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Although scientists around the world have put lots of effort into the development of new treatments for
COVID-19 since the outbreak, no drugs except Veklury (remdesivir) have been approved by FDA. There is
an urgent need to discover some alternative antiviral treatment for COVID-19. Because polyphenols have
been shown to possess antiviral activities, here we conducted a large-scale virtual screening for more
than 400 polyphenols. Several lead compounds such as Petunidin 3-O-(600-p-coumaroyl-glucoside) were
identified to have promising binding affinities and convincing binding mechanisms. Analyzing the dock-
ing results and ADME properties sheds light on the potential efficacy of the top-ranked drug candidates
and pinpoints the key residues on the target proteins for the future of drug development.
Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction NSPs then initiate replication and transcription of the viral genome
In March 2020, the World Health Organization declared a global
pandemic of the novel coronavirus disease (COVID-19) [1]. This
outbreak continues to wreak havoc around the world, causing over
640,000 deaths in the United States and over 4.5 million deaths
worldwide by the end of August 2021 [2]. Thus, rapid discovery
of small-molecule antiviral drugs that are therapeutic against
COVID-19 continues to be a significant task [3].

SARS-CoV-2, the viral agent responsible for COVID-19, is an
enveloped, positive-sense, single-stranded RNA virus [4,5]. Coron-
aviruses contain the largest-known RNA virus genomes, being
roughly 26–32 kb and made up of at least six open reading frames
(ORFs) encoding for proteins [5]. RNA viruses such as SARS-CoV-2
are replicated by releasing these RNA genomes into host cells,
which in turn translate that RNA into proteins as if the viral RNA
were the host cell’s own RNA. The major ORF of SARS-CoV-2
encodes two overlapping polyproteins, PP1A and PP1B. These pro-
teins are generated in the host cell and then cleaved into 16 non-
structural proteins (NSP1-16) by two proteolytic enzymes: the
main protease (Mpro) and papain-like protease (PLpro) [6]. These
by assembling the viral replicase complex on host cells membranes
[3,7,8]. Thus, Mpro and PLpro play vital roles in the replication of
SARS-CoV-2 in the body; without them, the NSPs would not be
released from the larger polyproteins, PP1A and PP1B.

The importance of these proteases to the viral life cycle has led
researchers to wonder if they could be inactivated, and whether a
protease inhibitor would be a useful treatment for COVID-19.
Although coronaviruses cannot replicate if the proteolytic activity
of PLpro or Mpro is blocked [9], no PLpro and Mpro inhibitors used
for COVID-19 treatment have yet been approved. PLpro not only
cleaves PP1A and PP1B at three distinct sites between NSP1-4,
but also helps coronaviruses to elude the host’s immune response
through competitive interaction with ubiquitin and ISG15 [10].
Certain inhibitors of the PLpro from SARS-CoV, the virus responsible
for the 2003 global outbreak of severe acute respiratory syndrome
(SARS), also target the PLpro from SARS-CoV-2 and exhibit antiviral
activity in monkey cells in vitro [10]. Furthermore, PLpro inhibition
reduces the cytopathogenic effect and replication of SARS-CoV-2
while maintaining the interferon antiviral response in vitro [11].
On the other hand, Mpro exclusively cleaves PP1A and PP1B at 11
distinct sites immediately following a glutamine residue [6].
Because no human host cell proteases have this substrate speci-
ficity, Mpro is an ideal drug target [5,12,13]. A drug used to treat
feline infectious peritonitis, a lethal coronavirus infection that
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affects cats, has been found to be capable of inhibiting the
SARS-CoV-2 Mpro and blocking viral replication [14]. Two protease
inhibitors approved for treating hepatitis C virus have been
demonstrated to inhibit the SARS-CoV-2 Mpro and show strong
antiviral activity in a mouse model [15]. Thus, further investigation
into inhibitors of PLpro and Mpro may very likely lead to the
discovery of a safe, effective treatment for COVID-19.

Polyphenols are secondary plant metabolites with a plethora of
health benefits, including strong antioxidant properties that defend
against oxidative damage by free radicals and prevent chronic dis-
ease [16]. In light of the ongoing pandemic, researchers have inves-
tigated polyphenols’ antiviral efficacy against COVID-19. Ghosh
et al. found that the green tea polyphenols epigallocatechin gallate
(EGCG), epicatechingallate, and gallocatechin-3-gallate interact
strongly with one or both of the catalytic residues of the SARS-
CoV-2 Mpro [17], and later demonstrated that six polyphenols from
Broussonetia papyrifera inhibit the catalytic activity of Mpro as well
[18]. Khan et al. also found that EGCG interacted strongly with Mpro

[19]. Ansari et al. found that luteolin had a higher affinity for PLpro

than the FDA-approved antiviral drug, remdesivir [20]. However,
these studies were extremely limited in scope. There are around
500 unique polyphenol structures available for download on the
Phenol-Explorer 3.6 database created by Neveu et al. [21], and cur-
rent studies investigating polyphenols as Mpro and PLpro inhibitors
are limited to a very small selection of molecules, mainly coming
from green tea. Considering that promising results were found
using such a small selection of polyphenols, it is possible that there
are even better outcomes to be found within a larger sample.

Thus, to find potential therapeutic agents against COVID-19,
this study screens a large number of polyphenols to bind to
SARS-CoV-2 Mpro or PLpro. The structures of 480 polyphenols were
obtained from the aforementioned Phenol-Explorer 3.6 database,
and molecular docking was conducted using Maestro. MM-GBSA
scores were collected to quantify the affinity of the molecules for
the proteins, and then ADME (Absorption, distribution, metabo-
lism, and excretion) and drug-likeness properties were analyzed
for further screening. Finally, several polyphenols with high affini-
ties are identified for both proteases: Petunidin 3-O-(600-p-coumar
oyl-glucoside), Malvidin 3,5-O-diglucoside, and Cyanidin 3-O-(600-
p-coumaroyl-glucoside) bind to Mpro (�101.21 kcal/mol,
�95.07 kcal/mol, and �90.17 kcal/mol, respectively), while
Kaempferol 3-O-sophoroside 7-O-glucoside, Cyanidin 3-O-
sambubioside 5-O-glucoside, and Malvidin 3-O-(600-p-coumaroyl-
glucoside) are the top polyphenols bound to PLpro (�87.97 kcal/mol,
�87.33 kcal/mol, and �85.70 kcal/mol, respectively). This study
identifies multiple polyphenols with extremely high binding affini-
ties to the SARS-CoV-2 Mpro and PLpro as potential natural products
used for COVID-19 treatment.
Table 1
The results of the top 3 polyphenols bound to Mpro.

Compound Estimated binding energy (kcal/m

Petunidin 3-O-(600-p-coumaroyl-glucoside) �101.21
Malvidin 3,5-O-diglucoside �95.07
Cyanidin 3-O-(600-p-coumaroyl-glucoside) �90.17
*Saquinavir �93.58
**Epigallocatechin gallate (EGCG) �65.04
***Papyriflavonol A �58.38
****Boceprevir �72.56

*The best-scored potential drug identified by our previous study [36]
**The best-scored potential drug identified by a previous study [17]
***The best-scored potential drug identified by a previous study [18]
**** The original ligand of 7BRP [37]
a. QPlogS is predicted aqueous solubility. The recommended range is �6.5 � 0.5.
b. RO5: number of violations of Lipinski’s rule of five [38]. The recommended range: ma
c. RO3: Number of violations of Jorgensen’s rule of three [39]. The recommended range
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2. Materials and methods

2.1. Ligand preparation

The 3D structures of 480 tested polyphenols were retrieved

from Phenol-Explorer 3.6 (http://phenol-explorer.eu/). All the
polyphenolic compounds were prepared using Ligprep in Maestro
12.4 (Schrödinger). The force field was OPLS3e by default [22].
The process of preparation includes adding hydrogens, computing
correct partial charges, and generating possible conformations.
2.2. Protein preparation

The protein structures of Mpro (PDB ID: 7BRP) and PLpro (PDB ID:

6W9C) from RCSB’s Protein Data Bank (https://www.rcsb.org/) [23]
were prepared for use by Maestro in three steps: preprocessing,
optimization, and minimization. The preprocessing included
assigning bond orders, adding hydrogens, creating zero-order
bonds to metals, creating disulfide, filling in missing side chains
using Prime, deleting water molecules beyond 5.00 Å from het
groups and generating het states using Epik [24]. PROPKA’s default
setting (pH = 7.0) and the OPLS3e force field were applied in opti-
mization and minimization.
2.3. Ligand-protein docking

To estimate the interactions between target proteins and
polyphenols, we conducted ligand–protein docking by using the
Ligand Docking panel in Maestro. Before running docking jobs, a
receptor grid box was generated based on existing ligands in
protein structures. For the structure of Mpro (PDB ID: 7BRP), the
existing ligand boceprevir was used to generate a receptor grid.
In the structure of PLpro (PDB ID: 6W9C), the receptor grid was
generated according to the same site on SARS-CoV PLpro (PDB ID:
3E9S). The size of the receptor grid box was set as default (20 Å).
Ligand-protein docking was performed in extra-precision (XP)
mode.
2.4. MM-GBSA calculation

To predict the binding energies of polyphenols bound to Mpro or
PLpro, we performed Prime MM-GBSA (molecular mechanics gener-
alized Born surface area) in Maestro. In the MM-GBSA panel, the
pose viewer files of the docked complex were uploaded into the
MM-GBSA panel. The force field was OPLS3e.
ol) QPlogSa RO5b RO3c Predicted IC50 (nM)

�4.479 3 2 44.47
�2.335 3 2 45.73
�2.303 3 2 43.00
�2.164 3 2 52.48
�3.554 2 2 60.73
�6.287 0 2 76.96
�4.372 1 0 46.72

ximum is 4.
: maximum is 3.

http://phenol-explorer.eu/
https://www.rcsb.org/


Fig. 1. The docking poses and 2-D ligand–protein interaction diagrams of 7BRP and the top three ligands: A, Petunidin 3-O-(600-p-coumaroyl-glucoside); B, Malvidin 3,5-O-
diglucoside; C, Cyanidin 3-O-(600-p-coumaroyl-glucoside). For the docking poses, S1/S2 subsites are being shown. The purple arrow indicates the hydrogen bond; the green
line represents p-p stacking; the red line represents p -cation interaction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Table 2
The number of hydrogen bonds formed between the top three polyphenols and
essential residues of SARS-CoV-2 Mpro.

Petunidin 3-O-(600-p-
coumaroyl-glucoside)

Malvidin 3,5-
O-diglucoside

Cyanidin 3-O-(600-p-
coumaroyl-glucoside)

Thr26 2 1 1
Phe140 1 1
Leu141 1 1 1
Asn142 1
Gly143 1 1
Glu166 2 3 1
Asp187 1 1
Gln189 1
Gln192 1 1 1
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2.5. ADME and drug-likeness properties prediction

After binding energies calculation, we applied Qikprop module
in Maestro to predict ADME and drug-likeness properties for fur-
ther screening [25]. For Qikprop, the top-ranked polyphenols were
prepared by using Ligprep. Finally, the descriptors such as RuleOfF-
ive (RO5) and RuleOfThree (RO3) were applied to analyze the
candidates.

2.6. AutoQSAR analysis

AutoQSAR module of Schrodinger is a machine learning tool to
build and apply quantitative structure–activity relationship (QSAR)
models [26]. To build machine learning models, 61 Mpro inhibitors
and 20 PLpro inhibitors were retrieved from BindingDB [27]. The
best model of each protease was used to predict half-maximal inhi-
bitory concentration (IC50) of the top-ranked polyphenols. The
details of the polyphenols along with their predicted IC50 values
are presented in Tables 1 and 3.

2.7. Molecular dynamics simulation

To further investigate the dynamic interactions between target
proteins (Mpro and PLpro) and the top two polyphenols, we con-
ducted Molecular dynamics (MD) simulations by using GROMACS
version 2018.1 and CHARMM36 force field [28]. The starting coor-
dinates of the protein–ligand complex were obtained from a
ligand–protein docking study. Then, we used CHARMM-GUI to
build the MD simulation solution boxes which were cubic boxes
with length of 109 Å for 6W9C and 104 Å for 7BRP, and were filled
with water [29–31]. Next, the minimized structures were equili-
brated using an NVT ensemble (constant Number of particles, Vol-
ume, and Temperature) and NPT ensemble (the Number of
Table 3
The results of the top 3 polyphenols bound to PLpro.

Compound Estimated binding energy (kcal/

Kaempferol 3-O-sophoroside 7-O-glucoside �87.97
Cyanidin 3-O-sambubioside 5-O-glucoside �87.33
Malvidin 3-O-(600-p-coumaroyl-glucoside) �85.70
*GRL-0617 �60.75
**Luteolin �43.53
***VIR251 �64.40

*a known prodrug of PLpro identified in our previous study [10].
**the best-scored potential drug identified by the previous study [20].
*** a peptide inhibitor in the structure of 6WX4 [75].
a. QPlogS is predicted aqueous solubility. The recommended range is �6.5 � 0.5.
b. RO5: number of violations of Lipinski’s rule of five [38]. The recommended range: ma
c. RO3: Number of violations of Jorgensen’s rule of three [39]. The recommended range
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particles, Pressure, and Temperature). The target equilibration
temperature was 300 K. Finally, MD simulations were performed
for 100 ns. After the MD simulations, we calculated the root-
mean-square deviation (RMSD) and the energies.

3. Results

3.1. Docking analysis of polyphenols against SARS-CoV-2 Mpro

To seek effective inhibitors from polyphenols against
SARS-CoV-2 Mpro, 480 polyphenols (ligand) were docked onto
SARS-CoV-2 Mpro (protein: PDB ID: 7BRP). Based on the docking
poses, binding energies between the protein and ligand were
calculated by MM-GBSA. Compared to three top drug candidates
proposed by previous studies [17,18], in Table 1, the best three
protein–ligand complexes, 7BRP- Petunidin 3-O-(600-p-coumaroyl-
glucoside) (�101.21 kcal/mol), 7BRP-Malvidin 3,5-O-diglucoside
(�95.07 kcal/mol), and 7BRP- Cyanidin 3-O-(600-p-coumaroyl-gluco
side) (�90.17 kcal/mol) all have better estimated binding affinities.
These top three polyphenols are members of anthocyanins, which
can be found in black raspberry [32]. Meanwhile, we selected four
ligands: saquinavir (�93.58 kcal/mol), EGCG (�65.04 kcal/mol),
papyriflavonol A (�58.38 kcal/mol), and boceprevir (�72.56 kcal/-
mol) as a control group. From Table 1, we find that the binding
energy of Saquinavir is slightly better than that of Cyanidin 3-O-(
600-p-coumaroyl-glucoside) (�90.17 kcal/mol), however, the bind-
ing energies of Petunidin 3-O-(600-p-coumaroyl-glucoside) and
Malvidin 3,5-O-diglucosideare are better than those of the control
group, which suggests the potential inhibitory effects of these
polyphenols against SARS-CoV-2 Mpro.

By comparing the 2D ligand–protein interactions of the top
three polyphenols with Mpro (Fig. 1), we find that they all interact
with Glu166 by forming hydrogen bonds: two hydrogen bonds for
Petunidin 3-O-(600-p-coumaroyl-glucoside), three for Malvidin 3,5-
O-diglucoside, and one for cyanidin 3-O-(600-p-coumaroyl-gluco
side) (Table 2). This result suggests that Glu166 is an essential resi-
due in the binding pocket. According to the previous studies,
Glu166 plays an important role in connecting the substrate binding
site with the dimer interface [33], and it also forms critical interac-
tions with the residues of N-terminal finger on the heterologous
monomer [33,34]. In addition, the equivalent Glu169 on the Mpro

of MERS-CoV is also a key residue, which is crucial in both dimer-
ization and catalysis [35].

Furthermore, these top three polyphenols all interact with
Thr26, Leu141, and Gln192 by forming hydrogen bonds. Petunidin
3-O-(600-p-coumaroyl-glucoside) and Cyanidin 3-O-(600-p-coumar
oyl-glucoside) interact with Phe140 and Gly143 by forming hydro-
gen bonds. Petunidin 3-O-(600-p-coumaroyl-glucoside) and Mal-
vidin 3,5-O-diglucoside both interact with Asp187 by forming
mol) QPlogSa RO5b RO3c Predicted IC50 (nM)

�1.440 3 2 253.25
�1.618 3 2 253.25
�4.664 3 2 243.37
�4.952 0 0 483.16
�3.067 0 0 253.25
�0.066 2 2 261.62

ximum is 4.
: maximum is 3.



Fig. 2. The docking poses and 2-D ligand–protein interaction diagrams of 6W9C and the top three ligands: A, Kaempferol 3-O-sophoroside 7-O-glucoside; B, Cyanidin 3-O-
sambubioside 5-O-glucoside; C, Malvidin 3-O-(600-p-coumaroyl-glucoside). The pink arrow indicates the hydrogen bond; the green line represents p-p stacking; the red line
represents p-cation interaction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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one hydrogen bond each. Additionally, His41 is also a critical resi-
due which can interact with the top three polyphenols. Petunidin
3-O-(600-p-coumaroyl-glucoside) interacts with His41 by forming
5375
two p-p stackings and one p-cation interaction, and Cyanidin 3-
O-(600-p-coumaroyl-glucoside) interacts with His41 via one p-
cation interaction. The number of hydrogen bonds between the



Table 4
The number of hydrogen bonds formed between the top three polyphenols and
essential residues of SARS-CoV-2 PLpro.

Kaempferol 3-O-
sophoroside 7-O-
glucoside

Cyanidin 3-O-
sambubioside 5-O-
glucoside

Malvidin 3-O-(600-p-
coumaroyl-
glucoside)

Gly163 1
Asp164 1 2 1
Arg166 1 1 1
Glu167 1 1
Ser170 1
Pro248 1
Tyr264 1
Gly266 1 1
Asn267 1
Tyr268 1
Tyr273 1 1
Thr301 1 1
Asp302 1
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top three polyphenols and essential residues are listed in Table 1.
Accordingly, we propose that Petunidin 3-O-(600-p-coumaroyl-glu
coside), Malvidin 3,5-O-diglucoside, and Cyanidin 3-O-(600-p-cou
maroyl-glucoside) are the three best drug candidates among all
480 polyphenols tested against SARS-CoV-2 Mpro.

To further screen the drug candidates for Mpro, we calculated
drug-likeness properties and predicted IC50 on the top three
polyphenols by using Qikprop and AutoQSAR, respectively. The
results are shown in Table 1. The polyphenols whose Qikprop
descriptors (QPlogS, RuleOfFive, and RuleOfThree) fell out of the
recommended range were excluded. For the results of AutoQSAR,
it is interesting to note that the predicted IC50 values of the top
three polyphenols are all lower than 50 nM and Cyanidin 3-O-(600

-p-coumaroyl-glucoside) shows the best predicted IC50, which is
generally consistent with the docking results.

3.2. Docking analysis of polyphenols against SARS-CoV-2 PLpro

To identify the best inhibitors of SARS-CoV-2 PLpro, we also
docked 480 polyphenols on SARS-CoV-2 PLpro (PDB ID: 6W9C) by
Fig. 3. The RMSD of protein–ligand complexes. A, 7BRP- Petunidin 3-O-(600-p-coumar
sophoroside 7-O-glucoside; D, 6W9C- Cyanidin 3-O-sambubioside 5-O-glucoside.

5376
performing ligand–protein docking and MM-GBSA calculations
(see Table 3). Consequently, the three best compounds with the
top MM-GBSA binding energies were Kaempferol 3-O-
sophoroside 7-O-glucoside (�87.97 kcal/mol), Cyanidin 3-O-
sambubioside 5-O-glucoside (�87.33 kcal/mol), and Malvidin 3-O
-(600-p-coumaroyl-glucoside) (�85.70 kcal/mol). Kaempferol 3-O-
sophoroside 7-O-glucoside belongs to the group of flavonols.
Cyanidin 3-O-sambubioside 5-O-glucoside and Malvidin 3-O-(600-
p-coumaroyl-glucoside) belong to the group of anthocyanins.
Meanwhile, a known PLpro inhibitor GRL-0617 [10], the best-
scored potential drug luteolin [20], and a peptide inhibitor in the
structure 6WX4 were selected as control. From Table 3, we find
that the top three polyphenols show better binding energies than
the control compounds, which indicates that these polyphenols
might have stronger inhibitory effects.

From the 2D ligand–protein interactions in Fig. 2, we find that
the top three compounds all can interact with Asp164 and
Arg166 by forming hydrogen bonds. Kaempferol 3-O-sophoroside
7-O-glucoside and Malvidin 3-O-(600-p-coumaroyl-glucoside)
interact with Asp164 by forming one hydrogen bond, respectively.
Cyanidin 3-O-sambubioside 5-O-glucoside interacts with Asp164
by forming two hydrogen bonds. These three compounds form
one hydrogen bond with Arg166, respectively. Moreover, Kaemp-
ferol 3-O-sophoroside 7-O-glucoside can interact with Gly266
and Asn267 by forming one hydrogen bond, respectively. Cyanidin
3-O-sambubioside 5-O-glucoside interacts with Gly266 and
Tyr268 by forming one hydrogen bond, respectively. Notably,
Gly266, Asn267, and Tyr268 are residues on blocking loop 2
(BL2), and BL2 plays an important role in inhibitor binding [40].
Hence, the interactions between the top two polyphenols and
BL2 suggest strong inhibitory effects. Accordingly, we conclude
that these two polyphenols can tightly bind onto the binding
pocket. The number of hydrogen bonds between these three com-
pounds and the essential residues are listed in Table 4.

3.3. Molecular dynamics (MD) simulation

To further analyze the stability of complexes, we conducted MD
simulation to calculate RMSD and energy for the top two candi-
oyl-glucoside); B, 7BRP- Malvidin 3,5-O-diglucoside; C, 6W9C- Kaempferol 3-O-



Fig. 4. The energy of protein–ligand complexes. A, 7BRP- Petunidin 3-O-(600-p-coumaroyl-glucoside); B, 7BRP- Malvidin 3,5-O-diglucoside; C, 6W9C- Kaempferol 3-O-
sophoroside 7-O-glucoside; D, 6W9C- Cyanidin 3-O-sambubioside 5-O-glucoside.
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dates. First, RMSD can be used to assess the stability of a protein–
ligand complex. As shown in Fig. 3A, the RMSD for the complex of
7BRP- Petunidin 3-O-(600-p-coumaroyl-glucoside) stabilized
around 0.25 nm between 5 ns and 100 ns. In Fig. 3B, the RMSD
of 7BRP-Malvidin 3,5-O-diglucoside stabilized at 0.25 nm from
10 ns to 40 ns, and then stabilized around 0.3 nm after 40 ns.
The RMSD of 6W9C with Kaempferol 3-O-sophoroside
7-O-glucoside stabilized at 0.25 nm from 4 to 100 ns (Fig. 3C).
From Fig. 3D, we find that the RMSD of 6W9C with Cyanidin
3-O-sambubioside 5-O-glucoside stabilized at 0.25 nm before
30 ns, and then stabilized around 0.35 nm from 30 to 90 ns.
Moreover, the total energies of these four complexes are shown
in Fig. 4. The energies of 7BRP complexes stabilized at around
�1.13 � 106 KJ/mol (Fig. 4A and B). Interestingly, the energy of
6W9C complexes stabilized at around �1.365 � 106 KJ/mol
(Fig. 4C and D). The RMSD and energy analysis show that the
complexes of Mpro or PLpro with their respective top two polyphe-
nols stay stable during the simulation process.

4. Discussion

Many studies have shown natural products possessing antiviral
properties against the Epstein-Barr virus [41,42], herpes simplex
virus [43,44], influenza virus [45], and other viruses targeting the
respiratory tract [45,46–50,74]. Since the 2003 outbreak of SARS,
a number of natural products have been reported to inhibit the
coronavirus which causes SARS (SARS-CoV) or its target proteins
[49–64]. In addition, previous studies demonstrate that many
polyphenols, including quercetin and its glycosylated derivatives,
inhibit cell proliferation of tumor cells or microorganisms
[65–68]. Glycosylation of polyphenols could enhance water
solubility, bioavailability, and their binding affinities to significant
enzymes and improve the drug efficacy [69–71]. This result not
only suggests that polyphenols are potential drug candidates, but
5377
also indicates that this study discovered more polyphenols for
COVID-19 treatment.

Based on the docking pose of each target protein, we find that
the key residue(s) can interact with the best inhibitor candidate
via multiple interactions. First, in the structure of Mpro, Glu166 is
a key residue for Mpro dimerization and substrate binding pocket
creation [72]. The best inhibitor candidate Petunidin 3-O-(600-p-cou
maroyl-glucoside) interacts with Glu166 side chain by forming two
hydrogen bonds (Fig. 5A), which makes an impact on increasing
the binding energy. This result is consistent with the finding in
our previous research which showed that saquinvir interacts with
Glu166 [36]. Accordingly, Glu166 is a key residue for Mpro inhibitor
discovery. In the structure of PLpro, the residues (Gly266-Gly271) in
the BL2 loop are critical for inhibitor binding [7,73]. From Fig. 5B,
we find that the best candidate of PLpro Kaempferol 3-O-
sophoroside 7-O-glucoside forms hydrogen bonds with Gly266
and Asn267 which are the residues in the BL2 loop. Additionally,
the second-best candidate Cyanidin 3-O-sambubioside 5-O-
glucoside form one hydrogen bond with Tyr268 which is also an
important residue in the BL2 loop. Therefore, more interactions
between the inhibitor and the BL2 loop may increase the binding
affinity.

In summary, this study demonstrates the potential of polyphe-
nols being an alternative treatment of COVID-19. The docking
results agree with previous studies identifying the key residues
interacting with the binding inhibitors or prodrugs, but the
proposed inhibitors in this study possess even better estimated
binding affinities. However, most of the top-ranked polyphenols
cannot be ordered for validation experiments currently. We are
attempting to obtain some of them from other labs or produce
them ourselves. The much better estimated binding affinities than
previously identified compounds and rational binding mechanisms
support their potential efficacy and provide the clues for the future
drug development.



Fig. 5. 3D interaction diagrams showing the interactions between the best ligand and the key residue(s). A, Petunidin 3-O-(600-p-coumaroyl-glucoside) interacts with the side
chain of Glu166 via hydrogen bonds (yellow dash lines) on Mpro (PDB ID: 7BRP); B, Kaempferol 3-O-sophoroside 7-O-glucoside interacts with Gly266 and Asn267 via
hydrogen bonds (yellow dash lines) on PLpro (PDB ID: 6W9C). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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