorithms would be our efforts to recog-
nize the b-hairpin motifs in enzymes.

Web server

For facilitating study for other researchers, we developed an

online web server. Based on our method, Apache and CGI-
Perl 5.14.2 script as the background software were used to pre-
dict b-hairpin Motifs online, which is available at http://202.

207.29.251:8080/. The predicted result was presented in table
form and denotes which segment are the b-hairpins or non-
b-hairpins.
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