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Abstract
In the field of metabolic engineering 13C-based metabolic flux analysis experiments have proven successful in indicating points
of action. As every step of this approach is affected by an inherent error, the aim of the present work is the comprehensive
evaluation of factors contributing to the uncertainty of nonnaturally distributed C-isotopologue abundances as well as to the
absolute flux value calculation. For this purpose, a previously published data set, analyzed in the course of a 13C labeling
experiment studying glycolysis and the pentose phosphate pathway in a yeast cell factory, was used. Here, for isotopologue
pattern analysis of these highly polar metabolites that occur in multiple isomeric forms, a gas chromatographic separation
approach with preceding derivatization was used. This rendered a natural isotope interference correction step essential.
Uncertainty estimation of the resulting C-isotopologue distribution was performed according to the EURACHEM guidelines
with Monte Carlo simulation. It revealed a significant increase for low-abundance isotopologue fractions after application of the
necessary correction step. For absolute flux value estimation, isotopologue fractions of various sugar phosphates, together with
the assessed uncertainties, were used in a metabolic model describing the upper part of the central carbon metabolism. The
findings pinpointed the influence of small isotopologue fractions as sources of error and highlight the need for improved model
curation.

Keywords Measurement uncertainty . Metabolic flux analysis . Metabolic engineering . Isotopologue analysis . Isotope
interference correction

Introduction

The assessment of absolute intracellular fluxes (i.e., reaction
rates per unit cell volume or mass) found its way into meta-
bolic engineering several decades ago. In metabolic engineer-
ing, possibilities to influence metabolic reaction rates are of
special interest, since the quantitative understanding of meta-
bolic flux regulation mechanisms allows a more precise
reengineering of cell factories [1–3]. This technique can be
used to engineer organisms such as bacteria or fungi to im-
prove the industrial production of, for example, organic acids
[4], lipids [5], or proteins [6]. The estimation of metabolic
fluxes relies on stable isotope labeling experiments, where
an isotope tracer (e.g., specifically 13C labeled glucose) is
fed to an organism of interest. The resulting incorporation
of the stable label into downstream metabolites is most
commonly measured by mass spectrometry (MS)-based

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00216-018-1017-7) contains supplementary
material, which is available to authorized users.

* Stephan Hann
stephan.hann@boku.ac.at

1 Department of Chemistry, University of Natural Resources and Life
Sciences, Muthgasse 18, 1190 Vienna, Austria

2 Department of General, Analytical and Physical Chemistry,
University of Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria

3 Austrian Centre of Industrial Biotechnology, Muthgasse 11,
1190 Vienna, Austria

4 Department of Biotechnology, University of Natural Resources and
Life Sciences, Muthgasse 18, 1190 Vienna, Austria

5 Institute of Analytical Chemistry, University of Vienna, Währinger
Strasse 38, 1090 Vienna, Austria

Analytical and Bioanalytical Chemistry (2018) 410:3337–3348
https://doi.org/10.1007/s00216-018-1017-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s00216-018-1017-7&domain=pdf
https://doi.org/10.1007/s00216-018-1017-7
mailto:stephan.hann@boku.ac.at


methods [3, 7]. Before the detection of these nonnaturally
distributed 13C labeling patterns of free intracellular me-
tabolites, separation of the analytes of interest is indispens-
able. For this purpose, either liquid chromatographic or gas
chromatographic techniques are applied. Although the lat-
ter require a laborious derivatization step before analysis,
the application of gas chromatography (GC)-based
methods is convincing because of the excellent separation
efficiency and broad metabolite coverage. This includes
the separation of amino acids, organic acids, and metabo-
lites with multiple structural isomeric forms, such as sugars
and sugar phosphates, in one analytical run [8–11]. Sugar
phosphates are of particular interest since many metabo-
lites of the central carbon metabolism are phosphorylated,
and the reaction involved therein often represents points of
action in metabolic engineering [12].

As intermediate results of the 13C labeling pattern analysis,
isotopologue fractions (IFs)—that is, molecular entities that
differ in their isotopic composition [13]—of metabolites are
obtained [3, 7]. However, the measured distributions do not
reflect the true 13C labeling patterns, which are the result of
metabolizing the tracer molecule, and are interfered with nat-
urally abundant heavy stable isotopes either present in the
native molecule itself (e.g., 34S) or introduced by derivatiza-
tion (e.g., alkoxymation and silylation) [7, 14, 15]. Here, the
latter is of major influence and concerns mainly interferences
of naturally abundant 13C, 29Si, and 30Si. Heavy stable iso-
topes of elements such as hydrogen, nitrogen, and oxygen
have a rather marginal impact because of their low natural
abundances. These isotope interferences need to be corrected
for to obtain an unbiased result for 13C labeling patterns.
Several software packages are available for this purpose
[14–20].

Together with data on growth, uptake, and secretion rates,
as well as the biomass composition of the organism, the
isotope-interference-corrected C-isotopologue distributions
of metabolites are implemented in biochemical network
models. By maximizing the fit between the a priori simulated
labeling patterns and the experimentally obtained IFs, one
derives intracellular flux values. Finally, statistical analysis
of the goodness of fit is performed, and nonlinear confidence
intervals for fluxes are computed [21].

The successful outcome in terms of precise and accurate
fluxes depends greatly on the quality of the mathematical
model describing the metabolic network, on the design of
the isotope labeling experiment (namely, the selection of suit-
able tracers), and on the analysis of labeling patterns [21, 22].
Hence, a careful validation of every single step of the mea-
surement procedure, including the estimation of measurement
uncertainty, is highly valuable to generate data of the required
quality. Generally, measurement uncertainty is defined as "a
non-negative parameter characterizing the dispersion of the
quantity values being attributed to a measurand based on the

information used^ [23]. Thus, measurement uncertainty is a
quantitative descriptor of the reliability of a measurement, and
states an interval that includes the values that the measurand
could reasonably take with a specified probability [23, 24].
With the help of this theoretical concept of measurement un-
certainty budgeting, including the quantitative assessment of
the contribution of different uncertainty components, method
limitations as well as points of action for improvement can be
identified [24].

To demonstrate the use of this assessment, a previously pub-
lished 13C-based metabolic flux analysis (MFA) experiment
involving a yeast cell factory, namely, Pichia pastoris [12,
25], was used as a test data set. The objective of this MFA
experiment was an increase in the titer of a model protein (hu-
man superoxide dismutase, hSOD). For that purpose, the pen-
tose phosphate pathway (PPP), which is responsible for the
formation of reduced NADPH, an important cofactor for the
production of metabolites and proteins [12], and which
branches off at glucose 6-phosphate (G6P) and runs in parallel
to glycolysis, was engineered by overexpression of different
PPP genes. By use of MFA, it was demonstrated, that the com-
bined overexpression of glucose 6-phosphate dehydrogenase
gene (ZWF1) and 6-phosphogluconolactonase gene (SOL3) en-
hanced the flux through the PPP and led to an increased yield of
hSOD [12]

The evaluation of the reliability of analytical results is of
core importance as key decisions are taken on their basis. In
the present study, measurement uncertainty budgeting accord-
ing to EURACHEM’s Quantifying Uncertainty in Analytical
Measurement guidelines [24] was performed to evaluate ma-
jor factors contributing to the uncertainty of isotopologue
analysis. For that purpose, after identification of the
measurand and its contributing influencing factors, a model
equation that considers all uncertainty components relevant to
the result was set up, and Monte Carlo simulation was applied
for error modeling and propagation. More precisely, the dis-
tribution of the measurement results was obtained by random-
ly changing the input parameters within their standard uncer-
tainties and probability function. As an outcome, the contri-
bution of all probability density functions of the uncertainty
components involved was visualized [26].

The isotopologue distributions of the different metabolites,
including the modeled uncertainties, were then used in the
metabolic model to investigate the robustness of the model
as well as the impact of uncertainty and precision on the cal-
culated flux values. We highlight that despite an elaborate
body of theory on error propagation in MFA [27], the impact
of the underlying metabolic models and the low-abundance
IFs as a source of error has been underestimated.

To the best of our knowledge, this is the first time Monte
Carlo simulation has been used for a comprehensive assess-
ment of the measurement uncertainty of IFs, and its influence
on the outcome of absolute flux values was investigated.
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Materials and methods

Isotopologue distribution analysis

A 13C-based MFA experiment targeting the branching point of
glycolysis and the PPP in P. pastoris [12, 25] was used as a
model data set for the assessment of measurement uncertainty.
In this MFA experiment, possibilities to increase the titer of a
recombinant protein (hSOD) in a yeast cell factory were studied
with PPP gene overexpression. As isotopic tracer
[1,6-13C2]glucose was used, and the resulting labeling patterns
of intracellular metabolites were measured by a gas chromato-
graphic approach with soft ionization (namely, chemical ioni-
zation) coupled with high-resolution time-of-flight (TOF) MS.
Full details on the cultivation conditions, the analytical method,
the essential natural isotope interference correction, and the
isotopologue distributions used in this study can be found in
[25]. For absolute flux value calculation, isotopologue informa-
tion on glucose-6-phosphate (G6P), glyceraldehyde 3-
phosphate (GAP), dihydroxyacetone phosphate (DHAP),
erythrose 4-phosphate (E4P), ribulose 5-phosphate (Rl5P), ri-
bose 5-phosphate (R5P), fructose 6-phosphate (F6P), and
sedoheptulose 7-phosphate (S7P) was used as input data.

Measurement uncertainty assessment using Monte
Carlo simulation

The Microsoft Excel add-in @RISK (version 7.5.1; Palisade,
Ithaca, NY, USA) was used for Monte Carlo simulation. The
definition of uncertainty components and their respective dis-
tributions can be found in Table 1. One hundred thousand
iterations were run for one simulation. Since interference cor-
rection of naturally occurring heavy stable isotopes is a pre-
requisite here, the correction step for 13C, 29Si, and 30Si was
included inmeasurement uncertainty budgeting and applied to
the measured IFs of P. pastoris, published in [25]. Expressions
for isotope interference correction of the respective metabo-
lites are listed in Table S1.

Flux and confidence interval estimation

Metabolic fluxes were estimated with the toolbox OpenFlux
version 2.1 implemented in MATLAB 2015b [28]. The met-
abolic network of glycolysis and the PPP of P. pastoris used
was modified from a previously published version [25]. The
lower part of glycolysis was removed to simplify the model
and focus on the ratio of interest: glycolysis/PPP. An
OpenFlux-compatible version of the model is available in
the electronic supplementary material. Confidence intervals
were estimated by Monte Carlo simulations with 10,000 sam-
ples obtained by our corrupting the measurements with (nor-
mally distributed) noise within the provided uncertainty of
measurement. Statistical analysis was also performed in

MATLAB as described in [27] with use of a modified version
of the toolbox OpenFlux2 version 1.2.4 [29]. The goodness of
fit was tested by our comparing the minimized variance-
weighted sum of squared residuals with a X2-distributed sto-
chastic variable, using a 95% confidence level and a degree of
freedom equal to the number of independent measurements
minus the number of free fluxes. The metabolic network was
drawn with Escher [30].

Results and discussion

After the measurand has been specified, in the next step of the
uncertainty estimation process different uncertainty sources
contributing to the total uncertainty of absolute flux values
need to be identified, and can be visualized in a cause-and-
effect diagram, as shown in Fig. 1 [24].

Identification of influencing factors contributing
to measurement uncertainty of metabolic fluxes

Contribution of the biological variability

The general biological variability is commonly estimated as
approximately 15% [31], and hence has a major influence on
uncertainty. Since the cell is highly complex in terms of its
metabolism, controlling the metabolic state during the exper-
iment is vital. Importantly, 13C flux experiments are generally
not performed on a single-cell level. However, to obtain reli-
able results, a cell population needs to behave homogeneously
regarding its metabolic flux distribution, but also in terms of
its genetic stability. In general, it is assumed that a metabolic
steady state can be obtained when the growth rate is constant,
which holds true in a chemostat and with some care taken also
during the exponential growth of batch or fed-batch cultures
[1]. Other factors worth mentioning are the medium compo-
sition and other environmental impacts during cultivation,
such as light, gassing, or inoculum size. The biological
sources of uncertainty can be roughly differentiated into
influencing factors stemming from the actual isotope labeling
experiment on the respective cell culture and aspects of quan-
titative cell physiology. A rather general point to be consid-
ered in the case of eukaryotes is the presence of onemetabolite
in different cell compartments. However, the last point can be
ignored in the present study, since the metabolic reactions
investigated all occur in the cytosol. Besides, sampling and
quenching protocols might introduce further variability [32].
Since reactions in the upper part of the metabolic network
(i.e., glycolysis and PPP) are characterized by high turnover
rates, stopping of all metabolic activities before sampling
needs to be scrutinized [33]. Apart from compound-specific
physicochemical stability, this interplay between quenching/
sampling procedures and differences in metabolic turnover
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rates leads to metabolite-specific biological variations. To in-
dicate this exemplarily, isotope-interference-corrected IFs of
alanine and G6P are compared in terms of their biology- and
measurement-based uncertainty in Fig. S1. In general, the dif-
ferent biological variances are hard to assess in an isolated
manner since they are not independent observables. Hence,
for practical reasons, the precision obtained under repeatabil-
ity conditions of measurement of three biological replicates of
the described tracer experiment [25] was used as the standard
uncertainty for the IFs of the different metabolites.

Contribution of the analytical measurement

Another contribution to the uncertainty of absolute fluxes is the
actual analytical measurement procedure involved in obtaining
the 13C labeling patterns. As stated before, different analytical
approaches can be used for the measurement. In this study, a
GC–MS approach was used since the chromatographic separa-
tion of the multiple isomers of the different sugar phosphates is
crucial. Influencing factors relevant to this measurement proce-
dure are depicted in the fishbone diagram in Fig. 1. Clearly, ion
counting statistics are relevant, especially in the case of low-
abundance isotopologues with low signal intensity. Besides ion-
ization, ion transmission of isotopologues within the mass spec-
trometer needs to be accounted for. The assessment of
isotopologue distribution is most commonly based on integration
of the chromatographic peak areas of the respective
isotopologues. In general, peak integration is performed automat-
ically according to dedicated algorithms. However, because of
noise or potential interferences, both being possibly present in a
complex biological matrix, the peak integration process, includ-
ing appropriate baseline recognition, is prone to errors, and needs

to be checked also manually. Additionally, in 13C-based MFA,
the integration of each of the isotopologues of a metabolite needs
to be highly repeatable concerning the respective integration
limits. This especially holds true for low-abundance signals or
signals affected by a high background level as they are more
affected by small imprecisions on integrated peak areas.
Besides, because of the necessary derivatization procedure in
GC, another uncertainty component needs to be defined; that
is, the variation of the natural isotope composition and the corre-
sponding error propagation due to the isotope interference cor-
rection process.

Contribution of estimating metabolic flux values

The uncertainty in fluxes is also influenced by the assumed
structure of the underlying metabolic network. During the
experimental design, fluxes of interest are selected, and a la-
beled substrate is identified so that the desired fluxes can be
resolved [21]. This is performed by simulation of the resulting
labeling patterns with the metabolic model [27], [34]. Thus, it
is critical to include all reactions that may significantly affect
the isotopologue distribution of the measured metabolites and
verify their atom transitions and (ir)reversibilities. Errors dur-
ing the network reconstruction may result in inappropriate
fitting of the measurement data, which could translate into
inaccurate or imprecise fluxes. Specifically, the computed flux
distribution results from the minimization of uncertainty-
weighted residuals between the measured and the simulated
IFs. However, if the model becomes too complex (e.g., by
allowing too many reversible steps or reactions), the statistical
significance of the estimated fluxes decreases, unless more
data are provided.

Fig. 1 Ishikawa diagram (also
known as a Bcause-and-effect
diagram^) for identification of
possible sources of measurement
uncertainty of absolute flux
values showing the most critical
contributors to the uncertainty of
absolute fluxes
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Assessment of measurement uncertainty
of isotopologue analysis

As an example, for the measurement uncertainty of the C-
isotopologue distribution, the model equation for the

isotope-interference-corrected IF M+1 IFMþ1corrð Þ of a metab-
olite, namely, Rl5P, is described in Eq. 1.

IFMþ1corr ¼
A1corr � F1

A0 þ A1corr � F1 þ A2corr � F2 þ A3corr � F3 þ A4corr � F4 þ A5corr � F5
ð1Þ

This specific IF of Rl5P contains five carbon atoms in the
backbone, of which four carbons are 12C isotopes and one is a
13C isotope. The uncertainty components, including their stan-
dard uncertainties and assigned distributions, are described in
Table 1.

It cannot be ruled out that certain effects, such as ionization,
ion transmission, and peak integration, have different contri-
butions to the measurement uncertainty of the respective IFs.
This means that the size of the contribution may vary with
peak intensity. To account for this, the integrated peak areas
were multiplied by different factors. To keep the integrated
peak area unaltered, for these factors a numerical value of 1

was applied and defined by a standard deviation and distribu-
tion, as shown in Table 1. To estimate the influence of the
contribution of ionization and ion transmission, integrated
isotopologue peak areas of various derivatized metabolites
were plotted against their respective standard deviations, and
the slope of the resulting linear equation was used as the stan-
dard uncertainty for the normally distributed fion. The peak
areas used to set up this linear regression were obtained in
the course of method validation, published in [25]. For assess-
ment of the reliability of automated peak integration, a stan-
dard uncertainty of 2% of the respective area was estimated
from empirical data. This factor (i.e., fint), however, needs to

Table 1 Description of uncertainty components, including unit, standard uncertainty, and their respective distribution

Uncertainty
component

Quantity Definition Standard
uncertainty

Distribution

Anraw Ion counts Integrated raw area of the M+n isotopologue of the
investigated molecule containing n 13C atoms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ion counts
p

Poisson

fint Factor Estimated reliability of automated peak integration
corrected for ion counting statistics

2.0% Triangular

fion Factor Precision of ionization and ion transmission process Specific Normal

An Intermediate result Area to be used for isotope interference correction,
including uncertainty contributions of ion
counting statistics, precision of peak integration,
and precision of ionization and ion transmission

Specific Normal

Ancorr Isotope-interference-
corrected areas

Areas corrected for isotope interferences of naturally
distributed carbon and silicon; in case of the
exemplary compound Rl5P 5 trimethylsilyl
groups and 1 ethoxime group (in total 16 carbon
atoms and 5 silicon a toms)

Specific Normal

Fn Logic variable Binary variable being applied because of
overcorrection.

For negative values after interference correction, the
resulting area is set to zero bymultiplication by 0.
Positive values are not affected as they are
multiplied by 1

a Normalized natural isotope
abundance of 30Si

Isotope abundance of 30Si, normalized to the
abundance of 28Si → 0.03353 (μ = 0.03092)

0.000055 Normal

b Normalized natural isotope
abundance of 29Si

Isotope abundance of 29Si, normalized to the
abundance of 28Si → 0.05080 (μ = 0.04685)

0.00004 Normal

c Normalized natural isotope
abundance of 13C

Isotope abundance of 13C, normalized to the
abundance of 12C → 0.01082 (μ = 0.0107)

0.0004 Normal

IFMþ1corr Ratio Calculated IF of M+1 of a molecule containing 5
carbons in the backbone calculated from
isotope-interference-corrected peak areas
A0corr to A5corr
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be additionally corrected for the contribution of ion counting
statistics, since this is already accounted for by application of a
Poisson distribution to the integrated raw peak areas of the
derivative’s isotopologues. Indeed, the uncertainty of auto-
mated peak integration can be decreased when manual inte-
gration is used; however, since this would be accompanied by
a highly operator dependent value, this was not done in order
to allow a standardized estimation of uncertainty. The equa-
tion for this intermediate result is as follows:

An ¼ Anraw � f int � f n ion ð2Þ

As mentioned in BIntroduction,^ the measured IFs are sig-
nificantly biased by the naturally abundant heavy stable iso-
topes introduced via the derivatization. For the exemplary
compound Rl5P, five trimethylsilyl groups and one ethoxime
group are added in this step. Since for sugar phosphates the [M
− CH3]

+ ion is used for isotopologue analysis by GC–chem-
ical ionization quadrupole TOFMS [11], this leads to a total of
16 naturally distributed carbon atoms and five silicon atoms,
which both impact the 13C labeling pattern of the native mol-
ecule. Obviously, there are also heavy stable isotopes of hy-
drogen, nitrogen, and oxygen present in the molecule that
contribute to the isotope envelope; however, since their natu-
ral abundance is comparatively low (0.0115%D, 0.364% 15N,
and 0.205% 18O), these are omitted from the isotope interfer-
ence correction. The area of the monoisotopic isotopologue A0

is not affected by isotopic interferences, whereas the interfer-
ences of the other isotopologues increase with increasing
mass. Natural isotope interference correction was based on
combinatorics and on the known natural abundance of the
major interfering elements; namely, carbon and silicon [35].
The set of expressions necessary to correct the isotope inter-
ferences of the exemplary compound (i.e., a C5 backbone and
C16Si5 to be corrected) is given in Table 2 and was

implemented in a Microsoft Excel spreadsheet. Here, a repre-
sents the normalized isotope abundance of 30Si, b represents
the normalized isotope abundance of 29Si, and c represents the
normalized isotope abundance of 13C. Standard uncertainties
of these heavy isotopes were taken from an IUPAC technical
report [35], and were normalized to the lightest isotope of the
respective element. Because of the measurement error, inher-
ent to any analytical procedure, as well as the variance of
natural isotope distributions, negative intensities can occur in
the correction approach described, as discussed in [14, 17, 19].
In practice, isotope interference correction is hardly performed
in Microsoft Excel but is rather done with dedicated software
packages. With use of these algorithms, negative values are
typically set to zero during the solution process [14, 17, 19].
To account for this in the present approach, a logic variable,
Fn, was introduced during the isotope interference correction
process. This variable sets negative peak area values to zero,
whereas positive ones are left unaltered. By use of this
pseudofactor, it is also possible to elucidate the uncertainty
of these negative values. The described measurement uncer-
tainty budgeting using the Microsoft Excel add-in @Risk of
Rl5P is given as electronic supplementary material.

For the other metabolites used in the present study, the
same approach, although obviously adjusted for the num-
ber of carbon atoms in the backbone as well as the elemen-
tal composition of the derivatization groups, was used.
Expressions for naturally distributed isotope interference
correction for metabolites used for the flux modeling
(i.e., GAP, DHAP, E4P, Rl5P, R5P, F6P, and S7P) are given
in Table S1.

In Fig. 2 part A the isotopologue distribution obtained from
the aforementioned 13C-based MFA experiment [12] is shown
for the sugar phosphate Rl5P. Elements being corrected for
interferences (namely, naturally distributed silicon and
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Table 2 Expressions for isotope interference correction of ribulose 5-phosphate (Rl5P), a metabolite with 5 carbons in the backbone and
16 carbon atoms and 5 silicon atoms, both being naturally distributed, to be corrected for.

Isotope-inference-corrected
area of M+ n isotopologue

Expression for correction

A0 A0

A1corr A1-(5b×A0)-(16c×A0)

A2corr A2-(5a×A0)-(10b
2×A0)-(5b×A1corr )-[(16c×5b)×A0]-(16c�A1corr )-(120c

2×A0)

A3corr A3-(20ab×A0)-(5a�A1corr )-(10b
3×A0)-(10b

2�A1corr )-(5b�A2corr )-[(16c×5a)×A0]-[(16c×10b
2)×A0]-[(16c×5b)× A1corr ]-

(16c×A2corr )-[(120c
2×5b)×A0]-(120c

2×A1corr )-(560c
3×A0)

A4corr A4-(20ab×A1corr )-(30ab
2×A0)-(10a

2×A0)-(5a×A2corr )-(5b
4×A0)-(10b

3×A1corr )-(10b
2×A2corr )-(5b×A3corr )-[(16c×20ab)×

A0]-[(16c×5a)× A1corr ]-[(16c×10b
3)×A0]-[(16c×10b

2)×A1corr ]-[(16c×5b)× A2corr ]-(16c×A3corr )-[(120c
2×5a)

×A0]-[120c
2×10b2)×A0]-[(120c

2×5b)× A1corr ]-(120c
2×A2corr )-[(560c

3×5b)×A0]-(560c
3×A1corr )-(1820c

4×A0)

A5corr A5-(b
5×A0)-(30a

2b×A0)-(20ab×A2corr )-(20ab
3×A0)-(30ab

2×A1corr )-(10a
2×A1corr )-(5a×A3corr )-(5b

4×A1corr )-(10b
3×A2corr )-

(10b2×A3corr )-(5b×A4corr )-[(16c×20ab)× A1corr ]-[(16c×30ab
2)×A0]-[(16c×10a

2)×A0]-[(16c×5a)× A2corr ]-[(16c×5b
4)×

A0]-[(16c×10b
3)× A1corr ]-[(16c×10b

2)× A2corr ]-[(16c×5b)× A3corr ]-(16c×A4corr )-[(120c
2×20ab)×A0]-[(120c

2×
5a)× A1corr ]-[(120c

2×10b3)×A0]-[(120c
2×10b2)× A1corr ]-[(120c

2×5b)× A2corr ]-(120c
2×A3corr )-[(560c

3×
5a)×A0]-[(560c

3×10b2)×A0]-[(560c
3×5b)× A1corr ]-(560c

3×A2corr )-[(1820c
4×5b)×A0]-(1820c

4×A1corr )-(4368c
5×A0)



carbon) are highlighted in red in the chemical structure
depicted in the upper left part of Fig. 2. In the bar graph in
Fig. 2 part A, the measured isotopologue distribution is shown
in gray, whereas the isotopologue distribution after interfer-
ence correction is shown in blue. As the data stem from an
MFA experiment studying the PPP and glycolysis in
P. pastoris, [1,6-13C2]glucose was used as a tracer [36],
resulting in a predominant IF of M+1. As illustrated in
Fig. 2 part B, considering the sum of all measured
isotopologue peak areas as 100%, 43% of the area corre-
sponds to naturally abundant heavy stable isotope interfer-
ences due to the presence of six derivatization groups.

It can be clearly seen in Fig. 2 part A that the interference-
corrected IFsM+2 toM+5 show either low abundance or even
negative values. The contribution of input quantities to the
measurement uncertainty of the two remaining IFs (i.e.,
IFM+1 corr and IFM+0 corr) is depicted in Fig. 2 part C. The

uncertainty of the lower-abundance IFM+0 corr is considerably
higher than that of IFM+1 corr, and can be explained by the
higher impact of counting statistics Besides, all IFs contribute
at least to some extent to the uncertainty of IFM+1 corr and IFM+

0 corr. This can be explained by the fact that each fraction is
calculated on the basis of the sum of all possible IFs.

After isotope interference correction, low-abundance
values show a significant increase in uncertainty as shown
exemplarily for IFM+4 in Fig. 2 part D. Before isotope
interference correction, the major contribution to the stan-
dard uncertainty of IFM+4 is the counting statistics of the
respective isotopologue. Additionally, the peak integration
of IFM+4 and IFM+1 due to their high abundance contrib-
utes to the relative combined uncertainty of 0.3% obtain-
ed. After isotope interference correction, it can be seen
that, apart from counting statistics, mainly the variance
of the natural abundance of 13C affects the measurement

Fig. 2 Contributions to the measurement uncertainty of selected
isotopologue fractions (IFs) of ribulose 5-phosphate (Rl5P). Data were
obtained from a metabolic flux experiment using [1,6-13C2]glucose as a
tracer molecule. The depicted chemical structure of the fully derivatized
Rl5P [M − CH3]

+ ion highlights in red the naturally abundant elements
introduced by derivatization, necessitating an interference correction. The
bar graph in part A shows the isotopologue distributions obtained for the
six isotopologues of Rl5P; the isotopologue distribution obtained by gas
chromatography–chemical ionization time-of-flight mass spectrometry

measurement [25] is shown in gray, whereas the IFs after isotope inter-
ference correction are depicted in blue. Part B illustrates the extent of
naturally abundant isotope interference by a pie chart: if the sum of all
measured isotopologue peak areas is considered to be 100%, 43% stem
solely from derivatization groups. The pie charts in part C show the
contributions to the uncertainty of IFM+0corr and IFM+1corr, whereas in part
D the pie charts indicate the contributions to uncertainty before (i.e., IFM+

4) and after (i.e., IFM+4corr) isotope interference correction. EtOx
ethoxime, TMS trimethylsilyl
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uncertainty. This significant increase in measurement un-
certainty (namely, from 0.3% to 20.1% relative combined
uncertainty) leads to the consideration of discarding low-
abundance IFs, as they show an inherent higher uncertain-
ty, for the consecutive modeling part.

For the other metabolites (namely, GAP, DHAP, E4P, R5P,
F6P, G6P, and S7P) full data on measured isotopologues as
well as isotope-interference-corrected fractions, including the
respective uncertainties, are given in Table S2.

Impact of measurement uncertainty
on the estimation of metabolic fluxes

As demonstrated in the previous section, low-abundance IFs
result in high relative uncertainty. Thus, it is interesting to
investigate the impact of these small fractions on the flux
estimation. For this purpose, confidence intervals were calcu-
lated with use of only IFs with abundance greater than 2%, as
well as with the complete set of isotope-interference-corrected

Fig. 3 Effect of isotopologue fraction (IF) uncertainties on flux confi-
dence intervals. Estimated fluxes (dots) along with their confidence inter-
vals (bars) in different scenarios are depicted in the small figures associ-
ated with each reaction. Removal of IFs with an abundance of less than
2% has no effect on confidence intervals (compare the blue and red bars).
Flux estimation, when the biological variance (three times the standard
deviation) was included, yields threefold larger confidence intervals (yel-
low bars). Increasing the precision of critical analytes [IFs M+1and M+2
from fructose 6-phosphate (F6P) and glucose 6-phosphate (G6P)] has the
largest impact on reducing flux uncertainty (purple bars). For reversible
reactions, forward, reverse, and net fluxes are shown. Fluxes are given in
millimoles per gram dry cell weight per hour. SD standard deviation.
ADP adenosine diphosphate, ATP adenosine triphosphate, DHAP

dihydroxyacetone phosphate, E4P erythrose 4-phosphate, FBA fructose
bisphosphate aldolase, FBP fructose 1,6-bisphosphate, GAPDH glycer-
aldehyde 3-phosphate dehydrogenase, GLC glucose, G3P glyceralde-
hyde 3-phosphate, G6PDH glucose 6-phosphate dehydrogenase, HEX
hexokinase, NADP nicotinamide adenine dinucleotide phosphate,
NADPH reduced nicotinamide adenine dinucleotide phosphate, PI phos-
phate, PFK phosphofructokinase, PG3 3-phosphoglyceric acid, PGI glu-
cose 6-phosphate isomerase, RIB5P ribose 5-phosphate, RPE ribulose 5-
phosphate epimerase, RPI ribose 5-phosphate isomerase, RUL5P
ribulose 5-phosphate, SED7P sedoheptulose 7-phosphate , TALA
transaldolase, TKT1 transketolase 1, TKT2 transketolase 2, TPI
triosephosphate isomerase, XYL5P xylulose-5-phosphate
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IFs. As observed in Fig. 3, the resulting confidence intervals
are essentially identical, which indicates that small IFs have a
negligible effect on fluxes. Given that [1,6-13C2]glucose was
used as tracer in the experiment, isotopologues with a higher
mass increment were not expected to be generated for the
reactions that were the focus of the present study (e.g., IFs
of R5P from M+2 to M+5; see Fig. 2 part A). These IFs lead
artificially to an improper weighting of the residuals and could
bias parameter estimation during the subsequent fitting proce-
dure [27]. The latter was observed from the improved sum of
squared residuals that is obtained after removal of the small IFs,
as well as from the normal probability plot of the standard-
deviation-weighted residuals (compare Fig. 4a and b). Also,
removal of IFs smaller than 2% shifted the distribution of
weighted residuals toward the expected normal distribution
(Fig. 4b), which then passed a Shapiro–Wilk test for normal
distribution. However, the mean and standard deviation of this
distribution still deviated from the expected values of 0 and 1,
respectively. Moreover, statistical tests on the goodness of fit
revealed bad fitting, since the variance-weighted sum of
squared residuals did not pass the critical value of the X2 dis-
tribution for a confidence level of 95%.

Thus, at this point of the workflow, the main factors
influencing the uncertainty of metabolic fluxes are the quality
of the metabolic model and the accuracy of measured IFs,
rather than their precision, which is on average 2%.
Regarding the metabolic model, several reactions (e.g., treha-
lose 6-phosphate synthase) are not included or are possibly

not annotated [37, 38], leading to an unaccounted influence on
the labeling patterns. Comparison of the IFs measured for 6-
phosphogluconate and G6P supports this idea (Table S3).
Even though these two compounds are expected to be part
of an irreversible linear pathway, significant differences in
their labeling patterns were observed. Thus, unaccounted re-
actions may significantly shift the 13C labeling patterns. As for
the accuracy of IFs, with increasing precision of the analytical
procedure the investigation of potential biases on the true val-
ue becomes increasingly important. The analytical approach
presented satisfies this requirement of delivering highly pre-
cise values; however, it has to be emphasized that biases in-
troduced by the analytical method cannot be corrected current-
ly because of the lack of suitable reference standards. Another
reason for metabolite-specific bias might be differences in the
cell populations (e.g., cell cycle stage, age) in the batch culture
used to generate the data. This could be especially relevant for
analytes in low concentrations in the cell and/or that are affected
by low derivatization efficiency (e.g., E4P).

Assuming that the model cannot be further improved and
data accuracy cannot be further increased, one can obtain a
statistically significant flux estimation by accounting also for
the biological variance stemming from the batch culture of
unsynchronized cells by extending the standard deviation
originating from the analytical procedure with an estimated
factor of 3. However, any increase in the standard uncertainty
of keymeasurements directly correlates with an increase in the
uncertainty of fluxes [27]. With use of this biological factor of

Fig. 4 Normal probability plots
for the standard-deviation-
weighted residuals after flux
estimation. Deviation of a normal
distribution (=0, =1) indicates
errors in themetabolic model or in
the measurement uncertainties of
isotopologue fractions (IFs).
Fluxes were estimated with use of
a all IFs with their modeled
standard uncertainty, b only IFs
with abundance greater than 2%,
c only IFs with abundance greater
than 2% with three times their
standard uncertainty to account
for biological variability, and d
only IFs with abundance greater
than 2% with three times their
standard deviation except for the
isotopologues M+1 and M+2
from fructose 6-phosphate and
glucose 6-phosphate. SSR sum of
squared residuals
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3 for the distribution of the IFs, parameter estimation passed a
test for goodness of fit, but the size of the confidence intervals
for the reactions of interest (i.e., glucose 6-phosphate dehy-
drogenase (G6PDH) and the net flux through phosphoglucose
isomerase (PGI)) increased almost threefold as well (Fig. 3,
yellow bars). In addition, forward and reverse fluxes of the
triose phosphate isomerase reaction became unidentifiable.
Notably, only certain measurements contribute significantly
to the estimation of each flux, as described by the contribution
matrix [27]. Computation of the contribution matrix (Fig.
5) revealed that the measurements of IFs M+1 and M+2
of F6P and G6P have the largest contribution to the flux
estimation of the glucose 6-phosphate dehydrogenase and
phosphoglucose isomerase reactions. To illustrate the im-
portance of these contributing measurements, fluxes were
recalculated with the measured standard deviations of the
three biological replicates [25] for these isotopologues
and an estimated biological factor for 3 for all others.
This resulted in a statistically significant flux fitting with
increased precision for the fluxes of several reactions, in

particular the reactions of interest; namely, glucose 6-
phosphate dehydrogenase and the net flux through
phosphoglucose isomerase (see Fig. 3). These findings
clearly indicate that the model of the investigated
branching point is highly robust. Full data on measured
and simulated IFs obtained with the strategies discussed
for handling uncertainties in the simulation process are
given in Table S4.

As recently reported by Theorell et al. [39], uncertainty
quantification in the form of confidence intervals calculated
by Monte Carlo simulation yields a rather optimistic estima-
tion of flux uncertainty. However, this method was selected
for our analysis for its simple implementation (including the
consideration of covariances) and robustness and, even more
importantly, because of its implementation in internationally
accepted guidelines such as in the Guide to the Expression of
Uncertainty in Measurement guidelines [23]. Similarly, the X2

test for goodness of fit is recommended as standard practice in
13C-based MFA [40]. However, it depends heavily on a cor-
rect estimation of measurement uncertainty given by the

Fig. 5 Contribution matrix of isotopologue analysis with regard to flux
precision. Uncertainty of isotopologue fractions (IFs)M+1 andM+2 from
fructose 6-phosphate (F6P) and glucose 6-phosphate (G6P) has the larg-
est impact on the precision of most of the fluxes, as indicated by the color
plot on the right y-axis. ADP adenosine diphosphate, ATP adenosine
triphosphate, DHAP dihydroxyacetone phosphate, E4P erythrose 4-phos-
phate, FBA fructose bisphosphate aldolase, FBP fructose 1,6-
bisphosphate, GAPDH glyceraldehyde 3-phosphate dehydrogenase,
GLC glucose, G3P glyceraldehyde 3-phosphate, G6PDH glucose 6-

phosphate dehydrogenase, HEX hexokinase, NADP nicotinamide ade-
nine dinucleotide phosphate, NADPH reduced nicotinamide adenine di-
nucleotide phosphate, PI phosphate, PFK phosphofructokinase, PG3 3-
phosphoglyceric acid, PGI glucose 6-phosphate isomerase, RIB5P ribose
5-phosphate, RPE ribulose 5-phosphate epimerase, RPI ribose 5-phos-
phate isomerase, RUL5P ribulose 5-phosphate, SED7P sedoheptulose
7-phosphate , TALA transaldolase, TKT1 transketolase 1, TKT2
transketolase 2, TPI triosephosphate isomerase, XYL5P xylulose-5-
phosphate
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covariance matrix [39]. This increases the need for curation of
the metabolic model structure (e.g., by enzymatic assays or
tailored 13C labeling experiments) [41]. Given a correct model
structure, it is thus possible to use the X2 test to guide the
modeling of measurement uncertainty.

Conclusion

Although the isotopologue distribution of free intracellular
metabolites is determined with high precision, the true value
of IFs within a 13C-based MFA experiment remains poorly
characterized because of the lack of a suitable certified matrix
reference material for isotopologue analysis. The value of
such a reference material was recently demonstrated by
Heuillet et al. [42]. Besides, our analysis also pointed out the
underlying metabolic model as a structural source of error, as
also suggested in other studies [40, 41]. Thus, substantial ef-
forts should focus on improved model curation by capturing
all reactions affecting measured metabolites. As a further con-
clusion, we recommend a priori identification of metabolites
involved in the metabolic fluxes of interest and to specifically
focus on these with, for example, dedicated preconcentration
steps for certain low-abundance metabolites and thereby po-
tentially increase accuracy.
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