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A B S T R A C T   

Preeclampsia (PE) is a multifactorial pregnancy disease, characterized by new-onset gestational hypertension 
with (or without) proteinuria or end-organ failure, exclusively observed in humans. It is a leading cause of 
maternal morbidity affecting 3–7% of pregnant women worldwide. PE pathophysiology could result from 
abnormal placentation due to a defective trophoblastic invasion and an impaired remodeling of uterine spiral 
arteries, leading to a poor adaptation of utero-placental circulation. This would be associated with hypoxia/ 
reoxygenation phenomena, oxygen gradient fluctuations, altered antioxidant capacity, oxidative stress, and 
reduced nitric oxide (NO) bioavailability. This results in part from the reaction of NO with the radical anion 
superoxide (O2

•− ), which produces peroxynitrite ONOO-, a powerful pro-oxidant and inflammatory agent. 
Another mechanism is the progressive inhibition of the placental endothelial nitric oxide synthase (eNOS) by 
oxidative stress, which results in eNOS uncoupling via several events such as a depletion of the eNOS substrate L- 
arginine due to increased arginase activity, an oxidation of the eNOS cofactor tetrahydrobiopterin (BH4), or 
eNOS post-translational modifications (for instance by S-glutathionylation). The uncoupling of eNOS triggers a 
switch of its activity from a NO-producing enzyme to a NADPH oxidase-like system generating O2

•− , thereby 
potentiating ROS production and oxidative stress. Moreover, in PE placentas, eNOS could be post-translationally 
modified by lipid peroxidation-derived aldehydes such as 4-oxononenal (ONE) a highly bioreactive agent, able to 
inhibit eNOS activity and NO production. This review summarizes the dysfunction of placental eNOS evoked by 
oxidative stress and lipid peroxidation products, and the potential consequences on PE pathogenesis.   

1. Introduction 

Preeclampsia (PE) is a hypertensive disorder of pregnancy, charac-
terized by a de novo high blood pressure development [1–4], with (or 
without) proteinuria [5], and detected after 20 weeks of pregnancy. This 
disease affects around 2–8% of pregnancies worldwide, with an inci-
dence depending on various geographical, nutritional, or ethnic factors, 
and an increased prevalence for patients affected with chronic hyper-
tension, diabetes or obesity [6]. If untreated, PE can evolve to 
life-threatening complications such as eclampsia and HELLP syndrome 
(hemolysis, elevated liver enzymes and low platelet count), fetal growth 
restriction and fetal or perinatal death [7,8]. Only fetus delivery is 
efficient to halt the progression of the disease [9]. 

The mechanisms involved in the onset of PE are still unclear, but may 
involve an abnormal placentation, characterized by a disturbed 
trophoblastic invasion of spiral arteries, which enhances the production 
of reactive oxygen species (ROS), triggers oxidative stress, hypoxia, 
reduced placental perfusion and endothelial dysfunction [1–6]. A main 
cause of abnormal placentation and endothelial dysfunction in PE, is the 
reduced bioavailability of nitric oxide (NO), a key-vasodilator and blood 
pressure regulator in placenta [10]. In endothelium and placenta, NO is 
biosynthesized by the endothelial nitric oxide synthase (eNOS), and 
confers to endothelium its vasorelaxing and anti-aggregant properties 
[10–12]. In addition, NO participates to placentation and the synthesis 
of the vascular endothelial growth factor (VEGF) [13]. Oxidative stress 
is thought to play a pivotal role in the decreased NO bioavailability in PE 
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pathophysiology, via several mechanisms including an inhibition of 
eNOS (eNOS uncoupling) and subsequent defect of NO biosynthesis 
[10], or through the formation of peroxynitrite (ONOO-), via the reac-
tion of NO with the radical anion superoxide O2

•− [14]. 
In this review, we aimed at summarizing how oxidative stress evokes 

eNOS dysfunction in PE placentas, with focus on the role, and the 
mechanisms by which it may affect eNOS activity and NO production, 
thereby contributing to reduce NO bioavailability (Fig. 1). 

2. Clinical aspects and pathogenesis of PE 

2.1. Clinical aspects 

Preeclampsia (PE) is a complex clinical syndrome specific to human 
pregnancy [1], and detected after 20 weeks of gestation, on the basis of 
de novo hypertension (≥140/90 mmHg) [1–4], with (or without) pro-
teinuria (>300 mg/24 h) [5] or end-organ. Other signs may include 
thrombocytopenia with a platelet count in the range of 100,000 per 
microliter, an impaired liver function evidenced by abnormally elevated 
liver enzymes, renal failure with elevated serum creatinine levels 
(>97.2 μmol/l), pulmonary oedema or new-onset cerebral or visual 
disturbances [2–6]. A high risk of PE would be defined by a combination 
of first trimester parameters (detected according to the Fetal Medicine 
Foundation [FMF] algorithm), including maternal factors (age, 
ethnicity, clinical risk factors, mean blood pressure, mean pulsatility 
indexes of both uterine arteries) and serum biomarker assays (PAPP-A or 
Pregnancy Associated Plasma Protein A and PlGF or Placental Growth 
Factor) [1–6]. 

If untreated, PE can lead to serious complications such as eclampsia 
and the HELPP syndrome (hemolysis, elevated liver enzymes and low 
platelet count), that may rapidly become life-threatening in the absence 
of appropriate management [7,8]. 

PE is also responsible for one-third of severe preterm births, often 
associated with intrauterine growth restriction (IUGR) [15]. Women 
with PE history present an increased risk of recurrence for their other 
pregnancies, and a long-term vascular risk for chronic hypertension, 
coronary heart disease, stroke, chronic renal failure, and car-
diovascular/neurovascular mortality [16,17]. 

The etiology of PE is difficult to define, in view of the heterogeneity 
of the clinical forms. Several risk factors are well characterized, 
including nulliparity vs multiparity, immunological risk factors 
including conflicts between the mother’s system and antigens of fetal 
origin, exposure to sperm, obstetrical factors including multiple 

pregnancies, previous PE episodes, maternal factors (women aged over 
40 years, high body mass index, chronic hypertension), as well as ge-
netic (family history of PE) and environmental factors (high altitude, 
stress) [18–24]. There is currently no curative treatment for PE other 
than pregnancy termination and fetus delivery. Many prevention stra-
tegies have been reported, with poor convincing results. To date, several 
meta-analyses support an efficacy of low doses of acetylsalicylic acid 
(aspirin) (60–150 mg/24 h) in preventing PE and IUGR [25–30]. 

2.2. Pathophysiology of PE 

The pathophysiology of PE is mainly related to placental insuffi-
ciency, resulting from an impaired uteroplacental circulation, and a 
disruption of normal deciduo-trophoblastic interactions that affect 
placental development from the first trimester of pregnancy [31]. The 
reduced bioavailability of NO and oxidative stress are thought to play a 
key role in the maternal-placental circulation and in poor placentation 
(Fig. 1) [10,31–35]. 

Several successive stages are described, including an early defective 
placentation leading to placental hypoxia and ischemia-reperfusion of 
the placenta, and finally oxidative stress, maternal endothelial 
dysfunction and inflammation, which are strongly linked in PE patho-
physiology [2–6,31,33,36]. 

2.2.1. Defective placentation 
During PE, the incomplete transformation of spiral arteries involves 

the persistence of smooth muscle cells (SMC), particularly at the basal 
segment within the junction area, and a deficient trophoblast invasion 
observed in 30–50% of spiral arteries of the placental bed. Conse-
quently, there is a decreased and intermittent perfusion of the inter-
villous chamber generating transient hypoxia. As a result, the placenta is 
exposed to a chronic low-grade ischemia-reperfusion phenomenon. The 
mechanisms leading to the failed trophoblastic invasion are not fully 
understood, and could involve immunological factors or insufficient 
proteolysis [2–6,31,36]. 

2.2.2. Ischemia/reperfusion and oxidative stress 
Ischemia/reperfusion is a powerful oxidative stress inducer, much 

more powerful than simple hypoxia even when it is prolonged because 
the placental tissue begins to develop in a physiologically low O2 envi-
ronment. Oxidative stress gradually stimulates the release into maternal 
circulation of apoptotic and necrotic trophoblastic placental debris, pro- 
inflammatory cytokines, and anti-angiogenic factors such as sFlt-1 

Fig. 1. Scheme summarizing the mechanisms, risk factors, and outcomes of PE. PE, preclampsia, GH gestational hypertension, SLE systemic lupus erythematosus, NO 
nitric oxide, PlGF placental growth factor, sFLT-1 Soluble fms-like tyrosine kinase-1, TXA2 Thromboxane-A2, PAPP-A Pregnancy Associated Plasma Protein-A, sEng 
soluble endoglin. 
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(soluble fms-like tyrosine kinase 1 or sVEGFR-1, a soluble form of the 
VEGF type 1 receptor) and soluble endoglin (sEng) [37–39]. The release 
into maternal circulation of placental compounds and debris, and the 
recirculation of maternal leukocytes activated during their passage 
through intervillous chamber of the placenta undergoing 
ischemia-reperfusion and oxidative stress, may participate in the 
maternal systemic inflammatory response, endothelial dysfunction and 
hypertension [40–42]. 

2.2.3. Endothelial dysfunction and inflammation 
The presence of endothelial cell activation markers is a characteristic 

of PE pathogenesis, characterized by increased levels of von Willebrand 
factor, endothelin, thrombomodulin and fibronectin in the maternal 
systemic circulation [1–6,32–37]. The identification of sFlt-1 and 
endoglin, produced in excessive amounts during PE, revealed the links 
between placental abnormality and endothelial dysfunction [38,39]. 
sFlt-1 binds its ligands (VEGF and the placental growth factor, PlGF) 
which are involved in endothelial cell survival, peripheral vasodilation 
and glomerular endothelial integrity during normal pregnancy. Circu-
lating levels of free VEGF and PlGF usually decrease in PE patients, 
resulting in an anti-angiogenic imbalance leading to maternal endo-
thelial dysfunction and glomerular nephropathy [37,43]. 

Endoglin is the receptor for transforming growth factor-β (TGF-β), a 
protein that acts on vascular homeostasis through eNOS. The soluble 
form of endoglin (sEng) prevents the binding of TGF-β to its membrane 
receptors. It potentiates endothelial dysfunction induced by sFlt-1 and 
contributes to increase vascular permeability and hypertension [9,39, 
43,44]. In association with sFlt-1, sEng plays a role in the development 
of severe forms of the disease and would be involved in the patho-
physiology of HELLP syndrome [39]. sEng injection to mice increases 
arterial pressure by increasing vascular resistance, probably through its 
interaction with TGF-β1 that prevents the TGF-β1-mediated eNOS acti-
vation in endothelial cells [39]. Thus it can be postulated that high 
circulating sEng levels, together with increased production of throm-
boxane A2 (TXA2) (vasoconstrictors), and on the other hand, a 
decreased NO and prostacyclin production (vasodilators), modifies the 
vasomotor response, leading to an increase in total peripheral resistance 
and hypertension in PE patients [45]. 

There is also an increase in the peripheral vascular resistance due to 
the activation of the renin-angiotensin system by placental cytokines 
[37,38,46]. Cyclooxygenase and eNOS activities are increased during 
normal pregnancy, and are decreased in PE, leading to vasoconstriction 
and an altered capillary permeability that is partly responsible for 
oedema and hypertension [47]. Atherosclerotic lesions could be detec-
ted in the spiral arteries of PE patients, together with platelet activation 
evidenced by the presence of TXA2, fibrin and complement deposits, and 
foam cells [48]. PE patients are at increased risk of cardiovascular issues, 
especially after menopause [48]. Finally, in the kidney, endothelial cells 
of glomerular capillaries accumulate lipids and frequently obstruct the 
lumen of these capillaries. The characteristic histological defect is 
glomerular endotheliosis, which suggests that the endothelium has a 
central role in PE [1,49,50]. 

PE is characterized by an excessive and progressive activation of the 
immune system along with an increase in proinflammatory cytokines 
and antiangiogenic factors, in the fetoplacental unit and in maternal 
endothelium [37,51,52]. The pathophysiology of PE involves a chronic 
activation of maternal immune system characterized by a prolonged 
inflammatory response during pathological pregnancies. 

All in all, PE is not limited to hypertension associated (or not) with 
proteinuria. It is characterized by an endothelial dysfunction and a 
systemic inflammatory response. A large body of evidence indicates that 
oxidative stress plays a key-role throughout the pathophysiology of PE, 
more in early onset than in late onset PE, because the poor uteropla-
cental perfusion resulting from the defective spiral artery remodeling, 
generates a large amount of ROS [32]. This places oxidative stress as a 
major cause of cytokines and anti-angiogenic factors release in the 

maternal circulation, subsequently leading to endothelial dysfunction 
and inflammation, together with the decrease in NO bioavailability and 
the dysfunctional eNOS activity in placenta [32–35,51–59]. The causes 
of these events are not fully identified. 

3. Reactive oxygen species and oxidative stress in PE 

3.1. Physiological reactive oxygen species (ROS) production during 
pregnancy 

During normal early pregnancy (before the 8-10th week of gesta-
tion), the fetoplacental unit develops in a hypoxic environment, because 
the maternal blood flow is not yet established in the intervillous space 
and spiral arteries are invaded and plugged by extravillous trophoblasts, 
which prevents the entry of maternal blood in the intervillous space 
[54]. O2 and nutrients are supplied by diffusion. The subsequent relative 
hypoxia is apparently required at this early step of development, prob-
ably because of the low level of embryo antioxidant defenses [51]. 

Concomitantly, an increased expression of protective systems, such 
as heat shock protein P70 (HSP70), may be observed at the 9th week of 
gestation in the villous syncytiotrophoblasts in the peripheral zone of 
the primitive placenta [37,55–58]. Likewise, there is an increased level 
of thioredoxin-1, an endogenous antioxidant and redox-sensitive pro-
tein, which plays a protective role in fetal growth, from implantation to 
later stages [60]. 

Then, at the end of the first trimester of normal pregnancy, the 
maternal blood flow begins to vascularize the intervillous spaces, when 
the plug of spiral arteries is dissolved and extravillous trophoblast cells 
remodel spiral arteries to wide diameter “low resistance vessels”. This 
induces a stable blood flow in the intervillous space. 

During normal pregnancy, there is an increase in ROS production, 
including NO, the radical anion superoxide O2

•− , hydrogen peroxide 
(H2O2), the hydroxyl radical •OH, and peroxynitrite ONOO− . Indeed, 
placental is constantly exposed to variations depending on posture, diet, 
exercise and uterine contractions, that may induce mild ROS production 
[53]. 

These physiological ROS are associated with the rapid development 
of placenta [61] and mainly result from the increased mitochondrial 
activity in villous and extravillous trophoblasts [62]. The placenta is 
mitochondria-rich and consumes approximately 1% of the pregnant 
woman’s basal metabolism [63]. The placenta requires energy for its 
own metabolism and remodeling, and for the synthesis of substrates and 
hormones necessary for fetus development. More than 50–70% of O2 
taken up from the uterine circulation are used by the placenta, and 
energy requirements increase with the growth of the fetus [62]. 

There is also a decrease in superoxide dismutase (SOD) activity and 
plasma thiol levels, while ceruloplasmin levels increase, suggesting a 
certain level of “physiological stress” during normal pregnancy through 
the production of ROS [33,35,64]. Moderate ROS levels are implicated 
in proliferation and cell maturation required for pregnancy maintenance 
and embryo development [65,66]. ROS are also involved in the degen-
eration of the villous tissue in the peripheral region, which is essential 
for the formation of placental membranes [32]. When ROS are produced 
in excess and when antioxidant defenses are overwhelmed, high levels of 
ROS (i.e. oxidative stress) become pathological, as observed in PE [66]. 

3.2. Oxidative stress in the pathogenesis of PE 

3.2.1. Hypoxia/reperfusion, a main cause of oxidative stress in PE 
Hypoxia-reoxygenation events, due to reduced organ blood flow 

(ischemia), followed by reperfusion and reoxygenation, are main sour-
ces of ROS, and are associated with antioxidant depletion, oxidative 
stress, oxidative damages and inflammatory responses [51–53,55–58]. 
Impaired trophoblastic invasion, together with subsequent poor 
placentation and reduced placental perfusion, lead to repeated hypo-
xia/reoxygenation waves, that stimulate ROS production in the 
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intervillous chamber [52]. This ROS production involves a stimulation 
of the mitochondrial respiratory chain and an activation of 
ROS-producing enzymes including NADPH oxidase and xanthine oxi-
dase [52,57,58,66]. There is an activation of monocytes and neutro-
phils, which produce pro-inflammatory cytokines, antiangiogenic 
factors and microparticles, and stimulate ROS production [67,68]. 
Another source of ROS may originate from the dysfunction of eNOS 
[10–13]. All these events contribute to the “placental oxidative stress”, 
possibly involved in the systemic endothelial dysfunction and vascular 
inflammation that characterize PE pathogenesis [52,56–58]. There is a 
concomitant proinflammatory response, i.e. a release of inflammatory 
cytokines particularly the tumor necrosis factor (TNF-α) and 
interleukin-6 (IL-6), and a (debated) decrease in anti-inflammatory and 
antioxidant defenses including IL-10, SODs, catalase, glutathione 
peroxidase (GPx) [33,35,52,69]. Hypoxia/reperfusion promotes the 
release in the maternal circulation, of placental debris and apoptotic 
fragments i.e. damaged trophoblastic cells, which potentiate inflam-
mation [52,56,58,70]. Oxidative stress markers, including oxidative 
modifications of proteins and lipid peroxidation products, could be 
observed both in maternal circulation and in the placenta, while anti-
oxidant capacity and antioxidant reserves are globally reduced [33–35, 
52,56–58,66,71]. Recently Taravati et al. raised the hypothesis that 
oxidant defenses could increase at the beginning of PE pregnancy, to 
compensate the outcomes of oxidative stress and protect the fetus. 
However, the antioxidant capacity of plasma is finally not sufficient to 
counter oxidative stress in PE PE4 compared with that of a normal 
pregnancy. Further studies are warranted to investigate the role of di-
etary supplements in preventing preeclampsia and evaluation of genetic 
variation of antioxidant enzymes contributing to this morbid condition 
in women with different ethnics. As discussed by Taravati et al., [72], it 
is likely that antioxidant defenses could be reinforced at the beginning of 
pregnancy, as a compensatory mechanism to protect the fetus against 
oxidative stress, this mechanism being however not enough efficient to 
counter oxidative stress outcomes in PE. 

Oxidative stress promotes the peroxidation of polyunsaturated fatty 
acids (PUFA), which generates a huge amount of lipoperoxides, hydro-
peroxides and lipid peroxidation-derived aldehydes, that elicit cellular 
dysfunction, inflammation and apoptosis [73]. Previous reports from 
Walsh et al. [74], had shown that placental ischemia may be enhanced 
by an increased biosynthesis of TXA2, a vasoconstrictor and platelet 
aggregant eicosanoid, concomitant with a decrease of prostacyclin, 
another eicosanoid with vasodilating and antiaggregant properties, 
which counteracts the effects of TXA2 [74,75]. This imbalance of the 
prostacyclin/TXA2 ratio, could play a role in the decreased uteropla-
cental blood flow, placental ischemia and endothelium damages [74, 
75]. 

3.2.2. Main sources of ROS in PE 

3.2.2.1. NADPH oxidase. NADPH oxidases (NOXs) constitute a ubiqui-
tous multicomponent protein complex, which produces O2

•− by trans-
ferring one electron to oxygen from NADPH to NADP+ [76]. The NADPH 
oxidase complex includes cytosolic proteins (p47phox, p67phox, and 
p40phox), and membrane-associated proteins (p22phox and gp91phox). 
Several catalytic NOX isoforms have been described, including NOX1, 
NOX2, NOX4 and NOX5 which are expressed in vascular cells [77]. Note 
that the NOX4 isoform is constitutively active and only requires the 
membrane protein p22phox [78]. 

In pregnancy, moderate doses of O2
•− produced by NOXs, may help to 

regulate the vascular tone, while high O2
•− levels generate oxidative 

stress and contribute to vascular dysfunction [71,79]. Increased 
expression of p22phox, p47phox, and p67phox have been reported in 
trophoblasts and placental SMC in the placenta of PE-affected women 
[80]. Likewise, higher placental NOX activity was reported in women 
with early-onset compared with late-onset PE [71,81]. 

NOX2 is the prototypic NADPH oxidase involved in the phagocytic 
respiratory burst in neutrophils [82]. Otherwise, vascular NOX2 is 
expressed in endothelial cells and SMC. Its basal activity is low, but it is 
rapidly activated in response to inflammatory and stress-inducing agents 
(angiotensin II or AngII, cytokines, interleukin-1 …) or growth factors 
[80]. NOX2 plays a prominent role in the generation of peroxynitrite 
(ONOO-), through the reaction of NO with O2

•− produced by NOX2, 
which decreases NO bioavailability, triggers eNOS uncoupling and 
promotes endothelial dysfunction [83]. 

Neutrophil levels are significantly increased in the peripheral cir-
culation of PE patients, placing these cells at the center of ROS gener-
ating systems during PE [67,68]. NOX2 is largely involved in ROS 
production by activated neutrophils during PE, suggesting its implica-
tion in this disease [58]. The expression and enzymatic activity of NOX2 
are elevated in PE, in endothelial cells and placentas, or in small resis-
tance vessels in abdominal fat from PE-affected women [57,58,84,85]. 
Many factors can activate NOX2 in PE, such as elevated circulating 
levels of inflammatory cytokines, increased AngII/AngII type I receptor 
(AT1R) sensitivity, or placental vascular shear stress [86], which stim-
ulates the release by placenta of agents such as activin, an anti-
angiogenic factor implicated in NOX2 up-regulation and endothelial 
dysfunction [87]. 

NOX1 is increased in syncytiotrophoblasts and endothelial cells in 
placentas from PE patients [88]. It is inducible and activated by in-
flammatory factors including AngII and cytokines, and may contribute 
to the decrease in NO bioavailability and hypertension [88]. 

NOX4 is constitutively active, and has the particularity of producing 
H2O2, due to its conformational E-loop structure which accelerates O2

•−

dismutation [89]. Intracellularly, NOX4 would be located in mito-
chondria [78,90]. Its implication in vascular ROS production in PE is 
still unclear. A recent article by Choi et al., indicated that endothelial 
intermediate-conductance KCa3.1 and small-conductance KCa2.3 
channels, which are involved in endothelium-derived hyperpolarization 
and SMC relaxation, could be downregulated in uterine endothelial cells 
from PE-affected patients, through an increased expression of NOX2 and 
NOX4, and the subsequent increase in O2

•− and H2O2 production [91]. 

3.2.2.2. Xanthine oxidase. Xanthine oxidase is another important 
source of O2

•− in PE [92]. In fact, xanthine oxidoreductase exists in two 
interconvertible but distinct forms, i.e. the constitutively expressed 
xanthine dehydrogenase (XD), and xanthine oxidase (XO), which is 
activated by the oxidation of thiol groups, that converts XD to XO [91]. 
XO is an iron and molybdenum-containing flavoprotein, which oxidizes 
hypoxanthine from nucleic acid metabolites to xanthine, and xanthine 
to uric acid, producing O2

•− and H2O2 [93]. Its activity is low in normal 
conditions, but it can be rapidly stimulated by inflammatory cytokines 
and ischemia/reperfusion conditions, as observed in PE [94]. As hy-
peruricemia is frequently observed in PE patients, increased XO activity 
may likely contribute to the production of high O2

•− levels and oxidative 
stress in this disease [92,94–96]. 

3.2.2.3. Mitochondria. Placental mitochondrial ROS production and 
oxidative damages are increased in PE, in response to hypoxia/reox-
ygenation events and depending on PE severity [97]. Hypoxia/reox-
ygenation stimulates the production of mitochondrial O2

•− by the 
complexes I and II of the respiratory chain, rapidly dismutated into H2O2 
by the mitochondrial manganese SOD (MnSOD) or by copper and zinc 
SOD (CuZnSOD). H2O2 is then neutralized (reduced to water) by 
glutathione peroxidases (GPx) or catalase [33,34,52]. As discussed by 
Holland et al. [97], mitochondrial ROS signaling in moderate PE 
placenta may stimulate compensatory antioxidant responses, gene 
expression and uncoupling protein activation, allowing to maintain the 
mitochondrial function, whereas in more severe PE clinical forms, 
mitochondrial dysfunction and altered mitochondrial processes are 
observed in cytotrophoblasts and syncitiotrophoblasts. Electron 
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microscopy studies of mitochondria in PE vs normotensive placentas, 
showed significant morphological differences, such as degenerative and 
swollen appearance, suggesting an intermittent anoxia state in PE 
mitochondria [98]. Comparative proteomic analysis performed on 
mitochondria isolated from PE vs normotensive placentas, allowed to 
identify at least 26 mitochondrial proteins differentially expressed in PE, 
with four proteins upregulated and 22 downregulated, in the field of 
fatty acid oxidation, the tricarboxylic acid cycle, apoptosis, ROS gen-
eration and oxidative stress [98]. As well, an increased mitochondrial 
activity, associated with a reduction of the mitochondrial mass, and a 
nitroso-redox imbalance were reported in placentas overexpressing 
Storkhead box 1 (STOX1), a transcription factor involved in the genetic 
forms of PE [99], all these observations indicating that mitochondria 
dysfunction largely contributes to PE pathophysiology. 

3.2.2.4. Decreased antioxidant levels. The cellular redox homeostasis is 
tightly maintained by a balance between ROS production and their 
neutralization by enzymatic and non-enzymatic antioxidant systems 
able to neutralize free radicals or metal ions involved in free radical 
production [72]. Endogenous antioxidant systems include 
low-molecular-weight agents such as glutathione, ubiquinol, or uric 
acid, proteins able to scavenge free radicals, or bind metal ions (serum 
albumin, lactoferrin, transferrin, ceruleoplamin, ferritin, haptoglobin, 
hemopexin), and enzymatic systems that regulate the intra- and extra-
cellular ROS levels (SODs, catalase, GPx, thioredoxins, heme-oxygenase) 
[73,100]. Exogenous sources of antioxidants are found in the diet, 
mainly vitamin E (α-tocopherol), vitamin C (ascorbic acid), β-carotene, 
and polyphenols [100,101]. 

Antioxidant status vs oxidative stress have been largely explored in 
PE patients. However, there is a wide heterogeneity in plasma and 
placental levels of oxidative stress markers vs antioxidant status in the 
literature [32–34]. In normal pregnancy, there is an increase in anti-
oxidant defenses [102], evidenced by an increased antioxidant capacity. 
It is generally stated that antioxidant capacity and the antioxidant 
content are lower in PE. However recent studies reported by Ferreira 
et al., pointed out increased levels of SOD and catalase antioxidant en-
zymes, increased level of reduced glutathione (GSH) and a higher 
GSH/GSSG ratio, in placentas from PE-affected women, by comparison 
with pregnant normotensive women [32,34]. As discussed by the au-
thors, these increased antioxidant parameters could be a compensatory 
mechanism tending to protect the fetus against aggressive oxidative 
stress in placenta. By comparison, in the circulating blood, it seems that 
antioxidant defences are lower in PE. A meta-analysis study investigated 
the results concerning both oxidative stress markers and 
enzymatic/non-enzymatic antioxidant systems in the plasma of PE pa-
tients [72]. The main conclusions were that circulating levels of anti-
oxidants were globally decreased in PE, with lower plasma levels of 
glutathione (GSH) and conversely increased glutathione peroxidase 
(GPx) activity. Most studies indicated a decrease in plasma SOD activity, 
possibly resulting from its inhibition by an increased accumulation of 
H2O2, correlated with increased activities of catalase and GPx [72]. 

Hyperuricemia is frequently observed, and the concentration of 
serum uric acid in pregnant women with preeclampsia has been sug-
gested to be associated with disease severity [94,95]. Though contra-
dictory data were reported concerning vitamin E and vitamin C plasma 
concentrations in PE [103,104], the meta-analysis study concluded to 
their significant decrease, even though a significant heterogeneity was 
observed through the data [72]. This decrease in vitamin C and vitamin 
E content, combined with increased ROS production, may exacerbate 
oxidative stress, lipid peroxidation and cellular damages. In this context, 
large randomized trials were carried out to evaluate the protective effect 
of vitamin E and C supplementation, but generally gave controversial 
and disappointing results in the prevention of PE [105] (and see section 
5). However, as reported in a recent meta-analysis, an improvement of 
pregnancy outcomes could be observed when antioxidants are 

administered in treatment of confirmed preeclampsia [34]. 

3.2.3. Accumulation of lipid peroxidation products 
Oxidative stress triggers direct damages on lipids, proteins and DNA, 

causing various pathological responses including activation of the 
endoplasmic reticulum stress, cellular dysfunction and cell death [73, 
106,107]. The oxidation of polyunsaturated fatty acids (PUFAs) gener-
ates lipid peroxidation products (LPPs), among them lipid 
oxidation-derived aldehydes including acrolein, 4-hydroxy-2-nonenal 
(HNE), malondialdehyde (MDA), 4-oxo-2-nonenal (ONE), which cova-
lently bind to the nucleophilic sulfhydryl and primary amine groups of 
proteins, forming Schiff bases, Michael adducts and protein crosslinks 
[106–110]. The modification of proteins by LPPs depends on their na-
ture, expression and conformation, oxidative stress intensity and dura-
tion, cell type, local LPP concentration, and generates various biological 
responses from the expression of protective and adaptive factors to 
protein dysfunction, inflammation, senescence and apoptosis 
[109–115]. 

HNE and MDA-adducts are detected in PE patients, in the fetal and 
maternal circulation, syncytiotrophoblasts, endothelial cells and mac-
rophages [52,114–117]. PE placentas exhibit high levels of carbonyl 
proteins, which are a hallmark of oxidative stress, lipid peroxidation and 
aging [111,117–119]. 

The presence of LPPs in PE placentas, could be indicative of their 
premature senescence, in agreement with the hypothesis that acceler-
ated placental aging is involved in PE pathophysiology via oxidative 
stress [120]. Indeed, connections exist between oxidative stress, cell 
senescence and premature placental aging, with possible implication in 
PE pathophysiology [120–124]. Placental aging during normal preg-
nancy, is a physiological mechanism observed in the multinucleated 
syncitiotrophoblast layer which is continuously undergoing a 
senescent-associated secretory phenotype (SASP) [120,122]. Physio-
logically, there is an increased expression of senescence markers, such as 
the senescence-associated β-galactosidase (SA-βgal), or the cell cycle 
inhibitor p21 [125,126]. However in pathological pregnancies, 
including PE, there is an upregulation of senescence markers and mo-
lecular pathways associated with SASP, suggesting that premature 
placental senescence is associated with adverse pregnancy outcomes, 
including IUGR and PE. Though the causes and mechanisms of prema-
ture placental senescence are not yet clarified, a role is expected for 
oxidative stress as trigger of chronic inflammation and lipid peroxida-
tion which characterize aging [119,120]. 

In a recent report, Guerby et al. showed that the placental eNOS is 
targeted by HNE and ONE in PE placentas and in cultured human tro-
phoblasts, with possible consequences on its enzymatic activity and NO 
production [127]. The accumulation of LPPs is associated with an 
increased expression of heat-shock protein 70 (HSP70), in both fetal and 
maternal circulation, which could act as a defense mechanism in tissues 
with altered antioxidant function [128]. 

4. Placental eNOS dysfunction and oxidative stress in PE 
pathogenesis 

4.1. Physiological role of NO in pregnancy 

4.1.1. NO and NO synthase activity 
NO plays an essential role in vascular homeostasis due to its vaso-

dilatory effect. NO is synthesized by nitric oxide synthases (NOS), from 
L-arginine and molecular oxygen (O2) according to the following 
reaction: 

L-arginine + O2→ L-citrulline + NO. 
In short, the reaction allowing NO synthesis could be compared to 

two mono-oxygenation reactions. The first reaction consists of the 
oxidation of L-arginine. This reaction produces an intermediate, –OH–L- 
arginine, which is rapidly oxidized into L-citrulline. These two oxygen-
ation reactions occur in parallel with a concomitant conversion of 
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NADPH to NADP+. The electrons are supplied by NADPH, transferred to 
flavins (FAD and FMN) and calmodulin, then presented to heme, the 
catalytic center. 

Three NOS isoforms have been characterized, the neuronal NOS 
(nNOS or NOS1), the inducible NOS (iNOS or NOS2) and the endothelial 
NOS (eNOS, or NOS3, OMIM 163729, GenBank NM_000603.5), in 
reference to the tissues in which they were first described. The three 
isoforms function in a homodimeric state. Each monomer contains an 
oxygenase domain in the N-terminal section and a reductase domain in 
the C-terminal section. The oxygenase domain has binding sites for FAD, 
FMN and NADPH and is linked through a calmodulin recognition site to 
the reductase domain which has binding sites for heme, tetrahy-
drobiopterin (BH4), and L-arginine. In functional NOS, electrons are 
released by NADPH in the reductase domain and are transferred through 
FAD and FMN to the heme group of the opposite dimer. At this point, in 
the presence of L-arginine and the cofactor BH4, the electrons enable the 
reduction of O2 and the formation of NO and L-citrulline [129,130]. The 
bioavailability of substrates (L-arginine and O2) and the cofactor BH4 are 
important elements of enzyme activity. 

The formation of NO requires electron flow, starting at the flavin 
level in the reductase domain, and ending at the heme level, on the 
oxygenase domain of the enzyme. The oxidized heme is able to bind O2 
and L-arginine to synthesize NO and L-citrulline [129]. The presence of 
BH4 is essential for protein coupling and NO formation, as it ensures the 
“coupling” of the protein in its homodimeric form. BH4 binds to the 
interface of the two monomers where it is directly involved in the 
oxidation process by temporarily supplying an electron to the heme. 
Consequently, in the absence of BH4, the bond between O2 and heme is 
broken and NOS produces O2

•− (“NOS uncoupling"). 
BH4 also participates to the binding of L-arginine and electron 

transfer. In the absence of BH4, L-arginine cannot bind to its site, and the 
terminal electron acceptor becomes O2, thereby forming O2

•− , and 
decreasing NO production and bioavailability. In this context, O2

•− and 
NO may interact to form peroxynitrite, ONOO-. eNOS is constitutively 
expressed in vascular endothelium, placental vessels and syncytio-
trophoblasts [131–133]. Its activity is stimulated by growth factors, 
estrogens and cytokines [132,133], and is regulated by 
post-translational modifications, including acylation, phosphorylation, 
S-nitrosylation or S-glutathionylation, depending on the cellular redox 
state [134]. 

The eNOS gene (NOS3) is located at the end of the long arm of 
chromosome 7 (7q35-36). eNOS includes some polymorphisms, two of 
which (G894T and T-786C) being possibly associated with a decreased 
NO production and an increased risk of PE [135]. 

Inducible NOS (iNOS) is weakly expressed under physiological 
conditions. Its expression is stimulated by inflammatory factors, sepsis 
or when oxidative stress is decompensated [136]. Unlike nNOS and 
eNOS, iNOS is not calcium-dependent and could produce high levels of 
NO (a hundred times higher than those generated by other NOS iso-
forms), over long periods of time. NO produced by iNOS can combine 
with O2

•− , to form toxic ONOO-, leading to vasoconstriction and endo-
thelial dysfunction [137]. 

4.1.2. Physiological properties of NO 
NO is a signaling agent involved in many essential physiological 

functions, such as blood pressure regulation, vasodilation, long-term 
potentiation of the central nervous system capacities, and immune sys-
tem activity. NO exerts its effects according to two direct or indirect 
mechanisms, in endothelium and SMC. The direct pathway is S-nitro-
sylation, which allows NO to modify the functional properties of the 
protein to which it binds. The indirect pathway is cGMP (guanosine 
monophosphate cyclase), which is responsible of NO vasorelaxing 
properties. 

During pregnancy, NO has a primary role in vasodilation and blood 
pressure regulation, placentation and VEGF synthesis [10–12]. 

4.1.2.1. The indirect NO/cGMP pathway. This pathway is involved in 
vasodilation. Once NO is produced by endothelial cells (via eNOS), it 
diffuses into adjacent SMC and binds guanylate cyclase, which converts 
guanosine triphosphate into cyclic guanosine monophosphate (cGMP). 
cGMP activates protein kinase G (PKG), leading to a decrease in intra-
cellular calcium concentration. This decrease triggers a relaxation of 
smooth muscle fibers, as well as a reduction in the formation of the 
calmoduline-Ca2+ complex, thereby inhibiting vasoconstriction [138, 
139]. 

NO released by endothelial cells in vivo causes a permanent vasodi-
lation of the arterial tone that helps to regulate arterial pressure. 
Therefore, eNOS inhibition is associated with a decrease in endothelial- 
dependent relaxation in vitro and in vivo [138–141]. 

NO is involved in the arterial wall remodeling, as it stimulates 
angiogenesis under the control of the hypoxia-induced transcription 
factor HIF-1α, the mobilization of endothelial progenitor cells and the 
production of VEGF [13]. In addition to its vasodilatory properties, NO 
inhibits leukocyte adhesion to endothelium surface, platelet aggregation 
and SMC proliferation, and is globally considered as antiatherogenic 
[10,142]. 

4.1.2.2. S-nitrosylation by NO. NO may covalently bind to protein 
cysteine residues, to form nitrosothiol groups (SNO). The S–NO bond 
can be formed by other NO-derived species, including N2O3, S-nitroso- 
glutathione or GSNO, and S-nitrosylated proteins [143,144]. S-nitro-
sylation is rapidly reversible, and involves various mechanisms, such as 
thioredoxin, GSNO reductase, transnitrosylation or ascorbate [145, 
146]. The post-translational modification of proteins by S-nitrosylation 
modifies protein function and cellular signaling, as reported for eNOS, 
which could be inhibited by NO through the S-nitrosylation pathway 
[147]. 

4.1.3. NO in physiological pregnancy 
NO is a key-regulator of maternal systemic vasodilation, cardiovas-

cular changes and blood pressure during pregnancy [10–12]. As recently 
reviewed by Sutton et al. [10], NO plays a critical role throughout 
pregnancy, including ovulation, implantation, vascular remodeling of 
spiral arteries, vascular tone, and feto-placental blood flow. In the early 
stages of pregnancy, NO is required for an optimal migration of tro-
phoblasts, and the remodeling of uterine spiral arteries. The increased 
release of endothelial NO leads to spiral artery vasorelaxation, via a 
reduction of free calcium in SMC [148], which could finally facilitate 
cytotrophoblast invasion, artery remodeling and the regulation of the 
feto-placental blood flow [149]. 

Among other properties, NO inhibits the vasoconstriction evoked by 
endothelin-1 and TXA2 [150–152], and stimulates the production of the 
vasodilatory prostacyclin. NO is a main effector of VEGF production, and 
takes part in VEGF, fibroblast growth factor (FGF) and angiopoietin-1 
signaling, so that it plays a key-role in vasculogenesis and angiogen-
esis during pregnancy [13]. A reciprocal relationship exists between NO 
and VEGF signaling, as NO and hypoxia upregulate VEGF gene expres-
sion by enhancing HIF-1α and heme-oxygenase 1 (HO-1) activities, 
while VEGF stimulates eNOS to produce NO via the activation of several 
signaling pathways including Akt/PKB, Ca(2+)/calmodulin, protein 
kinase C, or sphingosine 1-phosphate (S1P), as well as HIF-1α and HO-1 
activation, depending on the rate of NO production [13,153,154]. 

4.2. Oxidative stress and NO bioavailability in PE 

Conflicting reports exist concerning NO levels in PE. Most reports 
indicate that PE patients exhibit lower plasma levels of NO, evaluated 
through the determination of nitrite/nitrates assays, whereas other 
studies show no difference or even higher NO levels. The role of NO in 
pregnancy and PE, including NO substrate availability, NOS expression 
and activity, inhibition or increase in NO synthesis and the 
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consequences for placenta and endothelium, have been recently 
comprehensively reviewed by Sutton et al. [10]. In the present article, 
we mainly focus on alterations evoked by oxidative stress on the 
NO/eNOS pathway. 

NO and eNOS are intracellular sensors of the cellular redox state of 
the cell. In physiological conditions, when ROS production is low, NO 
acts as a buffer by reacting with O2

•− and forming ONOO- [155]. As long 
as NO production is higher than that of ONOO-, this association has no 
consequences for cell homeostasis. In contrast, when ROS production 
exceeds NO production, eNOS becomes uncoupled and unable to pro-
duce NO [142,156]. The reduced bioavailability of NO results from the 
decrease in NO production and/or an increase in reactive oxygen species 
(ROS) production, leading to an imbalance between NO and O2

•− , the 
formation of ONOO- and the inhibition of eNOS activity [157,158] 
(Table 1). Oxidative stress may affect NO synthesis substrates and eNOS 
activity or expression [159]. 

4.2.1. Formation of peroxynitrite (ONOO-) 
During PE, the decreased NO bioavailability in placenta may result 

from an increased production of O2
•− which reacts with NO to form 

peroxynitrite ONOO- [14,83,172]. ONOO- is a powerful pro-oxidant and 
nitrating agent that causes many cellular damages, particularly on DNA 
and proteins [173], involved in inflammation, hypertension and toxicity 
[155,173]. ONOO- may post-translationally modify tyrosine residues on 
proteins to form 3-nitrotyrosine (protein nitration), that constitute a true 
“molecular fingerprint” of peroxynitrite formation [160]. The formation 
of 3-nitrotyrosine could be observed in normal pregnancy, but it is 
largely increased in the placental villous vascular endothelium, sur-
rounding vascular smooth muscle and villous stroma in PE patients 
[160–162]. The occurrence of protein nitration in placentas, may lead to 
a gain or loss of function (loss of catalytic activity, impaired interactions 
with other molecules, increased degradation and reduced expression) 
[161,162]. This is of importance for signal transduction enzymes and 

transporters, which could be inactivated by nitration [174]. For 
instance, the nitration of phospho-p38 mitogen-activated protein kinase 
(p38MAPK) has been described in PE placenta, resulting in an inacti-
vation and a reduction of expression, with possible consequences on 
trophoblast invasion and placental development [163]. Oxidative stress 
affects NO synthesis, substrate availability and eNOS co-factors. 

4.2.2. Inhibition of eNOS enzymatic activity 

4.2.2.1. Arginine depletion. The enzymatic activity of eNOS depends on 
its cofactors (BH4, FAD, FMN, NADPH), and on the availability of its 
substrate, L-arginine. Plasma L-arginine (80–120 μM) represents only 
1.2% of the total fraction but contributes to approximately 60% of NO 
formation in endothelial cells [175]. The flow of L-arginine is not the 
only factor that affects its bioavailability within endothelial cells. In fact, 
the metabolism of this molecule is complex and involves different fac-
tors that can be influenced by oxidative stress. L-arginine can be 
degraded to ornithine and urea by arginase, an enzyme whose expres-
sion increases considerably in the presence of ROS [175]. An increased 
arginase activity is observed in plasma, platelets and vasculature of 
PE-affected women [164,165], which contributes to decrease NO levels 
and promote oxidative damages and endothelial dysfunction when 
associated with low SOD activity [166–168]. In addition, the arginine 
protein N-methyltransferase (PRMT) catalyzes the methylation of 
L-arginine into asymmetric dimethylarginine (ADMA), which is a 
competitive L-arginine inhibitor that prevents NO synthesis [169]. 
Significantly lower levels of L-arginine have been observed in PE pa-
tients, while plasma levels of ADMA were either not different between 
normal and PE patients, or more elevated, possibly contributing to 
oxidative stress and endothelial dysfunction [176,177]. Oxidative stress 
promotes the expression of PRMT, thereby contributing to the degra-
dation of L-arginine and eNOS inhibition. Dimethylarginine dimethy-
largino hydrolase (DDAH) enables the breakdown of ADMA molecules 
into citrulline and dimethylamine [178]. However DDAH is also tar-
geted and inhibited by ROS [179]. It is suggested that reduced levels of 
L-arginine, rather than increased ADMA levels, may play a role in PE 
[180–182]. 

4.2.2.2. Oxidation of the essential cofactor, BH4. BH4 has a complex 
metabolism, with two synthesis pathways, one from sepiapterin and one 
de novo synthesis from guanosine triphosphate (GTP) [182,183]. Dihy-
drofolate reductase (DHFR) is a key-enzyme involved in the first 
pathway. It limits the production of BH4 and is therefore decisive for the 
coupling state of eNOS. BH4 stabilizes the dimeric form of eNOS, allows 
the binding of the oxygen molecule and participates in the electronic 
transfer within the enzyme. In the absence of BH4, the heme-ferrous 
complex dissociates to form O2

•− , and a ferric heme. BH4 depletion is 
generally attributed to its oxidation by ROS and precisely by ONOO-. It is 
then oxidized to dihydrobiopterin (BH2). In this form it can still bind to 
eNOS but no longer allows NO formation, and rather participates to the 
production of O2

•− . The BH4/BH2 ratio is decisive for NO production 
[183,184]. 

The decrease of BH4 under conditions of oxidative stress seems to be 
a main cause of eNOS uncoupling [185]. Using a model of pregnant rats 
rendered hypertensive by treatment with deoxycorticosterone acetate, 
Mitchell and coll. demonstrated that exogenous BH4 administered as 
sepiapterin restored the endothelium-dependent relaxation responses of 
mesenteric arteries, increased vascular NO production, and reduced the 
generation of ROS (O2

•− and ONOO− ) [186]. However very few reports 
are available about BH4 deficiency in human PE. Toth et al., demon-
strated that ascorbic acid (vitamin C) concentrations in placenta, are 
sufficient to stabilize and protect BH4 and the NO/eNOS pathway, so 
that it can be hypothesized that the reduction in vitamin C concentration 
during PE, may contribute to BH4 depletion [187]. A previous study 
from Kukor and coll. pointed out an important variability in BH4 

Table 1 
Oxidative stress impact on NO bioavailability.  

Mechanisms Consequences Impact in 
PE 

References 

Increased O2
•¡ production Peroxynitrite 

formation 
Increased [160,161, 

162,163] 
Sources:NOX2,Xanthine 

Oxidase, eNOS uncoupling 
Decreased NO 
bioavailability    
Nitration, 
inflammation    

Increased arginase 
activity 

L-arginine 
depletion 

Increased [164–167] 

Increased ADMA levels eNOS uncoupling  [168,169]  

BH4 oxidation eNOS uncoupling No 
variation 

[170]  

Decreased NO 
generation 

(very few 
studies)   

Increased O2
•−

production    

eNOS S-glutathionylation eNOS uncoupling Increased [171]  
Decreased NO 
generation    
Increased O2

•−

production    

LPP-adducts on eNOS eNOS 
dysfunction    
Decreased NO 
generation 

Increased [127] 

O2
•− , superoxide anion; NOX2, NADPH oxidase 2; NO, nitric oxide; ADMA, 

asymmetric dimethylarginine; BH4, tetrahydrobiopterin; eNOS, endothelial ni-
tric oxide synthase; LPP, lipid peroxidation products. 
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concentrations in placentas, with globally no major differences between 
physiological and PE pregnancies [170]. Interestingly, this group re-
ported that in some PE-affected patients, eNOS becomes “resistant” to 
BH4 stimulation, resulting in eNOS uncoupling, decreased NO, and 
increased radical anion superoxide production [188]. 

4.2.2.3. eNOS uncoupling by S-glutathionylation. Thiol groups (SH) on 
cysteine are highly sensitive to oxidative stress. Two SH groups can be 
oxidized to form a disulfide bond, found in glutathione disulfide (GSSG), 
and as mixed disulfides between protein and glutathione (S-gluta-
thionylation). This reaction may occur either non-enzymatically, or via 
glutathione S-transferase [189–191]. In addition, S-glutathionylation 
can be promoted by NO, via mechanisms implicating S-nitro-
soglutathione (GSNO) and thiyl radicals [191]. S-glutathionylated pro-
teins reversibly accumulate under oxidative stress conditions and could 
be rapidly reduced by reducing agents and glutaredoxins [190–192]. 
S-glutathionylation alters the structure, folding and function of proteins, 
and can be considered as an adaptative and protective mechanism 
against the irreversible oxidation of cysteine residues during oxidative 
stress [190,191]. 

S-glutathionylation may modify the protein function when occurring 
on critical cysteine residues, as reported for eNOS in the vascular wall of 
hypertensive rats [193]. In this study, Chen et al. observed that upon 
oxidative stress conditions, two cysteine residues (Cys 689 and Cys 908) 
located in the reductase domain and critical to maintain eNOS function, 
were S-glutathionylated, leading to eNOS uncoupling, decreased NOS 
activity, increased O2

•− generation, and impaired 
endothelium-dependent vasodilation [194]. This S-glutathionylation of 
eNOS was also observed in endothelial cells upon 
hypoxia-reoxygenation conditions [194]. 

We recently reported that eNOS is highly S-glutathionylated in PE 
placentas [171]. In this study, S-glutathionylation of eNOS was observed 
in normal placentas, but it was twice as high in PE placentas [171]. 
Around 40–45% of eNOS was S-glutathionylated in normal placentas, 
thus indicating that a moderate oxidative stress occurs in placentas 
during normal pregnancy. In PE placentas, the level of S-glutathiony-
lated eNOS reached 75–80% (of total eNOS), supporting the occurrence 
of a higher oxidative stress [171]. Since S-glutathionylated eNOS retains 
approximately 30% of its activity [193], and since more than 50% of 
total eNOS was not modified, the rate of NO production should be not 
affected in normal physiological conditions of pregnancy. In contrast, in 
PE, the high level of eNOS S-glutathionylation suggests that NO pro-
duction and bioavailability should be strongly reduced, with possible 
consequences on NO bioavailability and subsequent placentation, spiral 
artery remodeling, feto-placental circulation and maternal blood pres-
sure regulation [171]. Moreover, uncoupled eNOS generates O2

•–, which 
may enhance oxidative stress, inactivate NO and reduce placental blood 
flow. In short, S-glutathionylation results in eNOS uncoupling, which 
decreases NO generation and increases ROS production, leading to NO 
inactivation and oxidative stress. Thus, the high S-glutathionylation 
level of eNOS in PE placentas, may be both cause and consequence of 
oxidative stress and eNOS dysfunction in this disease [171]. 

4.2.3. Post-translational modifications of eNOS by lipid peroxidation 
products 

As developed in § 2.2, lipid peroxidation-derived aldehydes (acro-
lein, HNE, MDA, ONE …), may covalently bind to the nucleophilic 
sulfhydryl and primary amine groups of proteins, to form adducts which 
modify protein structure and function, depending on their nature, 
oxidative stress intensity and duration [109–111]. Post-translational 
modifications evoked by lipid peroxidation-derived aldehydes, affect a 
huge number of proteins with consequences on their structure and ac-
tivity (gain or loss of function) [109–115]. As recently reported, eNOS 
could be modified by HNE and at a higher extent, by ONE, a highly 
reactive lipid peroxidation-derived aldehyde, abundantly present in PE 

placentas [127]. ONE can bind several Lys-residues on eNOS, and in-
hibits its enzymatic activity by modifying Lys residues involved in co-
factors binding sites. Indeed, LC-MS/MS analysis of recombinant eNOS 
modified by ONE, and 3D-modelling of the enzyme, showed that 
ONE-modified Lys residues are located close the Ca2+-calmodulin 
(K519), and the FAD/NADPH (K1085) binding sites, which may hinder 
the interaction of eNOS with these cofactors [127]. Moreover, the 
addition of ONE to recombinant eNOS, or to cultured cytotrophoblasts 
strongly decreased the production of NO and the migration of these cells 
[127]. HNE-, MDA- and acrolein-adducts were found in PE placentas, 
but were poorly detected on eNOS, in spite of the ability of HNE to bind 
several Cys, His and Lys residues, without major consequences for eNOS 
enzymatic activity [127]. HNE and ONE are chemically close and differ 
at the C4 position, with a ketone group for ONE, in place a hydroxyl 
group on HNE [195]. However, ONE is more reactive than HNE on 
protein nucleophiles, particularly on Lys, on which it rapidly forms 
readily reversible Schiff base adducts that can be oxidized to stable 
4-ketoamide adducts [195,196]. ONE has a higher capacity than HNE to 
form cross-links on proteins, and particularly Lys–Lys cross-links. In 
addition, the neutralization of aldehydes by GSH is different for ONE 
and HNE. HNE can be rapidly neutralized by GSH, so that 
GSH-HNE-Michael conjugates are unable to react with proteins [197]. In 
contrast, ONE is not neutralized by GSH which rather increases its 
ability to modify proteins by irreversible glutathionylation, not reversed 
by reductant agents [197,198]. 

5. Inhibition of the NO/eNOS system in animal models for PE 

Many attempts have been tried to generate animal models of PE, 
partly unsuccessful, because these models do not include the complete 
pathophysiological features of the PE human disease, which may limit 
their interest for studying the mechanisms and new therapeutic treat-
ments [199–201]. However, the inhibition of the NO/eNOS system has 
been largely used, and produces several patterns that resemble human 
PE. Different models have been developed including mice knock-out for 
the NOS3 gene which encodes eNOS [202,203]. These mice are hyper-
tensive, but their blood pressure is not particularly increased during 
pregnancy, when compared to wild type animals [204]. Likewise, the 
knock-out of other NOS isoforms (neuronal nNOS and inducible iNOS), 
does not generate hypertension in pregnant mice [204]. Mice knock-out 
for NOS3 and overexpressing the angiotensinogen gene (Agt(2/2)), 
exhibit higher blood pressure throughout pregnancy [205], but no renal 
nor liver alterations. As discussed by Marshall et al., eNOS-KO mice are 
not a model of hypertension suitable for studying PE, in contrast to other 
models of hypertension using chronic NOS inhibition [206]. 

Several studies used a model based on the chronic inhibition of NO 
synthesis by the administration of L-nitro-arginine methyl ester (L- 
NAME) to pregnant rats or mice. These models exhibit clinical patterns 
of PE, including hypertension, fetal growth retardation, renal vasocon-
striction, glomerular filtration rate, proteinuria, increased maternal and 
fetal mortality, and are suitable for studying the pathophysiology of PE 
or for therapeutical preclinical purposes [199–201,207–211]. 

6. Therapeutic perspectives targeting oxidative stress and NO/ 
eNOS dysfunction 

In PE, there is currently no other effective treatment than fetus de-
livery, with the risk of major complications for the newborn related to 
prematurity. A huge number of therapeutic approaches, new and 
repurposed drugs have been evaluated in clinical trials for PE. Given the 
importance of oxidative stress and NO, many attempts were carried out 
to restore the redox imbalance and NO bioavailability. In this article, we 
present only a summary of studies focused on antioxidant or NO 
supplementation. 
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6.1. Antioxidants 

Most data concerning the use of antioxidants for preventing PE, have 
been comprehensively reviewed by Salles et al. [105] and more recently 
by Tenorio et al. [212]. The conclusions of both interventional studies 
(heterogenous in the inclusion or exclusion criteria, nature and con-
centration of antioxidants, duration of the treatment), and multicenter, 
randomized, double-blind clinical trials based on vitamins C and E 
supplementation in early pregnancy, showed no significant amelioration 
nor reduction of the adverse maternal or perinatal outcomes in women 
at high risk [105,212–214]. 

Several other antioxidants were tested for PE prevention, among 
them lycopene, a tetraterpene carotenoid, which gave encouraging re-
sults by reducing PE and IUGR [215], but with several outcomes for the 
fetus [212,216]. Supplementation by N-acetylcysteine, a GSH precursor, 
did not result in any significant benefit [217]. 

As reviewed by Xu et al., the selenium levels are lower in PE patients 
compared to healthy pregnant women, so that meta-analysis were car-
ried out to evaluate the efficacy of selenium supplementation in pre-
venting PE, with a tendency to amelioration [218]. However, as 
discussed by the authors, more prospective clinical trials would be 
necessary to reach reliable conclusions on selenium supplementation, 
with better definition of the dose and timing (beginning and duration) of 
the treatment [218]. 

These disappointing results for antioxidants, particularly vitamin E 
and C, could be explained by several hypotheses including the fact that 
i/PE is a multifactorial disease, and ROS are not the primary cause of the 
disease. ROS are co-factors and amplifiers of many redundant signaling 
pathways, which are independently activated by their own systems, thus 
inhibiting ROS may be not sufficient to block the responses evoked by 
inflammatory agents in PE; ii/physiological ROS are produced and are 
necessary for normal pregnancy, so that their inhibition may have un-
expected aggravating consequences on pregnancy outcomes iii/there is 
a redundancy of ROS producing and neutralizing systems, not neces-
sarily targeted by vitamins E and C, iv/possible limits of vitamin E and C 
(and other antioxidants), could exist concerning their availability and 
distribution in placentas, explaining their poor efficacy in PE, as 
observed in coronary patients [100]. 

6.2. Targeting the NO/eNOS pathway 

6.2.1. L-arginine supplementation 
Several clinical trials were carried out with L-arginine supplemen-

tation, and were recently comprehensively reviewed by Weckman et al. 
[219]. These studies globally showed a significant amelioration of 
maternal and fetal outcomes, with a reduction of hypertension and 
higher birth weight [220,221]. However, it seems that these parameters 
could be not statistically significant [220] and a short-term supple-
mentation in L-arginine seems insufficient to improve maternal hemo-
dynamics, particularly in later pregnancy. Moreover, L-arginine 
supplementation may generate ONOO- [222]. 

6.2.2. Inhibitors of type-5 phosphodiesterase (PDE5) 
These inhibitors reduce cGMP degradation, thus increase the levels 

of cGMP, restore a normal function of the NO-cGMP pathway, and 
generate a sustained vasodilation [223]. Several clinical trials and 
meta-analysis were carried out with the use of Sildenafil in PE treatment, 
showing that globally, this agent attenuates oxidative stress and vaso-
constriction, and restores eNOS function. Most studies indicate that 
Sildenafil ameliorates the uterine blood flow, uterine vascular resis-
tance, and fetal weight [223]. However trials based on Sildenafil were 
recently suspended in view of the unexplained death of newborns from 
Sildenafil-supplemented women [224]. 

6.2.3. NO donors 
A pilot study carried out by Groten et al., used a supplementation 

with the NO donor pentaerithrityl tetranitrate (PETN) in pregnant 
women at risk [225]. This randomized controlled multicenter-trial 
concluded that PTEN treatment significantly improved the uteropla-
cental flow, and reduced preterm births, PE outcomes and IUGR, 
pointing out a potential benefit of NO donors in PE. In contrast, a 
Cochrane analysis based on randomized trials using NO donors (glyceryl 
trinitrate) or precursors (L-arginine), concluded to a lack of reliable 
conclusions about their efficacy to prevent PE complications [226]. 
Finally, a systematic review is currently under investigation, to evaluate 
published randomized control trials investigating the ability of different 
NO agents to prevent PE [227]. 

6.3. Aspirin 

So far, it seems that low dose aspirin prophylaxis (60–150 mg/day), 
may represent an effective preventive treatment, which reduces PE 
incidence and outcomes when initiated before 16 weeks of gestational 
age, and given to patients at high risk of developing PE [27–30, 
228–231]. Aspirin (acetyl salicylic acid), has many pharmacological, 
anti aggregant and anti-inflammatory properties. It inhibits the 
redox-sensitive transcription factor NF-κB, and the activity of COX1 and 
COX2, resulting in a strong reduction in the production of prostaglan-
dins and TXA2 [232]. Moreover, aspirin reduces oxidative stress by 
inducing HO-1 activation [233]. Importantly, aspirin-acetylated COX2 
may generate lipoxins from arachidonic acid [234], or “aspirin-triggered 
lipoxins” (ATLs or lipoxin-A4). These ATLs are potent anti-inflammatory 
mediators able to decrease oxidative stress and inflammation evoked by 
the plasma of women affected with PE [235]. ATLs could also stimulate 
the release of NO, by activating both eNOS and iNOS [235]. In addition, 
aspirin is able to acetylate and stimulates the enzymatic activity of 
eNOS, and promotes a release of NO from endothelial cells [236]. Recent 
studies indicated that aspirin could trigger a vasodilation of small 
uterine arteries in gravid rats, via an activation of eNOS and an increased 
NO production [237]. These data suggest that low-dose aspirin may 
enhance vasodilation and uteroplacental blood flow, by preventing NO 
reduction and promoting its production. Further studies will be needed 
to confirm the links between aspirin, eNOS, NO and oxidative stress in 
the early stages of pregnancy when placentation is developing, knowing 
that no efficacy is observed with late initiation of aspirin prophylaxis 
[27–30,231]. 

7. Conclusion 

In this review, we aimed at summarizing the main findings showing 
the relationships existing between oxidative stress and the dysfunction 
of the NO/eNOS pathway in PE. Placental oxidative stress strongly alters 
NO production either by promoting its inactivation via the production of 
ONOO-, or by inhibiting eNOS activity via eNOS uncoupling. Several 
mechanisms are involved, including an oxidation of the cofactor BH4, or 
an accumulation of the arginine inhibitor ADMA, or an increased argi-
nase activity, or S-glutathionylation (oxidized glutathione inducing a 
post-translational modification of cysteine residues of eNOS that are 
critical for maintaining eNOS function). The post-translational modifi-
cation of eNOS by ONE and possibly by other lipid peroxidation alde-
hydes, could be another cause of eNOS dysfunction directly resulting 
from oxidative stress. The pathophysiology of PE is complex, with many 
interconnections between inflammation, oxidative stress and antioxi-
dant defense systems. This may explain why supplementation with an-
tioxidants, or NO donors gave controversial and unconvincing results, 
and why it is so difficult to find a consensus on treatments targeting 
oxidative stress and the NO pathway. Additional researchs are needed to 
deepen the pathophysiology of PE, and develop new innovative thera-
peutic approaches to prevent this disease and reduce its health 
outcomes. 
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[171] P. Guerby, A. Swiader, N. Augé, et al., High glutathionylation of placental 
endothelial nitric oxide synthase in preeclampsia, Redox Biol 22 (2019) 101126, 
https://doi.org/10.1016/j.redox.2019.101126. 

[172] U. Förstermann, W.C. Sessa, Nitric oxide synthases: regulation and function, Eur. 
Heart J. 33 (7) (2012) 829–837, https://doi.org/10.1093/eurheartj/ehr304, 
837a-837d. 

[173] J.S. Beckman, W.H. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the 
good, the bad, and ugly, Am. J. Physiol. 271 (5 Pt 1) (1996) C1424–C1437, 
https://doi.org/10.1152/ajpcell.1996.271.5.C1424. 

[174] R. Radi, Nitric oxide, oxidants, and protein tyrosine nitration, Proc. Natl. Acad. 
Sci. U. S. A. 101 (12) (2004) 4003–4008, https://doi.org/10.1073/ 
pnas.0307446101. 

[175] G. Wu, S.M. Morris, Arginine metabolism: nitric oxide and beyond, Biochem. J. 
336 (Pt 1) (1998) 1–17, https://doi.org/10.1042/bj3360001. 

[176] M.D. Savvidou, A.D. Hingorani, D. Tsikas, et al., Endothelial dysfunction and 
raised plasma concentrations of asymmetric dimethylarginine in pregnant women 
who subsequently develop pre-eclampsia, Lancet 361 (2003) 1511–1517, https:// 
doi.org/10.1016/S0140-6736(03)13177-7. 

[177] V.C. Sandrim, A.C. Palei, I.F. Metzger, et al., Interethnic differences in ADMA 
concentrations and negative association with nitric oxide formation in 
preeclampsia, Clinica Chimica Acta; International Journal of Clinical Chemistry 
411 (19–20) (2010) 1457–1460, https://doi.org/10.1016/j.cca.2010.05.039. 

[178] P. Vallance, J. Leiper, Cardiovascular biology of the asymmetric 
dimethylarginine: dimethylarginine dimethylaminohydrolase pathway, 
Arterioscler. Thromb. Vasc. Biol. 24 (2004) 1023–1030, https://doi.org/10.1161/ 
01.ATV.0000128897.54893.26. 

[179] F. Palm, M.L. Onozato, Z. Luo, C.S. Wilcox, Dimethylarginine dimethyl 
aminohydrolase (DDAH): expression, regulation, and function in the 

cardiovascular and renal systems, Am. J. Physiol. Heart Circ. Physiol. 293 (2007) 
H3227–H3245, https://doi.org/10.1152/ajpheart.00998.2007. 

[180] Y.J. Kim, H.S. Park, H.Y. Lee, E.H. Ha, S.H. Suh, S.K. Oh, H.S. Yoo, Reduced L- 
arginine level and decreased placental eNOS activity in preeclampsia, Placenta 27 
(4–5) (2006) 438–444, https://doi.org/10.1016/j.placenta.2005.04.011. 

[181] W. Tashie, L.A. Fondjo, W.K.B.A. Owiredu, R.K.D. Ephraim, L. Asare, E.A. Adu- 
Gyamfi, L. Seidu, Altered bioavailability of nitric oxide and L-arginine is a key 
determinant of endothelial dysfunction in preeclampsia, BioMed Res. Int. 2020 
(2020) 3251956, https://doi.org/10.1155/2020/3251956. 

[182] K. Channon, Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in 
vascular disease, Trends Cardiovasc. Med. 14 (2004) 323–327, https://doi.org/ 
10.1016/j.tcm.2004.10.003. 

[183] M.J. Crabtree, K.M. Channon, Synthesis and recycling of tetrahydrobiopterin in 
endothelial function and vascular disease, Nitric Oxide 25 (2011) 81–88, https:// 
doi.org/10.1016/j.niox.2011.04.004. 

[184] D.D. Chen, L.Y. Chen, J.B. Xie, et al., Tetrahydrobiopterin regulation of eNOS 
redox function, Curr. Pharmaceut. Des. 20 (22) (2014) 3554–3562, https://doi. 
org/10.2174/13816128113196660747. 

[185] J.K. Bendall, N.J. Alp, N. Warrick, et al., Stoichiometric relationships between 
endothelial tetrahydrobiopterin, endothelial NO synthase (eNOS) activity, and 
eNOS coupling in vivo: insights from transgenic mice with endothelial-targeted 
GTP cyclohydrolase 1 and eNOS overexpression, Circ. Res. 28 (9) (2005) 
864–871, https://doi.org/10.1161/01.RES.0000187447.03525.72, 97. 

[186] B.M. Mitchell, L.G. Cook, S. Danchuk, J.B. Puschett, Uncoupled endothelial nitric 
oxide synthase and oxidative stress in a rat model of pregnancy-induced 
hypertension, Am. J. Hypertens. 20 (12) (2007) 1297–1304, https://doi.org/ 
10.1016/j.amjhyper.2007.08.007. 
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