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Abstract: Artificial intelligence (AI) has been gaining support in the field of in vitro fertilization (IVF).
Despite the promising existing data, AI cannot yet claim gold-standard status, which serves as the
rationale for this study. This systematic review and data synthesis aims to evaluate and report on
the predictive capabilities of AI-based prediction models regarding IVF outcome. The study has
been registered in PROSPERO (CRD42021242097). Following a systematic search of the literature in
Pubmed/Medline, Embase, and Cochrane Central Library, 18 studies were identified as eligible for
inclusion. Regarding live-birth, the Area Under the Curve (AUC) of the Summary Receiver Operating
Characteristics (SROC) was 0.905, while the partial AUC (pAUC) was 0.755. The Observed: Expected
ratio was 1.12 (95%CI: 0.26–2.37; 95%PI: 0.02–6.54). Regarding clinical pregnancy with fetal heartbeat,
the AUC of the SROC was 0.722, while the pAUC was 0.774. The O:E ratio was 0.77 (95%CI: 0.54–1.05;
95%PI: 0.21–1.62). According to this data synthesis, the majority of the AI-based prediction models are
successful in accurately predicting the IVF outcome regarding live birth, clinical pregnancy, clinical
pregnancy with fetal heartbeat, and ploidy status. This review attempted to compare between AI and
human prediction capabilities, and although studies do not allow for a meta-analysis, this systematic
review indicates that the AI-based prediction models perform rather similarly to the embryologists’
evaluations. While AI models appear marginally more effective, they still have some way to go before
they can claim to significantly surpass the clinical embryologists’ predictive competence.

Keywords: artificial intelligence; IVF; data-synthesis

1. Introduction

The reduction in fertility rates in recent years has led to increased implementation of
assisted reproduction techniques (ART) [1]. Outcomes of in vitro fertilization (IVF) depend
on multiple parameters and their respective intertwined associations. Undoubtedly, a
major determining factor for a successful IVF outcome is embryo quality [2]. A number of
national and international societies, associations, and committees on reproductive medicine
have proposed standardized criteria for embryo grading [3,4]. Despite the abundance of
proposed embryo grading and evaluation systems buttressed by thorough validation, a
consensus has not yet been reached, and research is ongoing to indicate an accurate and
universally applied method [5]. Although the majority of grading systems are detailed and
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employ a series of morphological parameters, the process of embryo evaluation involves
the interpretation and application of these criteria by the clinical embryologist and their
respective individualized evaluation [5,6].

Embryo selection mainly depends on developmental rate and morphological assess-
ment, employing light microscopy [3]. The conventional manual assessment of embryo
morphology has been observed to present a significant degree of inter- and intra-observer
variability. Additionally, the cut-off values regarding the morphological findings are
not clearly defined, which may increase inter-observer variation regarding embryo grad-
ing [7]. The anticipated lack of consistency in grading inevitably leads to inconsistency in
decision-making. Furthermore, embryo development is a dynamic process. Hence, embryo
classification may vary between different observation times. This renders an all-inclusive
embryo evaluation reporting on the true identity of the embryo challenging when relying
on static morphological evaluation [8].

Time-lapse technology is a noninvasive method that includes sustained monitoring of
embryo development employing simple algorithms that assess the timing of developmental
milestones. This enables the assessment of the morphokinetics of the embryo. In this
context, automated prediction models may be crucial in order to enhance objectivity and
reliability of embryo grading [9]. Despite its promising nature, there is insufficient evidence
to support that the advanced method of time-lapse microscopy (TLM) provides improved
results compared to conventional methods for human embryo selection [10]. The majority
of machine learning algorithms developed for embryo assessment require user-defined
input parameters. Hence, their predictions depend on currently existing classifications,
limiting further outcome improvement [6,11].

Artificial intelligence (AI) is a broad term including specific sub-areas, such as artificial
neural networks (ANNs), deep learning, and machine learning [12]. AI prediction models
are defined as the development of algorithms, employing big data, with the ability to
learn and display intelligent behavior. Artificial neural networks (ANNs) are the most
commonly employed method of AI [13]. There are several types of ANNs, which are
defined by the architecture of the layers. The common type of ANN is the convolutional
neural network (CNN) employing spatial and configuration information that processes
two dimensional (2D) or 3D images as input. Its architecture enables a reduction in the
number of parameters and computations involved in the network [14,15]. Recurrent neural
networks (RNN) are designed to define temporal or sequential information. RNNs gather-
ing information from other data points in a sequence can reliably predict the outcome [16].
ANN models can process microscopy images or time-lapse videos as input to predict
embryos’ implantation potential. The type of input is defined by different algorithms and
software implementations [13].

A support vector machine (SVM) is a distance-based binary classifier. This model
performs a nonlinear mapping from the input data, thus classifying and separating sam-
ples into two or more categories and transforming categorical variables into numeric
form [12,17]. In IVF, SVM employs both clinical characteristics and embryo morphology to
predict IVF outcome [12]. Deep learning models simulate the biological nervous system,
as information is processed through interconnecting neurons presenting with numerous
levels of deep layers [18]. Deep learning employs a back-propagation algorithm, allowing
the AI to discover a pattern in a large dataset and to conduct alterations in its parameters.
Deep learning algorithms are designed to study time-lapse video without the employment
of annotated parameters and are able to represent datasets optimally [19,20]. It should
be noted that different designs of AI should be available in order to provide benefits
depending on each laboratory’s standard operation protocols (SOPs), equipment, and
available computational power. Besides the cost that may burden IVF laboratories, training
of embryologists is a necessity, and such provisions should be made for training as well
as for the anticipated learning curve. It is of importance for the clinical embryologists not
only to be able to interpret the results of the prediction models but equally to be able to
understand whether the model may need to be retrained to adapt to a change in the SOPs.
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If a prediction model is trained in different laboratory culture conditions than the ones
it is employed on, then it may be possible that the model underperforms. However, it
should be noted that, despite these concerns, it has been reported that novel models may be
able to perform similarly in different clinics that may employ slightly different SOPs [21].
Could this become a case of one size fits all? Further data will delineate this matter on
whether standing prediction models can in fact be successfully employed in various clinical
settings, whether a new model should emerge as capable of performing in any setting,
or whether different models should be developed custom-made to perform according to
specific laboratory settings, SOPs, and computational power.

In the field of IVF, the employment of AI is steadily gaining support. A number of stud-
ies investigating the effectiveness of innovative AI systems have been conducted. Several
AI-based prediction models have been developed, documenting successful identification
of embryos with the highest implantation potential [21,22]. Interestingly, studies, hitherto,
have presented conflicting results. To elaborate on that, the predictive value of Tran’s IVY
AI model has been categorized as excellent, while Geller’s AI model achieved slightly
lower accuracy than conventional embryo selection [21,23]. The controversy documented,
along with the variation in outcome reporting between studies, has served as the driver
prompting the current data synthesis to be conducted. This contribution aims to provide a
much-needed, all-inclusive evaluation aspiring for precision when reporting on the predic-
tive strength of AI. The increased number of data and subsequent statistical power renders
a meta-analytical approach highly significant [24]. This study uniquely brings to literature
an analysis of the effectiveness of AI in accurately predicting the embryos with the highest
implantation potential in IVF.

2. Materials and Methods
2.1. Search Strategy

A systematic search of the literature was performed in databases of Pubmed/Medline,
Embase, and Cochrane Central Library on 6 April 2021. An update was performed on 9 Au-
gust 2021. To cover the study questions the following keywords along with combinations of
them were employed: “In vitro fertilization”, “intracytoplasmic sperm injection”, “assisted
reproduction”, “artificial intelligence”, “machine learning”, “deep learning”, “support
vector machine”, and “neural network”. The initial search yielded 694 studies from the
three databases. Following removal of both duplicate studies (n = 97) and reviews, case
series, case reports, commentaries, letters, and editorials, a primary study selection for
detecting relevant articles was performed based on title and abstract screening, as depicted
in the flowchart of Preferred Reporting Items for Systematic Reviews and Meta-analysis
(PRISMA) (Figure 1). Screening and selection of the relevant literature was performed
by two independent authors. Any discrepancies between the authors were resolved by
an arbitration mediated by the senior authors. Identification of other eligible studies was
performed by forward and backward citation mining on the selected relevant literature
employing Google Scholar. The screening process resulted in a total of 18 studies that were
eligible to be included in the present systematic review and data-synthesis. The study has
been registered in PROSPERO (CRD42021242097).

2.2. Study Selection

In the present study, the authors opted to include both prospective and retrospective
cohort studies that were performed only in humans and published in English. The popula-
tion comprised preimplantation embryos in the laboratory selected for embryo transfer for
women undergoing IVF/ICSI cycles. In order for a study to be eligible for inclusion, the
embryo selection for transfer needed to have been performed with the employment of an
AI-based prediction model.
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Figure 1. PRISMA flowchart.

2.3. Excluded Studies

One study was excluded; although it was probably relevant to our study’s scope, as its
publication language was Polish [25]. Additionally, studies that focused on the prediction
of blastocyst quality with an AI-based model but did not record the clinical outcomes were
excluded. Other exclusion criteria were annotation of embryo grading or morphokinetical
parameters from embryologists. Moreover, the observation that the following pairs of
studies were part of the same project led to the decision to include only the data from the
full-length manuscript. Tran’s and Ueno’s studies were part of the same project [21,26].
Thus, only Ueno’s study was included initially, as it presented the full dataset [26].

2.4. Data Extraction

Two authors performed the data extraction independently, based on the selection
criteria, and a senior author reviewed the data analysis. Data on both the above-mentioned
outcomes and information on the classification and the method employed for the develop-
ment of the AI-model were extracted. Regarding Ueno’s study, since the authors do not
provide their employed cut-off value or metrics other than the AUC, the excellent and good
embryos as predicted by the model are herein considered as a positive prediction, whereas
the fair- and poor-quality embryos are regarded as negative predictions [26].



Biomedicines 2022, 10, 697 5 of 20

2.5. Outcomes

The reported primary outcomes of interest were the rates of live birth and pregnancy
loss rates. The rate of live birth was defined as the number of deliveries that resulted in
at least one live birth and the pregnancy loss rate as the outcome of a clinical pregnancy
that did not result in live birth. However, no study reported results for pregnancy loss
rate outcome. The reported secondary outcomes were clinical pregnancy, clinical preg-
nancy with fetal heartbeat, and ploidy prediction. Clinical pregnancy was evaluated by
ultrasonographic visualization of one or more gestational sacs or definitive clinical signs
of pregnancy.

2.6. Bias Assessment

The risk of bias was assessed by two authors independently, employing the PROBLAST
tool. Any disagreements were mediated by a senior author.

2.7. Deviations from Protocol

In the protocol, it was mentioned that the QADAS-2 tool would be employed for the
risk of bias assessment. However, the PROBLAST tool was preferred as it is more suitable
for studies presenting predictive models. The ploidy status prediction outcome was added.

Metrics and Measures

The metrics and measures employed in the present data synthesis are sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), diagnostic
odds ratio (DOR), Area Under the Curve (AUC) of the Summary of the Receiver Operating
Characteristic (SROC), and the Observed:Expected (O:E) ratio. All the above mentioned
metrics were calculated from the true-positive (TP), false-positive (FP), true-negative (TN),
and false-negative (FN) predictions. Sensitivity is defined as the ability of an evaluation
method to detect a true positive and is calculated as: TP/(TP + FN). Specificity is the
ability of an evaluation method to detect a true negative and is calculated as TN/(TN +
FP). PPV is defined as the probability that a positive prediction is indeed positive and is
calculated as: TP/(TP + FP). NPV is defined as the probability that a negative prediction is
indeed negative and is calculated as: TN/(TN + FN). The DOR of an evaluation method
is the ratio of the odds of true positivity relative to the odds of false positivity. DOR is
calculated as sensitivity × (1-sensitivity) × (1-specificity) × specificity. The SROC graph is
conceptually very similar to the ROC. However, each data point comes from a different
study, not a different threshold [27]. The AUC of the SROC was assessed similarly to
the evaluation of the AUC of the ROC [28]. To further our analysis, the partial AUC
(pAUC) was employed. The partial AUC considers only those regions of the ROC space
where data have been observed [29]. The AUC as well as the pAUC may range from 0.5,
corresponding to a random prediction, to 1, corresponding to an “always correct”/perfect
discrimination prediction. Heterogeneity of the effect was evaluated through I2. Finally, the
Observed:Expected (O:E) ratio was evaluated. The O:E ratio, when evaluating prediction
models, is indicative of the models’ calibration [30,31]. The calibration of the model refers
to its accuracy [32]. The positive outcomes are considered to be the “Observed”, in other
words the numerator in the ratio, while the predicted positive outcomes serve as the
“Expected”, i.e., the denominator. An O:E ratio lower than 1 presents an overestimation of
the positive outcome, while an O:E ratio higher than 1 presents and underestimation of the
positive outcome [31].

2.8. Statistical Analysis

Following the data extraction, a statistical analysis was performed. Sensitivity, speci-
ficity, positive and negative predictive value, diagnostic odds ratio, and Summary of the
Receiver Operating Characteristic (SROC) of prediction of live-birth and clinical pregnancy
were evaluated. Measure of effects entailed a univariate analysis with the employment of
the random-effects model. Moreover, a bivariate analysis to plot the SROC curve was con-
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ducted. Since the heterogeneity between the studies was significantly high, the Bayesian
approach was preferred, as frequentist estimation methods sometimes fail to produce
reliable confidence intervals. Moreover, the inclusion of studies with different sample
sizes, as well as the limited number of studies regarding the live-birth outcome could be
better evaluated in a Bayesian estimation framework, which more naturally accounts for
all parameter uncertainty in the derivation of credibility and probability intervals [30]. A
subgroup analysis was performed according to the type of input, namely static images
and time-lapse. The R programming language for statistical purposes was employed, and
specifically the packages “metafor”, “mada”, and “metamisc”.

3. Results

The characteristics of each study included in the systematic review and data synthesis
are presented in Table 1. As presented herein, 11 studies employed videos from time-lapse
microscopy and/or morphokinetic data, 6 studies employed blastocyst static images, and 1
study evaluated both time-lapse microscopy and static blastocyst images. The majority of
studies employed CNN for the model’s development. The model optimization differed
significantly between the studies. While a number of studies opted for a k-times validation,
others performed optimization by validating for k epochs. In k-times validation, the dataset
is divided into k-stratified subsets, and in each validation process, one subset is employed
as the validation (or test) dataset, whereas the other subsets are employed for training.
When employing k epochs, the validation and the training subset remain constant, while
the algorithm is optimized for k times, employing the specific subsets, representing the
full dataset.

The majority of studies reported on a single outcome. However, a limited number of
studies reported on two outcomes. More specifically the assessment of bias was performed
according to the PROBLAST tool and is presented in Table 2.

All studies, with the exception of the study by Aparicio Ruiz and colleagues, were of
retrospective nature. This is anticipated, as the studies reported on the development of
novel prediction models. Kan-Tor et al.’s and Liao et al.’s studies reported on prediction of
blastocyst formation, while the study by Liao and colleagues also reported on prediction of
blastocyst quality. Due to the small number of studies reporting on other outcomes, a data
synthesis could not be performed. AI seems to enable accurate prediction of blastocyst for-
mation with an AUC between 0.75 and 0.83. The prediction of blastocyst quality similarly
appears to be accurate since it employs AI prediction models with an AUC of 0.79. From
the included studies, only the study by Ver Mileya and colleagues presented a performance
comparison between AI and embryologists reporting on clinical outcomes. The study by
Liao et al., further performed a performance comparison between AI and embryologists
on blastocyst formation prediction. Both studies reported enhanced predictive capabilities
when employing AI. When examining blastocyst formation prediction, a significant differ-
ence was presented in the predictive capability of AI versus the embryologists. However, in
comparing clinical outcomes, it appears that AI has still some way to go prior to claiming
to significantly surpass clinical embryologists’ predictive competence when it comes to
primary outcome measures.

3.1. Prediction of Live-Birth

A total of four studies with five arms reported results regarding prediction of live
birth. A total of 1981 embryos were transferred, resulting in 578 live births. There were
244 true positive predictions, 197 false positives, 1300 true negatives, and 334 false negatives.
Sensitivity, specificity, PPV, NPV, and DOR, as well as the heterogeneity of each measure,
are presented in Figure 2. When evaluating the SROC, the AUC was found to be 0.905,
while the partial AUC (pAUC) was 0.755 (Figure 3). Employing the Bayesian approach, the
total Observed:Expected ratio (O:E) was 1.12 (95%CI: 0.26–2.37; 95%PI: 0.02–6.54).
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Table 1. Study Characteristics.

Study Outcome Type of Input
(TL/Static Images) Sample Size

Type of AI
Algorithm
Employed

Model
Optimization

Alegre 2020 [33] Live-birth TL 244 ANN NP

Meseguer 2019 [34] Live-birth TL
STATIC IMAGE

TL: 111
SI: 111 ANN NP

Miyagi 2019 [35] Live-birth TL 1139 CNN 5-fold cross
validation

Sawada 2021 [36] Live-birth TL 376
CNN with

Attention Branch
Network

Back-propagation
for 5 epochs

Hardy 2020 [37] Clinical Pregnancy
with FHB TL 113 CNN NP

VerMilyea 2020
[22]

Clinical Pregnancy
with FHB STATIC IMAGES 1667 ResNet

Back-propagation
and SGD for 5

epochs

Chavez-Badiola
2020 [38] Clinical Pregnancy STATIC IMAGES 221 SVM 10-fold cross

validation

Liao 2021 [39] Clinical Pregnancy
with FHB TL 209 DNN NP

Bori 2020 [40] Clinical Pregnancy
with FHB TL 451 ANN 5-fold cross

validation

Kan-Tor 2020 [41] Clinical Pregnancy TL 401 DNN 20–60 epochs
validation

Bormann 2020 [42] Clinical Pregnancy
with FHB STATIC IMAGES 102 CNN

Genetic algorithm
per 100 samples for

a dataset of 3469
embryos

Silver 2020 [43] Clinical Pregnancy
with FHB TL 272 CNN NP

Cao 2018 [44] Clinical Pregnancy STATIC IMAGES 344 CNN NP

Ueno 2021 [26] Clinical Pregnancy
with FHB TL 3014 DNN

Back-propagation
for 20 epochs and

5-fold cross
validation

Bori 2021 [45] Ploidy TL 331 ANN Back-propagation

Aparicio Ruiz 2021
[46] Ploidy TL 319 ANN NP

Lee 2021 [47] Ploidy TL 138 CNN (3D
ConvNets) NP

Chavez-Badiola
2020 [48] Ploidy STATIC IMAGES 84 DNN 10-fold cross

validation

TL: time-lapse microscopy; ANN: artificial neural network; CNN: convolutional network; DNN: deep neural
network; ResNet: Residual Neural Networks; SGD: stochastic gradient resent with momentum; epoch: one
complete pass through the entire dataset; NP: not provided.
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Table 2. Assessment of Bias.

Study Participants Predictors Outcomes Analysis Overall

Alegre 2020 [33] - + + + -

Meseguer 2019 [34] - + + + -

Miyagi 2019 [35] + + + - -

Sawada 2021 [36] + + + + +

Hardy 2020 [37] - + + + -

VerMilyea 2020 [22] + - + + -

Chavez-Badiola 2020 [38] - - + + -

Liao 2021 [39] - + + + -

Bori 2020 [40] + + + + +

Kan-Tor 2020 [41] + + + + +

Bormann 2020 [42] - - + + -

Silver 2020 [43] - + + + -

Cao 2018 [44] + - + + -

Ueno 2021 [26] + + + - -

Bori 2021 [49] + + + - -

Aparicio Ruiz 2021 [46] + + + + +

Lee 2021 [47] - + + + -

Chavez-Badiola 2020 [48] - + + + -
+: Low risk of bias; -: High risk of bias.

3.2. Sensitivity Analysis on Live Birth Prediction

When excluding studies that presented as conference abstracts, only, two out of the four
identified studies were eligible for inclusion considering the live birth outcome. Sensitivity
was 32.7% (95%CI: 10.2–67.5%), specificity 85.5% (95%CI: 57.7–96.2%), PPV 39.3% (95%CI:
26.1–54.3%), and NPV 81.1% (95%CI: 70.2–88.6%). The AUC was 0.665. When evaluating
on bias assessment, only Sawada’s study was found to be eligible for inclusion, and thus
data synthesis was not performed.

3.3. Secondary Outcome Measures
3.3.1. Prediction of Pregnancy

A total of 10 studies with 10 arms reported results regarding prediction of clinical
pregnancy. A total of 6794 embryos were transferred, resulting in 2765 clinical pregnancies.
The true positive predictions were 2047, the false positives were 2108, the true negative
were 2120, and the false negatives were 718. Sensitivity, specificity, PPV, NPV, and DOR,
as well as the heterogeneity of each measure, are presented in Figure 4. When evaluating
the SROC, the AUC was found to be 0.716, while the partial AUC (pAUC) was found to be
0.693 (Figure 5). According to the Bayesian approach, the total Observed:Expected ratio
(O:E) was 0.92 (95%CI: 0.61–1.28; 95%PI: 0.13–2.43).
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Figure 2. Forest plots representing: (A) sensitivity; (B). specificity; (C) DOR; (D) PPV; (E) NPV of
the live birth prediction outcome. Subgroup “0” represents static images as the type of input, and
subgroup “1” represents time-lapse.

Figure 3. SROC of the live birth outcome.
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Figure 4. Forest plots representing: (A) sensitivity; (B) specificity; (C) DOR; (D) PPV; (E) NPV of the
clinical pregnancy prediction outcome. Subgroup “0” represents static images as type of input, and
subgroup “1” represents time-lapse.

Figure 5. Prediction of pregnancy outcome.

3.3.2. Prediction of Clinical Pregnancy with Fetal Heart-Beat

A total of seven studies with seven arms reported results regarding the prediction
of clinical pregnancy with fetal heartbeat. A total of 5828 embryos were transferred,
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resulting in 2255 clinical pregnancies with fetal heartbeat. There were 1708 true positive
predictions, 2020 false positives, 1752 true negatives, and 547 false negatives. Sensitivity,
specificity, PPV, NPV, and DOR, as well as the heterogeneity of each measure, are presented
in Figure 6. When evaluating the SROC, the AUC was found to be 0.722, while the partial
AUC (pAUC) was found to be 0.774 (Figure 7). According to the Bayesian approach, the
total Observed:Expected ratio (O:E) was 0.77 (95%CI: 0.54–1.05; 95%PI: 0.21–1.62).

Figure 6. Forest plots representing: (A) sensitivity; (B) specificity; (C) DOR; (D) PPV; (E) NPV of the
clinical pregnancy with fetal heart beat prediction outcome. Subgroup “0” represents static images as
type of input, and subgroup “1” represents time-lapse.

3.3.3. Prediction of Ploidy Status

A total of four studies reported results regarding the prediction of embryo ploidy
status. A total of 772 embryos were evaluated regarding their ploidy status. A total of 293
were assessed as euploid, and the remaining 479 were assessed as aneuploid. Sensitivity,
specificity, PPV, NPV, and DOR, as well as the heterogeneity of each measure, are presented
in Figure 8. When evaluating the SROC, the AUC was found to be 0.78, while the partial
AUC (pAUC) was found to be 0.636 (Figure 9). According to the Bayesian approach, the
total Observed:Expected ratio (O:E) was 2.05 (95%CI: 0.79–3.17; 95%PI: 0.02–6.47).
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Figure 7. SROC of prediction of clinical pregnancy with fetal heartbeat.

Figure 8. Forest plots representing: (A) sensitivity; (B) specificity; (C) DOR; (D) PPV; (E) NPV of the
ploidy prediction outcome. Subgroup “0” represents static images as type of input, and subgroup “1”
represents time-lapse.
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Figure 9. SROC of the prediction of ploidy status outcome.

A summary of the results, including subgroup analysis, is presented in Table 3.

Table 3. Summary of the results.

Outcomes Sensitivity Specificity PPV NPV DOR

Live-Birth 70.6% (38.1–90.4%) 90.6% (79.3–96.1%) 74.2% (44.1–91.3%) 88.4% (80.6–93.3%) 19.662 (5.061–76.397)

Live-Birth SI 90.7% (77.7–96.5%) 89.7% (79.9–95.0%) 84.8% (71.4–92.6%) 93.8% (84.7–97.7%) 84.964
(23.329–309.437)

Live-Birth TL 62.9% (27.7–88.2%) 91.0% (75.6–97.1%) 71.2% (33.7–92.3%) 86.9% (78.0–92.5%) 13.204 (3.336–52.264)

Clinical Pregnancy 71.0% (58.1–81.2%) 62.5% (47.4–75.5%) 66.4% (51.7–78.5%) 67.9% (60.7–74.4%) 3.962 (2.501–6.275)

Clinical Pregnancy SI 72.7% (60.6–82.2%) 58.6% (49.6–67.1%) 67.6% (46.6–83.4%) 66.0% (56.5–74.3%) 3.861 (1.708–8.729)

Clinical Pregnancy TL 70.0% (49.4–84.8%) 64.2% (39.9–82.9%) 65.6% (45.2–81.5%) 69.2% (58.8–78.0%) 4.074 (1.880–8.827)

Clinical Pregnancy
with FHB 75.2% (66.8–82.0%) 55.3% (41.2–68.7%) 62.5% (43.9–78.0%) 69.5% (60.4–77.2%) 3.549 (2.113–5.961)

Clinical Pregnancy
with FHB SI 69.3% (65.8–72.6%) 56.7% (43.9–68.7%) 44.0% (41.1–46.9%) 75.1% (72.2–77.9%) 2.415 (1.986–2.937)

Clinical Pregnancy
with FHB TL 78.7% (70.3–85.2%) 53.9% (35.1–71.6%) 66.8% (42.7–84.5%) 68.1% (55.1–78.7%) 4.101 (1.636–10.276)

Ploidy 61.5% (44.1–76.5%) 79.6% (70.4–86.4%) 50.5% (34.5–68.1%) 85.8% (77.3–91.5%) 5.978 (4.036–8.855)

Ploidy TL 55.7% (37.2–72.8%) 82.6% (75.1–88.2%) 49.0% (28.7–69.7%) 85.7% (74.7–92.5%) 5.811 (3.807–8.871)

Ploidy SI 78.6% (59.0–90.0%) 66.1% (52.8–77.2%) 53.7% (38.5–68.1%) 86.0% (72.2–93.6%) 7.140 (2.477–20.583)

FHB: Fetal Heart Beat; SI: Static Image; TL: Time-Lapse.

4. Discussion

The development of machine learning has led to the employment of AI in order to
enhance clinical care [50]. Therefore, it is not surprising that several areas of medicine,
including the field of reproductive medicine, have embraced the AI age [51–53]. AI is a
noninvasive approach and has been applied in several fields of reproductive medicine, such
as sperm morphology, automation of follicle count, automatic embryo cell stage prediction,
embryo grading, and prediction of implantation potential, as well as development of
improved stimulation protocols [15]. This innovative technology has been reported to
contribute to improving embryo classification from subjective and morphology-based to
automated and objective [54].

According to the results of our study, the employment of AI appears to hold significant
promise for the future of IVF; however, data sourced herein present significantly high
heterogeneity, compromising the level of certainty. The present prediction models should
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be subject to improvement prior to representing the optimal choice. The high heterogeneity
observed in our results may be attributed to the different protocols employed for the
development of their models. Regarding the prediction of live birth, it may be observed
that the four prediction models present higher specificity than sensitivity, as well as a higher
NPV compared to PPV. In interpreting the results on the NPV and the specificity metrics,
it appears that the models are designed to accurately predict negative outcomes. This
may be attributed to the fact that the live birth population represents less than 50% of the
sample size, and a higher sample size for the negative outcome is thus provided. However,
the confidence intervals are wide, and thus safe conclusions cannot yet be reached. The
high diagnostic odds ratio means that a true-positive prediction is more probable than a
false-positive, showcasing the accuracy of the prediction models. The prediction models
seem to aptly estimate the prediction of live-birth, as the confidence interval of the O:E
ratio includes the value of one. However, in analyzing the prediction intervals, a number
of studies have either overestimated or underestimated the live-birth result. The AUC of
the SROC at 0.905 is considered excellent; however, the pAUC of 0.755 is considered only
of good prognostic value. The partial AUC has been proposed as an alternative measure to
the full AUC. When using partial AUC, only the regions of the ROC that include observed
data are considered, corresponding to the metrics of sensitivity or specificity [29]. The low
partial AUC, in contrast to the full AUC, may be attributed to the fact that the study by
Miyagi and colleagues presents a very low sensitivity and positive predictive value [35].
However, it should be mentioned that the study by Miyagi et al., includes the highest
sample size, highlighting the statistical power that the study holds. This fact, along with
the different designs of the prediction model by Miyagi et al., may be a reason behind the
high heterogeneity observed [35].

Regarding the pregnancy rates, the predictive capabilities of the AI models seem
to be less effective. In this case, sensitivity is higher than specificity, and NPV is higher
than PPV. The fact that sensitivity and NPV are higher may indicate that the prediction
models are designed to lower false-negative predictions. It seems that the majority of
prediction models for clinical pregnancy have a different design than the models for live
birth prediction, which seem to attempt to maximize true negative predictions. Similarly to
prediction of live-birth, the high diagnostic odds ratio means that it is more probable that
a true-positive prediction is more probable than a false-positive. The prediction models
seem to correctly estimate the prediction of live birth, as the confidence interval of the O:E
ratio includes the value of 1. However, as may be observed from the prediction intervals,
a number of studies have either overestimated or underestimated the pregnancy result.
The AUC and partial AUC are between 0.71 and 0.69, thus exhibiting a marginally good
prediction capability. It should be noted that the results of the present study are more
robust when evaluating prediction of pregnancy compared to evaluation of prediction of
live birth. This may be due to the larger number of studies included.

The majority of studies have focused on predicting clinical pregnancy with fetal
heartbeat. In this context, sensitivity is higher than specificity and NPV is higher than
PPV. Similarly to prediction of live birth and prediction of pregnancy, the high diagnostic
odds ratio means that a true-positive prediction is more probable than a false-positive. The
prediction models seem to correctly estimate the prediction of live birth, as the confidence
interval of the O:E ratio includes the value of one. However, as can be observed from
the prediction intervals, a number of studies have overestimated the clinical pregnancy
with the fetal heartbeat result. The AUC and partial AUC are between 0.72 and 0.77, thus
exhibiting a good prediction capability. It should be noted that the results of the present
study are more robust when evaluating prediction of clinical pregnancy with fetal heartbeat
compared to evaluation of the other outcomes; this is due to the lower heterogeneity and
narrower confidence intervals observed.

It should be mentioned that the prediction accuracy of the embryologist is regarded
to be between 60–70% [22,39]. The AUC of the embryologists’ prediction is proposed to
range between 0.63 and 0.70 [55,56]. Taking this into account, it may be claimed that the
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AI prediction models offer slightly improved prediction capabilities. However, it should
be underlined that embryologists are more accustomed to providing factorial rather than
dichotomous outcomes. Further, according to VerMileya and colleagues’ study, the majority
of the embryologists’ ratings report on the grading classification grade of 3 in a five-grade
scale. It appears that clinical embryology practitioners may avoid grading embryos as
top- or poor-quality [22]. Thus, the true-positive and true-negative prediction values may
be similar to the ones provided by AI when employing slightly different cut-off values.
For AI-based prediction models to be relied on and employed in clinical practice, higher
predictive capabilities are required.

Comparing time-lapse video with static images, safe conclusions cannot be drawn yet.
The majority of studies employed time-lapse imaging. Especially regarding the prediction
of live-birth and ploidy status, only a single study for each outcome employed static images.
Thus, regarding these outcomes, safe conclusions regarding the optimal type of input may
not yet be drawn. Evaluating prediction of clinical pregnancy, the two types of input do not
seem to perform differently. As can be observed from Table 3, the only difference between
the two types of outcomes on clinical pregnancy prediction is the slightly higher specificity
when employing time-lapse. Regarding clinical pregnancy with fetal heartbeat, the two
types of input seem to perform significantly differently. To elaborate, input of time-lapse
seems to outperform static images regarding the metrics of sensitivity and PPV, whereas
prediction models employing static images report enhanced NPV. However, this can be
attributed to the different designs of the prediction models. According to literature, it
remains unclear whether time-lapse imaging and the employment of morphokinetics can
optimize embryo selection and thus enhance clinical outcomes [10]. Further studies are
required in order to delineate the efficacy of time-lapse imaging both on embryo selection
and as an input for AI-based prediction models.

In evaluating the prediction accuracy of the ploidy status, the predictive capabilities
of AI models seem to be adequate. Specificity was higher than sensitivity, while NPV was
higher than PPV. This may indicate that the prediction models are designed to primarily
focus on lowering false aneuploid predictions rather than distinguishing the true euploid
embryos. Employment of AI in models predicting euploidy status may present as a
necessity in the not-so-distant future. A recent meta-analysis reported that PGT-A fails
to improve live birth rates in the general population. On the other hand, it seems to
be beneficial for specific patient groups, namely for women aged over 35 years old [57].
Therefore, it is important to employ AI-based prediction models that focus on indicating
the embryos that may be at risk of aneuploidy, which should subsequently be subjected
to biopsy. It may be of great clinical significance to develop a prediction model achieving
a high PPV—even 100% if possible—in order to ascertain minimization of false euploid
predictions. In this particular scenario, a high PPV is more significant than the other metrics,
as the predicted euploid embryos would not be subjected to further unnecessary PGT-A
evaluation, while the ones predicted to be aneuploid could be subjected to PGT-A for
further analysis. The diagnostic odds ratio seems promising in this direction, as it suggests
that a true-positive prediction is more probable than a false-positive. The prediction models
seem to correctly estimate the prediction of euploidy, as the confidence interval of the
O:E ratio includes the value of one. However, as it may be observed from the prediction
intervals, a number of studies have either overestimated or underestimated the ploidy
result. The AUC and the partial AUC are between 0.75 and 0.58, which highlights the fact
that more studies should be performed prior to robustly concluding on the effectiveness of
AI models on accurately predicting ploidy status.

When evaluating prediction models, several metrics may be employed. Undoubtedly,
the AUC of the SROC and the O:E ratio are the most important ones. AUC in particular
is unaffected by the heterogeneity observed in the metrics of sensitivity, specificity, PPV,
NPV, and DOR. This is attributed to the fact that while the aforementioned metrics may
be influenced by different cut-off values, AUC remains a constant. The AUC ranges from
0.5 to 1 and provides information regarding the predictive capabilities of a model, with 0.5
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being completely random and 1 providing perfect prediction. When designing a model,
developers may opt to enhance different metrics by altering the cut-off value. However,
the AUC remains constant; thus, it may be considered as an objective metric. The O:E
ratio provides information regarding the over- or under-estimation of the positive outcome.
An O:E ratio lower than one presents an overestimation of the positive outcome, while
an O:E ratio presents an underestimation of the positive outcome. When the confidence
interval of the O:E ratio includes the value of one, the model correctly estimates the positive
outcome. While these two metrics should be considered the most important, other metrics,
such as sensitivity, specificity, PPV, and NPV provide useful information and should not
be ignored.

The limited number of studies evaluating prediction of live-birth is the major limi-
tation of the present study. Moreover, the different designs employed when developing
the prediction models may be considered another limitation, leading to increased het-
erogeneity. The wide confidence interval in the O:E ratio regarding live-birth prediction
may be considered a reason for caution when interpreting the results of the present study.
Additionally, the threshold set regarding the study by Ueno et al., may have influenced the
outcomes of sensitivity, specificity, PPV, and NPV. Furthermore, the inclusion of women
regardless of their age may have influenced the results of the present data synthesis, as
advanced maternal age (AMA) has been associated with lower clinical pregnancy and live
birth rates. It may be possible that different designs for the prediction models may be
required to analyze different populations. To elaborate on this, one could hypothesize that
a model with a lower false negative rate is required for populations with a lower number
of available embryos. A lower false negative rate will not lead to discarding embryos with
a high implantation potential. On the other hand, a model with a lower false positive rate
may be required for a “good-prognosis” population. A further reason for caution when
interpreting results of the present study is the limited number of included studies that are
characterized as having a low risk of bias. Due to this fact, a subset analysis including
solely studies with an overall low risk of bias could not be performed. Moreover, when
attempting subset analysis based on the items with bias, or excluding studies that presented
at least two items with high risk of bias, the heterogeneity observed between the studies
was higher. Thus, the authors opted to refrain from including the subset analysis in order
to avoid introducing a lower level of certainty.

AI technology presents several limitations. In particular, neural networks suffer from
overfitting during training. This can lead to neural networks providing inconsistent results.
Furthermore, most neural networks are limited to imaging systems that were employed in
the training process and are performed with reduced adaptive capacity to different imaging
models [9]. Further research is required on the definition of the practical aspects when
accommodating this approach. In the clinical setting, the majority of laboratories do not
employ similar camera equipment as each other. This may result in reduced adaptability of
the models in different clinical settings, which can cause significant problems for models
employing static images. Regarding models that are based on time-lapse microscopy, it may
be possible that different prediction models should be employed in different incubators.

On the other hand, AI employment may be viewed as challenging when considering
ethics in the context of replacing human decision-making with machines. It has been noted
that it may be difficult to explain to patients the results obtained by AI models in the medical
context [58]. In the context of IVF, this may present with added challenges, especially
taking into consideration the possibility of a futile IVF cycle. Furthermore, possible biases
in datasets originating from specific population characteristics may negatively influence
the predictive capabilities of the AI model [59]. In the future, AI may establish digital
automation in the field of reproductive medicine, providing great advantages to infertile
patients. In the meantime, we must acknowledge the current status, where AI still has some
way to go to prove to be the gold standard approach, and while accepting its promising
nature, at present, the embryologist still needs to opt for the safest and most effective
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practice. It may be beneficial to examine the scenario where the final decision of the
embryologist relies upon the software for embryo classification [19].

In the IVF laboratory, it is the embryologist who decides on the tools to be employed.
Does that dictate that the embryologist should have a thorough understanding of the
characteristics of the model employed? Does delving into deep learning require deep
understanding? When analyzing studies on models, the characteristics listed in Table 1
include outcome measure, sample size, type of input, neural network employed, and
method for model optimization. It may be of value to acknowledge that although all
embryologists may be largely familiar with outcome measure, sample size, and type of
input, they may not be familiar with the type of neural network employed or the method
for model optimization, which are technical aspects of the model development. Ideally,
one should have a clear understanding of what each of these characteristics entail and how
they differ in order to reach conclusions and make arguments about optimal practice. In
future IVF laboratories, embryologists may be able to deeply comprehend these differences
when researching the optimal AI model. Presently, it may be of value to bridge the gap
between “deep knowledge” and “deep learning”.

The AI approach serves as a highly promising tool in the era of personalized medicine,
a fact that is reflected in the increasing trend noted in funding AI research programs [52].
Further studies are required prior to total integration of AI models towards a universal
clinical practice. The standardization of such processes requires broader and unbiased
databases generated by the collaboration of several clinics in order to reduce data variability
and avoid heterogeneous datasets [12,51,60]. Thus, the challenges associated with data
confidentiality, along with the competition between clinics, should be effectively addressed
to ascertain appropriate transparency insurance and intellectual property protection [60].
Moving towards this direction will enable sourcing the powerful data required to lead to
robust results and solid conclusions. Fulfilling these requirements and producing concrete
data may result in an extensive change in clinical practice. Could this mean that we are
moving towards an implementation of a totally automated robotic IVF lab of the future?
The intentions of the scientific community engaged in AI research and implementation are
led by the shared goal of optimal practice. However, hitherto, AI models and time-lapse
imaging may be regarded as an IVF add-on [61]. Further prospective studies and eventually
randomized controlled trials (RCTs) and meta-analyses of RCTs should be conducted
prior to including AI in clinical practice. It may be possible that a future IVF laboratory
may include AI prediction models and omics technologies to be used for selecting the
optimal embryo to transfer. In the meantime, the acquaintance of embryologists with novel
computational approaches is essential in order to achieve optimal and cost-effective care
for all patients and to prepare for future practice [19,51].

To conclude, this systematic review and data synthesis set out to answer the question:
Can AI models provide robust predictions? The data sourced herein support the claim that
AI can in fact provide accurate predictions. Taking this conclusion further and considering
the “when and how” of implementation, the next step would be to provide an answer
to the question “How do AI prediction models perform in comparison to morphology-
and/or morphokinetics-based evaluation? Although AI performs with precision, these
models have yet to prove their superiority compared to humans. Data from this systematic
review indicate that although AI models appear marginally more effective, they still have
some way before they can claim to significantly surpass clinical embryologists’ predictive
competence. However, the lack of prospective studies and RCTs does not allow for a
meta-analysis to describe this debate. As for where we go from here, it is a certainty that
the standardization of procedures should be a prerequisite when developing a universally
applicable AI-based prediction model. Including a higher number of centers and collabora-
tions between different developers should enhance prediction capabilities, and this should
be a prerequisite when moving towards AI becoming the gold standard.
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