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Abstract
Meta-analysis methods are used to synthesize results of multiple studies on the same topic. The most frequently used
statistical model in meta-analysis is the random-effects model containing parameters for the overall effect, between-
study variance in primary study’s true effect size, and random effects for the study-specific effects. We propose Bayesian
hypothesis testing and estimation methods using the marginalized random-effects meta-analysis (MAREMA) model where
the study-specific true effects are regarded as nuisance parameters which are integrated out of the model. We propose using a
flat prior distribution on the overall effect size in case of estimation and a proper unit information prior for the overall effect
size in case of hypothesis testing. For the between-study variance (which can attain negative values under the MAREMA
model), a proper uniform prior is placed on the proportion of total variance that can be attributed to between-study variability.
Bayes factors are used for hypothesis testing that allow testing point and one-sided hypotheses. The proposed methodology
has several attractive properties. First, the proposed MAREMA model encompasses models with a zero, negative, and
positive between-study variance, which enables testing a zero between-study variance as it is not a boundary problem.
Second, the methodology is suitable for default Bayesian meta-analyses as it requires no prior information about the
unknown parameters. Third, the proposed Bayes factors can even be used in the extreme case when only two studies are
available because Bayes factors are not based on large sample theory. We illustrate the developed methods by applying it to
two meta-analyses and introduce easy-to-use software in the R package BFpack to compute the proposed Bayes factors.
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Introduction

The rapidly expanding scientific literature calls for methods
to synthesize research such as a systematic review. Meta-
analysis is an important part of a systematic review and refers
to applying statistical methods to combine findings of diffe-
rent studies on the same topic. The first step of a meta-
analysis is to obtain a standardized effect size (e.g., standar-
dized mean difference or correlation coefficient) for each
included study and these effect sizes are subsequently com-
bined by means of meta-analysis methods to summarize the
included studies. Meta-analysis is nowadays seen as the gold
standard for research synthesis (Aguinis et al., 2011; Head
et al., 2015) and is often used for policy making as its results
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are seen as best available evidence (Thompson & Sharp,
1999; Cordray & Morphy, 2009; Hedges & Olkin, 1985).

The random-effects model is the most commonly used
statistical model in meta-analysis (Borenstein et al., 2010;
2009). In the random-effects model, each study is assumed
to have an unknown true underlying effect size. The main
parameter of interest in this model is the overall effect
size of the studies included in the meta-analysis. However,
estimation and statistical inferences for the between-study
variance in the random-effects model is just as important
(Higgins et al., 2009) because both parameters focus on dis-
tinct and relevant aspects of a meta-analysis. For example,
the overall effect size in a meta-analysis on the efficacy of
a psychological treatment refers to the average efficacy of
the treatment across studies and the between-study variance
quantifies the heterogeneity across studies.

The vast majority of meta-analyses uses frequentist ana-
lysis techniques for estimation and drawing statistical infe-
rences. However, Bayesian meta-analysis methods have
been proposed as well and have gained in popularity (Xu
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et al., 2008). Bayesian methods are especially well suited for
analyzing meta-analytic data (Smith et al., 1995; Sutton &
Abrams, 2001; Lunn et al., 2013; Turner & Higgins, 2019)
because the multilevel structure of a random-effects meta-
analysis can be straightforwardly taken into account. More-
over, estimation of the between-study variance is impre-
cise using frequentist meta-analysis methods in the com-
mon situation of a meta-analysis containing a small number
of studies (Chung, Rabe-Hesketh, & Choi, 2013; Sidik &
Jonkman, 2007; Kontopantelis, Springate, & Reeves, 2013).
Bayesian meta-analysis methods are advantageous in this
situation because (i) externally available information about
the between-study variance can be incorporated in the prior
distribution if available, and (ii) the methodology does not
directly rely on large sample theory.

Meta-analysts generally want to estimate and conduct
hypothesis tests for the parameters in the random-effects
model. The vast majority of the literature on Bayesian meta-
analysis methods has been focused on parameter estimation
using either empirical Bayes or fully Bayesian estimation
(e.g., (Turner et al., 2015; Rhodes et al., 2015; Normand,
1999; Lambert et al., 2002)). However, hypothesis testing
using Bayes factors has also been proposed, which quan-
tifies evidence of one model relative to another model (Kass
& Raftery, 1995). (Berry, 1998) proposed a Bayes factor
for testing the null hypothesis of no between-study variance
in a meta-analysis of studies using 2x2 contingency tables.
Rouder and Morey (2011) developed a Bayes factor to test
the null hypothesis of no effect in a meta-analysis of studies
using a two-independent groups design. (Scheibehenne
et al., 2017) and (Gronau et al., 2017) proposed a Bayesian
model averaging approach to compute an average Bayes
factor for testing the null hypothesis of no effect. In this
approach, an average Bayes factor is computed by aver-
aging over posterior model probabilities obtained with the
random-effects model and the equal-effect model (a.k.a.
fixed-effect or common-effect model) where the study’s true
effect sizes are assumed to be homogeneous.

The first contribution of our paper is that we pro-
pose, in contrast to existing Bayesian meta-analysis meth-
ods, to use a marginalized random-effects meta-analysis
(MAREMA) model rather than the random-effects model.
In this MAREMA model, the study-specific true effects are
regarded as nuisance parameters and integrated out of the
probability density function. The elimination of nuisance
parameters via integration is common in integrated likeli-
hood methods (e.g., Berger et al. (1999)), and has recently
been extended to marginal random intercept models (Mul-
der & Fox, 2013; 2019), and marginal item response theory
models (Fox et al., 2017).

The proposed MAREMA model encompasses three
important meta-analysis models. First, the equal-effect
model is included if the between-study variance is equal to

zero. Second, the random-effects model is included when
the between-study variance is positive, which implies that
the differences between studies’ effect sizes cannot be
fully explained by sampling error. Third, the random-effects
model in case of a negative between-study variance is also
included. A negative between-study variance indicates that
the differences between studies’ effect sizes are smaller
than expected based on sampling error. A negative between-
study variance may yield relevant insights for meta-analysts
because it may indicate that the assumption of independence
of primary studies in a meta-analysis is violated or that the
computation of the effect sizes of the primary studies is
incorrect (Ioannidis et al., 2006).

Our proposed methodology is also distinctive from other
Bayesian meta-analysis methods because we place a prior
distribution on the proportion of total variance that can be
attributed to between-study variance rather than directly on
the between-study variance parameter. This proportion is
known as I 2 (Higgins & Thompson, 2002; Higgins et al.,
2003) in the meta-analysis literature and it is frequently used
to quantify the relative heterogeneity around the true effect
size (Borenstein et al., 2017). An advantage of placing a
prior on I 2 is that it is a bounded parameter which enables us
to place a proper (noninformative) uniform prior to compute
Bayes factors (note that Bayes factors generally cannot be
computed using improper priors while at the same time
arbitrarily vague proper priors should also be avoided due
to Bartlett’s phenomenon (Jeffreys, 1961; Lindley, 1957;
Bartlett, 1957). Due to the uniformity of the prior, the
proposed Bayes factors can be used for a default Bayesian
meta-analysis without requiring external prior knowledge
about the model parameters.

The proposed Bayes factors enable testing point and
one-sided hypotheses. Examples of a point and one-sided
hypothesis are testing whether the overall effect size in a
meta-analysis equals zero (i.e., H : μ = 0) or is larger
than zero (i.e., H : μ > 0). Moreover, the proposed
Bayes factors also enable testing multiple hypotheses
simultaneously (e.g., H : μ = 0 vs. H : μ > 0 vs. H : μ <

0). Another attractive property is that the quantification of
relative evidence between hypotheses is exact even in the
extreme case of only two studies in a meta-analysis as Bayes
factors do not rely on large sample theory.

The outline of this paper is as follows. We continue by
further introducing the MAREMA model and illustrate Ba-
yesian estimation under the MAREMA model. Subsequen-
tly, we introduce Bayes factor testing under the MAREMA
model and elaborate on the specification of the prior
distributions. In Section “Bayesian hypothesis testing in
examples”, the MAREMA model is used to compute Bayes
factors for a meta-analysis on the efficacy of two treatments
for post-traumatic stress disorder (PTSD) and a meta-
analysis on the effect of a smartphone application and
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cessation support on long-term smoking abstinence. We
conclude the paper with a discussion section.

Marginalized random-effects meta-analysis
model

The conventional random-effects meta-analysis model
(Borenstein et al., 2009; Konstantopoulos & Hedges, 2019)
assumes that i = 1, 2, ..., k independent effect sizes are
extracted from studies on the same topic. The statistical
model of the random-effects model can be written as

yi ∼ N(θi, σ
2
i )

θi ∼ N(μ, τ 2)
(1)

where yi is the observed effect size of the ith study, θi is the
study-specific (unknown) true effect size, μ is the overall
true effect size, τ 2 is the between-study variance in true
effect size, and σ 2

i is the known sampling variance of the
ith study, which is conventionally estimated in practice and
then assumed to be known in the analysis. The random-
effects model simplifies to an equal-effect model if τ 2 = 0
because all studies then share a common true effect size.
Note that other distributions for the random effects than
the normal distribution have been proposed (e.g., Baker &
Jackson, 2008; 2016; Lee & Thompson, 2008), but a normal
distribution for the random effects remains to be used in
almost any random-effects meta-analysis.

The study-specific true effects θi are generally treated
as nuisance parameters in the random-effects model. We
integrate these out of the random-effects model in Eq. 1 to
obtain the MAREMA model, which is given by (see also
Raudenbush & Bryk, 1985 for instance)

yi ∼ N
(
μ, σ 2

i + τ 2
)
. (2)

Multiple estimators have been proposed for estimating
the between-study variance τ 2 (Veroniki et al., 2016; Lan-
gan et al., 2016). Estimates of τ 2 cannot be compared across
meta-analyses if these meta-analyses used different effect
size measures. That is, a τ 2 estimate in a meta-analysis
of standardized mean differences cannot be compared to
one of correlation coefficients, and this was one of the rea-
sons to develop I 2 that will be described next (Higgins &
Thompson, 2002).

Quantifying heterogeneity using I2

A commonly used way to quantify the relative heterogeneity
in a meta-analysis is using I 2 (Higgins & Thompson, 2002;
Higgins et al., 2003),

I 2 = τ 2

τ 2 + σ̃ 2
(3)

where σ̃ 2 is the typical within-study sampling variance that
is computed with

σ̃ 2 = (k − 1)
∑

1/σ 2
i(∑

1/σ 2
i

)2 − ∑
1/σ 4

i

. (4)

I 2 has an intuitive interpretation because it is the proportion
of total variance that can be attributed to between-study
variance in true effect size. Note that I 2 resembles the
intraclass correlation coefficient (ICC) that is routinely
reported in multilevel analysis. This ICC indicates the
proportion of total variance that can be attributed to taking
into account the dependence of observations within the
level 2 units (e.g., (Hox et al., 2018)). However, a major
difference between I 2 and the ICC is that the total variance
in the computation of I 2 (i.e., τ 2 + σ̃ 2) is a function of the
studies’ sample size whereas the ICC is not a function of
the sample size of the level 2 units. Hence, I 2 artificially
increases if the sample size of the primary studies increases
while τ 2 remains constant (Rücker et al., 2008).

Next, we reparameterize the MAREMA model in Eq. 2
using I 2. We replace I 2 with the Greek letter ρ to make
explicit that it is an unknown parameter and can attain nega-
tive values. The MAREMA model can then equivalently be
written as

yi ∼ N(μ, σ 2
i + σ̃ 2ρ/(1 − ρ)). (5)

where σ̃ 2ρ/(1−ρ) transforms ρ to its corresponding τ 2. In
Eq. 5, ρ must lie in the interval (ρmin,1) with

ρmin = −σ 2
min

−σ 2
min + σ̃ 2

(6)

where σ 2
min is the smallest sampling variance of the studies

included in the meta-analysis. ρmin is the smallest possible
value of the parameter ρ given the observed data and is
always negative. Note that the special case ρ = 0 (i.e.,
the equal-effect model) does not lie on the boundary of the
parameter space, which enables testing the hypothesis of
homogeneous true effect size.

Bayesian estimation under theMAREMA
model

The MAREMA model can be estimated using flat priors if
prior information is absent,

π(μ, ρ) = π(μ)π(ρ),with

π(μ) ∝ 1

π(ρ) = U(ρmin, 1)

(7)

where U refers to the uniform distribution. Flat priors are
used for estimation to minimize the impact of the priors
on the results. We illustrate Bayesian estimation under the
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MAREMA model by analyzing data of two meta-analyses.
The first meta-analysis is by Ho & Lee, (2012) on the effi-
cacy of eye movement desensitization and reprocessing
(EMDR) therapy versus exposure based cognitive behavior
therapy (CBT) to treat PTSD. This meta-analysis consists
of ten standardized mean differences (i.e., Hedges’ g) and a
positive effect size indicates that EMDR therapy is more ef-
ficacious than CBT. The second meta-analysis is by Whit-
taker et al., (2019) on the difference between using a smart-
phone app for smoking cessation support and lower inten-
sity support on long-term abstinence. Three studies are
included in this meta-analysis and log risk ratio is the effect
size measure of interest. A positive log risk ratio indicates
that using a smartphone app for smoking cessation sup-
port yields more long-term abstinence than lower intensity
support. These examples were selected to illustrate that the
proposed methodology can be used for different effect size
measures and meta-analyses with only a small number of
primary studies, which is especially common in medical
research (Rhodes et al., 2015; Turner et al., 2015).

A Gibbs sampler is proposed for Bayesian estimation
under the MAREMA model (see Appendix A). We also
analyzed the data of these meta-analyses with frequentist
random-effects meta-analysis using the restricted maximum
likelihood estimator (Raudenbush, 2009) for estimating τ 2

as implemented in the R package metafor (Viechtbauer,
2010). R code of these analyses is available at https://osf.io/
jcge7/.

The posterior distributions of μ and ρ when fitting the
MAREMAmodel to the meta-analyses by Ho& Lee, (2012)
(solid lines) and Whittaker et al., (2019) (dashed lines) are
presented in Fig. 1. Remarkably, the posterior distributions

of ρ (right panel of Fig. 1) are very wide for both meta-
analyses. There is also considerable posterior support for
negative ρ values. This could suggest that the random-effects
model, which is employed for the frequentist analysis, may
not be appropriate for these data. We will reflect on causes
and the implications of a negative value for ρ in the dis-
cussion section.

Parameter estimates obtained with the MAREMA model
and also the frequentist random-effects model are presented
in Table 1. The first row of Table 1 shows the results of
the MAREMA model and the second row those of the
frequentist random-effects model. The first three columns
show the results of estimating μ and the last three columns
those of estimating ρ. The metafor package was used
for the frequentist meta-analysis, which does not report a
standard error for ρ̂.

Parameter estimates of the MAREMA model and fre-
quentist meta-analysis of the meta-analysis by Ho & Lee,
(2012) were comparable. However, the estimates for μ were
slightly larger under the MAREMA model relative to the
frequentist meta-analysis estimate. Furthermore, as expec-
ted, the 95% credibility interval for ρ under the MAREMA
model was considerably wider than the 95% confidence
interval of the frequentist meta-analysis due to the fact that
the random-effects model does not allow negative values
for ρ and therefore there is less “room” for ρ to vary. To con-
clude, EMDR therapy was more efficacious than CBT ther-
apy for treating PTSD, and heterogeneity was imprecisely
estimated close to zero (indicating homogeneity).

Parameter estimates for μ under the MAREMA
model were approximately zero whereas the frequentist
meta-analytic estimate for μ was slightly larger for the

Fig. 1 Posterior distributions of μ (left panel) and ρ (right panel) for the meta-analyses by Ho & Lee, (2012) (solid lines) and Whittaker et al.,
(2019) (dashed lines). The posterior distributions in the figure are smoothed using a logspline as implemented in the R package logspline
(Kooperberg, 2020). ρmin = −1.045 for the meta-analysis by Ho & Lee, (2012) and ρmin = −2.326 for the meta-analysis by Whittaker et al.,
(2019)
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Table 1 Results of Bayesian estimation under the marginalized random-effects meta-analysis (MAREMA) model (using posterior means) and
frequentist random-effects meta-analysis when estimating the parameters in the meta-analysis by Ho & Lee, (2012) (first panel) and Whittaker
et al., (2019) (second panel)

μ̂ ρ̂

Estimate SD/SE 95% CI Estimate SD/SE 95% CI

Ho & Lee, (2012)

MAREMA 0.274 (0.327) 0.29 (-0.109;0.638) –0.026 (-0.016) 0.425 (-0.837;0.812)

Frequentist 0.249 0.129 (-0.003;0.502) 0.022 − (0;0.747)

Whittaker et al., (2019)

MAREMA 0.033 (0.043) 0.381 (-0.413;0.625) 0.089 (0.597) 0.68 (-1.752;0.922)

Frequentist 0.114 0.326 (-0.525;0.753) 0.696 − (0;0.993)

Both the posterior mean and mode (in brackets) based on the draws from the posterior distribution are presented as parameter estimates of the
MAREMA model; SD refers to the standard deviation of posterior draws; SE refers to the standard error; and 95% CI refers to the credibility
interval in case of Bayesian estimation under the MAREMA model and confidence interval in case of the frequentist meta-analysis; no standard
error is reported in the output of the metafor package for ρ̂; the 95% CI of ρ̂ in the frequentist meta-analysis was computed using the Q-profile
method (Viechtbauer, 2007)

meta-analysis by Whittaker et al., (2019). Furthermore, due
to the skewness of the posterior of ρ under the MAREMA
model there is a considerable difference between the pos-
terior mean and posterior mode, where the latter is close
to the estimate under the frequentist random-effects model.
To conclude, estimates based on the MAREMA model
and frequentist meta-analysis differed slightly for the meta-
analysis of Whittaker et al., (2019). These difference were
probably caused by the meta-analysis only containing three
studies.

Given the uncertainty in the unconstrained estimates it
is particularly useful to test precise null hypotheses on the
overall effect μ and the relative heterogeneity ρ. Hence,
Bayesian hypothesis testing under the MAREMA model is
discussed next.

Bayesian hypothesis testing under
theMAREMAmodel

Testing hypotheses plays a fundamental role in scientific
research in general and psychological science in particular.
In this section, we propose multiple hypothesis tests for
the mean μ and the relative between-study heterogeneity ρ

separately.
We propose testing hypotheses for both μ and ρ under

the MAREMA model. The following hypotheses are being
tested for μ:

H0 : μ = 0

H1 : μ < 0

H2 : μ > 0,

(8)

where support for H0, H1, or H2 indicates that the overall
effect μ is equal to zero, is negative, or is positive,
respectively. For ρ we test the following hypotheses:

H0 : ρ = 0

H1 : ρ < 0

H2 : ρ > 0,

(9)

where support for H0, H2, or H1 indicates a good fit of
an equal-effect model, a random-effects model, or a model
which assumes less variance due to sampling error (and
thus a misfit of the equal-effect or random-effects model),
respectively.

Bayes factors are used for testing the proposed hypothe-
ses (Jeffreys, 1961; Kass & Raftery, 1995). A Bayes factor
quantifies the evidence in the data for one hypothesis rela-
tive to a contrasting hypothesis via the ratio of the marginal
likelihood,

B12 = m1(y)
m2(y)

(10)

where y is a vector of the observed effect size yi and m1

and m2 are the marginal likelihoods under H1 and H2,
respectively. For example, B12 = 1 indicates that both
hypotheses are equally supported by the data whereasB12 =
20 indicates that there is 20 times more support in the data
for H1 relative to H2.

Prior specification

In Bayesian hypothesis testing for the overall effect size,
it is not recommended to use an arbitrarily vague prior
to avoid Bartlett’s paradox (Jeffreys, 1961; Lindley, 1957;
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Bartlett, 1957). Instead, following (Mulder & Fox, 2019),
we propose a unit-information prior for μ conditional on ρ

in combination with a proper uniform prior for ρ. Under the
unconstrained MAREMA model this boils down to

πu(μ, ρ) = πu(μ|ρ)πu(ρ),with

πu(μ|ρ) = N
(
μ, k

(
1′�−1

ρ 1
)−1 )

π(ρ) = U(ρmin, 1).

(11)

The unit-information prior π(μ|ρ) contains the amount of
information of a single study (Zellner, 1986). This is visible
in the variance of π(μ|ρ) because the number of studies
in a meta-analysis k is multiplied by the variance of μ̂,
which is (1′�−1

ρ 1)−1 where 1 is a column vector of ones

and �ρ = diag
(
σ 2
1 + τ 2, ..., σ 2

k + τ 2
)
. Unit-information

priors are commonly used for computing Bayes factors
in model selection and hypothesis testing problems. For
example, the well-known Bayesian information criterion
(BIC, (Schwarz, 1978)) is based on an approximation of the
marginal likelihood using a unit-information prior (Raftery,
1995; Kass & Wasserman, 1995). This class of priors is
also employed in many other Bayesian testing scenarios
(e.g., (Liang et al., 2008; Rouder & D Morey, 2012;
Mulder et al., in press)). The usefulness of unit-information
priors lies in the fact that they cover a reasonable range
of possible values for the model parameters. As the prior
contains the information of a single study, these priors are
neither too informative nor too vague (to avoid Bartlett’s
paradox). The prior π(μ|ρ) depends on ρ because τ 2

is included in the variance-covariance matrix �ρ . Note
that the prior π(μ|ρ) is different from the prior used
for Bayesian estimation under the MAREMA model in
Section “Bayesian estimation under the MAREMA model”
as we used an improper prior for estimation whereas the
prior π(μ|ρ) used for testing is a proper prior. The proper
prior π(ρ) is the same prior distribution as we proposed for
estimation under the MAREMA model.

The unconstrained prior in Eq. 11 is used as building
block for the priors under the hypotheses of interest. In
particular, for the one-sided hypotheses, truncated priors are
considered while the precise null hypotheses receive a point
mass at the null value. Figure 2 illustrates the proposed prior
distributions for testing unconstrained, one-sided, and point
hypotheses under the MAREMA model. The left panel
shows prior distributions for testing hypotheses regarding μ

where ρ is left unconstrained. The dashed line refers to the
prior distribution of the unconstrained hypothesis in Eq. 11.
The asterisk at the top of the figure illustrates the point
mass for testing the hypothesis H0 : μ = 0. The solid and
dotted lines refer to the prior distributions for the one-sided
hypotheses H1 : μ < 0 and H2 : μ > 0, respectively.
Their heights are twice as large as the unconstrained prior to
ensure that the distributions integrate to 1. The right panel

shows prior distributions for testing hypotheses regarding
ρ. The dashed, solid, and dotted lines refer to the prior
distributions of the unconstrained (Hu), left-sided (H1 : ρ <

0), and right-sided (H2 : ρ > 0) hypotheses whereas the
asterisk refers to the point mass for the hypothesis of no
between-study variance (H0 : ρ = 0).

Marginal likelihood

The marginal likelihoods of the different hypotheses differ
with respect to the prior distributions. Hence, the marginal
likelihoods of the different hypotheses can be computed
by using different prior distributions in combination with
adjusting the limits of integration.

For example, the marginal likelihood for the one-sided
hypothesis H1 : μ < 0 with ρ unconstrained can be
written as a function of the marginal likelihood under the
unconstrained model,

m1(y) =
∫∫

μ<0
f (y|μ, ρ)π1(μ, ρ)dμdρ = mu(y)

P (μ < 0|y,Hu)

P (μ < 0|Hu)
,

(12)

where f (y|μ, ρ) is the likelihood function of the
MAREMA model in Eq. 5, mu(y) is the marginal likeli-
hood under the unconstrained model, P(μ < 0|y, Hu) and
P(μ < 0|Hu) are the posterior and prior model probabili-
ties for μ < 0 under the hypothesis Hu, and the prior under
H1 can be written as a truncation of the unconstrained prior

π1(μ, ρ) = πu(μ, ρ)I (μ < 0)/P (μ < 0|Hu),

where I (·) is the indicator function. Note here that P(μ <

0|Hu) = 1
2 because the unconstrained prior for μ is

centered around 0. The posterior probability in Eq. 12 can
be computed as the proportion of unconstrained posterior
draws satisfying μ < 0. Interested readers are referred to
Appendix B for further computational details.

Software: BFpack

The R package BFpack (Mulder et al., in press) contains
functions for computing Bayes factors for a large set of
statistical models (e.g., multivariate regression, generalized
linear models, and correlation analysis). As an argument
the main function “BF” needs a fitted modeling object
which defines under which model Bayes factors need to
be computed. To execute the Bayes factor test under the
MAREMA model using the “BF” function, the function
needs as argument an object returned by fitting a random-
effects meta-analysis model with the metafor package.
The metafor package is popular software for conducting
meta-analysis that can be used for any effect size measure
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Fig. 2 Prior distributions of μ (left panel) and ρ (right panel) for Bayesian hypothesis testing under the MAREMA model. The different prior
distributions refer to the hypotheses listed in Eqs. 8 and 9

and requires the meta-analyst to supply the observed effect
sizes of the primary studies and the corresponding sampling
variances (or standard errors). Hence, researchers familiar
with the metafor package can readily compute the Bayes
factors that we propose using the function BF. The “BF”
function also returns unconstrained estimates of μ and ρ

based on a Gibbs sampler.

Bayesian hypothesis testing in examples

We compute Bayes factors using the MAREMA model
for the two examples introduced in Section “Bayesian
estimation under the MAREMA model”. The MAREMA
model was fitted to the two meta-analyses using the propo-
sed unit-information prior onμ and uniform prior on ρ.1 We
tested the three hypotheses for μ and ρ listed in Eqs. 8 and
9, respectively. We analyzed the data using R (R Core Team,
2020) and the R packages metafor (Viechtbauer, 2010)
and BFpack (Mulder et al., in press) in particular. R code
illustrating how to compute Bayes factors and posterior
probabilities for the hypotheses for the two examples is
available at https://osf.io/ejfsv/.

The Bayes factors and posterior model probabilities for
hypotheses on μ are presented in Table 2. For the meta-
analysis by Ho & Lee, (2012), the Bayes factor comparing
H2 with H1 is the largest of the tested hypotheses, which

1The random walk procedures were based on 100,000 iterations
(burn-in period of 5000 iterations) and starting values ρ0 equal to
the estimate of a frequentist random-effects meta-analysis with the
restricted maximum likelihood as estimator for the between-study
variance and s2 = √

0.1

implies that the hypothesis H2 : μ > 0 is 15.810 times
more likely than the hypothesis H1 : μ < 0. Moreover, the
Bayes factor comparing H2 with H0 : μ = 0 equaled 3.779
implying that μ in this meta-analysis is likely larger than
zero. Also the posterior probabilities (last row in Table 2;
assuming equal prior probabilities) suggested that a positive
effect (H2) was most likely after observing the data with
a posterior probability of 0.753. The two-tailed frequentist
hypothesis test of H0 : μ = 0 was not statistically
significant using a significance level of 0.05 (z = 1.936,
two-tailed p value= 0.053).

The Bayes factors and posterior model probabilities for
hypotheses on ρ are shown in the first columns of Table 3 for
the study by Ho & Lee, (2012). The Bayes factors compa-
ring the hypotheses H0 : ρ = 0 with H1 : ρ < 0 and
H2 : ρ > 0 indicated that H0 is approximately four and
five times more likely, respectively. These results were also
corroborated by the posterior probability that was the largest
for H0 (with 0.689). This indicates that there was most
evidence for an equal-effect model. The commonly used
Q-test for testing whether the studies are homogeneous in
a frequentist meta-analysis was not statistically significant
(Q(9) = 9.417, p = 0.4). Note here that a nonsignificant
result does not imply evidence for the null, as p values can-
not be used for quantifying evidence for the null (because p

values are by definition uniformly distributed if H0 would
be true). To conclude, the EMDR treatment was observed to
be on average more efficacious than the CBT treatment and
effects are homogeneous across studies. However, due to
the uncertainty in the posterior probabilities and the param-
eter estimates (see Section “Bayesian estimation under the
MAREMA model”), more studies are required in order to
draw more definite conclusions.
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Table 2 Bayes factors and posterior model probabilities (P(Hq |y)) for hypotheses on μ. The results based on the meta-analysis by Ho & Lee,
(2012) are shown in the first columns and by Whittaker et al., (2019) in the last columns of the table

Ho & Lee, (2012) Whittaker et al., (2019)

H0 H1 H2 H0 H1 H2

H0 1.000 4.183 0.265 1.000 2.558 2.115

Bayes factors H1 0.239 1.000 0.063 0.391 1.000 0.827

H2 3.779 15.810 1.000 0.473 1.209 1.000

P(Hq |y) 0.199 0.048 0.753 0.537 0.210 0.254

H0 : μ = 0, H1 : μ < 0, and H2 : μ > 0

Bayes factors for testing hypotheses on μ for the meta-
analysis by Whittaker et al., (2019) are shown in the last
columns of Table 2. Hypothesis H0 : μ = 0 received
more support than hypotheses H1 : μ < 0 and H2 :
μ > 0, but there was no strong evidence for any of
the hypotheses (largest Bayes factor equaled 2.558). This
absence of strong evidence was likely also caused by this
meta-analysis only consisting of three studies. The posterior
model probabilities (last row Table 2) also showed that H0

was most likely (probability is 0.537). Application of a two-
tailed frequentist hypothesis test resulted in a nonsignificant
result, and thus H0 could not be rejected (z = 0.349,
two-tailed p value= 0.727).

The hypothesis H0 : ρ = 0 received 10.958 more
evidence than H1 : ρ < 0 and 2.901 more evidence than
H2 : ρ > 0. Moreover, the hypothesis H2 : ρ > 0 was
3.778 more likely than H1 : ρ < 0. This corroborated
the posterior model probabilities indicating that the effect
sizes were most likely to be either homogeneous (with
a probability 0.696) or heterogeneous (with a probability
0.240). Interestingly, the frequentist Q-test was statistically
significant (Q(2) = 6.24, p = 0.044. This may be due
to the fact that the significance tests rely on large sample
theory, which may not be realistic here given there are
only three studies. Using the posterior probabilities to get
conditional error probabilities, there is a probability of
0.210 + 0.254 = 0.464 that we would be wrong when
concluding that the hypothesis of no effect is true, and a

probability of 0.064+ 0.240 = 0.304 that the hypothesis of
homogeneous effects is true given the observed data. Thus
(as expected) more data would be needed in order to receive
more pronounced evidence about which hypothesis is likely
to be true.

Discussion

The main goals of meta-analyses are estimating the overall
effect and the heterogeneity in effect size as well as drawing
inferences for these parameters. This paper proposes novel
Bayesian estimation and hypothesis testing methods to
achieve these goals. Our approach is novel compared to
alternative Bayesian meta-analysis methods because the
framework builds on the MAREMA model where the
(nuisance) study-specific effects are integrated out. This
MAREMA model encompasses both an equal-effect and a
random-effects meta-analytic model, and also encompasses
a model which assumes that there is less variance than under
the equal-effect and random-effects models.

Another major contribution is that we place a uniform
prior distribution on the proportion of the variance that can
be explained by between-study heterogeneity in true effect
size rather than on the between-study variance or standard
deviation in true effect size directly, as is usually done in
Bayesian meta-analyses (Berry, 1998; Scheibehenne et al.,
2017; Gronau et al., 2017). This relative variance has a clear

Table 3 Bayes factors and posterior model probabilities (P(Hq |y)) for hypotheses on ρ. The results based on the meta-analysis by Ho & Lee,
(2012) are shown in the first columns and by Whittaker et al., (2019) in the last columns of the table

Ho & Lee, (2012) Whittaker et al., (2019)

H0 H1 H2 H0 H1 H2

H0 1.000 3.977 4.979 1.000 10.958 2.901

Bayes factors H1 0.251 1.000 1.252 0.091 1.000 0.265

H2 0.201 0.799 1.000 0.345 3.778 1.000

P(Hq |y) 0.689 0.173 0.138 0.696 0.064 0.240

H0 : ρ = 0, H1 : ρ < 0, and H2 : ρ > 0
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standardized scale (Higgins et al., 2003) which facilitates its
interpretation. Furthermore, the bounded parameter allows
specifying a proper noninformative uniform prior in case
prior information is absent or when a default (reference) test
is preferred. Other advantages are that this prior does not
depend on the effect size measure used in the meta-analysis,
and avoids the need of eliciting a prior scale for which the
Bayes factor can be highly sensitive.

We illustrated the proposed Bayesian hypothesis testing
and estimation in two illustrative examples. Both the esti-
mation and hypothesis testing results revealed large poste-
rior uncertainty regarding the heterogeneity in true effect
size. The uncertainty can be explained by the relatively
small number of studies which is common in meta-analyses
(Rhodes et al., 2015; Turner et al., 2015), and therefore the
obtained quantifications for posterior uncertainty seemed
reasonable. More convincing evidence for one of the tested
hypotheses will be obtained if more studies become avail-
able and can be included in the meta-analysis. Note here that
because Bayes factors are consistent the evidence in favor
of the true hypothesis would go to infinity if the number of
studies in a meta-analysis tends to infinity. The frequentist
test for between-study heterogeneity on the other hand was
statistically significant even though the example only inclu-
ded three studies. This may be another example that p val-
ues tend to overestimate the evidence against a null hypo-
thesis (e.g., (Berger & Delampady, 1987; Sellke et al., 2001;
Benjamin & Berger, 2019), and that Bayes factors and pos-
terior probabilities may better capture the evidence in favor
of or against statistical hypotheses in case of small samples.

In both applications, evidence was found that the hetero-
geneity (ρ) may be negative. This implies that an equal-
effect meta-analysis model (where ρ = 0) or a random
effects model (where ρ > 0) may not be appropriate, and
might cause bias in the results. A negative ρ may also
indicate a violation of the assumptions of the meta-analysis
model, which is “corrected” by allowing ρ to be negative.
For example, the reported within-study sampling variances
σ 2

i may be overestimated, the assumption of independent
primary study’s effect sizes in a meta-analysis is violated,
or the effect sizes of the primary studies were incorrectly
computed (Ioannidis et al., 2006). More research is needed
to explore the possible causes of a negative ρ, and how it
affects the results. A good starting point would be (Nielsen
et al., 2021) who explored the effect of negative intraclass
correlations in a multilevel model.

We have only tested point hypotheses where the para-
meter was constrained to zero or one-sided hypotheses
comparing hypotheses where the parameter was smaller or
larger than zero. Other hypotheses that can be tested are
combined hypotheses (e.g., H : μ > 0 & ρ > 0) or hypo-
theses testing a parameter to another hypothesized value
than zero. For example, meta-analysts may want to test

point hypotheses using the rules of thumb for a small, me-
dium, and large effect size as defined for many common
effect size measures (for rules of thumb for multiple effect
size measures see (Cohen, 1988)). Point hypotheses on the
heterogeneity may be constrained to ρ = 0.25, 0.5, and 0.75
to resemble low, moderate, and high heterogeneity accord-
ing to the thresholds proposed by (Higgins et al., 2003). It
is important to note that any hypothesis on the proportion
of total variance that can be explained by heterogeneity in
true effect size can directly be transformed to a hypothesis
on the between-study variance in true effect size. For exam-
ple, testing the hypothesis H : ρ = 0 is equivalent to testing
H : τ 2 = 0. If a hypothesis on ρ is tested against another
value than 0, the equivalent hypothesis on the between-
study variance in true effect size can be obtained by
transforming ρ to the between-study variance in true effect
size.

We proposed a framework for Bayesian hypothesis tes-
ting and estimation using minimally informative default
prior distributions, but our methodology can readily be ex-
tended to other prior distributions. Informative priors can
be specified to incorporate external information about the
heterogeneity in true effect size or overall effect from re-
search in comparable fields. This may provide better esti-
mates and statistical inferences especially if the number of
primary studies in the meta-analysis is small. For example,
if prior information about the heterogeneity parameter ρ is
available this could be translated to an informative stretched
beta prior distribution (following, (Mulder & Fox, 2019)
for example) while prior information about the effect size
could be translated to an informative normal prior. By
considering different prior distributions one can assess the
robustness of the quantification of the relative evidence in
the data between statistical hypotheses under theMAREMA
model.

Meta-analysts are generally not only interested in esti-
mating and drawing inferences about the overall effect size
and the between-study variance, but they are also inter-
ested in studying whether systematic differences between
primary studies can explain the between-study variance. In
case of large between-study variance, examining whether
systematic differences between studies exist might even be
more insightful than focusing on the overall effect size
(Rouder et al., 2019). The between-study variance in a meta-
analysis can be explained by including moderator variables
in a meta-analysis model in a so-called meta-regression
(Thompson & Sharp, 1999; Van Houwelingen et al., 2002).
Future research may focus on extending our MAREMA
model such that Bayesian estimation and Bayes factor
testing can be conducted when moderators are included.

Future research may also focus on extending our methods
to more advanced meta-analysis models such as multilevel
meta-analysis (van den Noortgate & Onghena, 2003;
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Konstantopoulos, 2011) and multivariate meta-analysis
(Jackson et al., 2011; Hedges, 2019). These models relax the
strong assumption of the conventional random-effects mo-
del that effect sizes in a meta-analysis have to be indepen-
dent. Another avenue for future research is studying whether
relaxing the assumptions of the random-effects model bene-
fit Bayesian meta-analysis under the MAREMA model in
particular and Bayesian meta-analysis in general. For exam-
ple, the random-effects model assumes that the within-study
sampling variances are known (van Aert & Jackson, 2019;
Jackson, 2009; Konstantopoulos & Hedges, 2019), and we
adopted this assumption in the MAREMA model. This
assumption is not tenable in practice which can be proble-
matic if the sample size of studies is small. Estimates of the
within-study sampling variance are then imprecise, which
potentially lead to biased parameter estimates and inaccu-
rate statistical inferences. This strong assumption can be
avoided in a Bayesian meta-analysis by taking the uncertain-
ty in these variances into account by means of a prior distri-
bution instead of using a plug-in estimate. A logical choice
for a prior distribution on the within-study sampling varian-
ces is the inverse-gamma distribution.

Another topic for future research is studying to what ex-
tent the proposed estimation and Bayes factor test under the
MAREMA model are affected by publication bias. Publi-
cation bias implies that especially studies with statistically
significant findings are more likely to be published than
studies with non-significant findings. Consequently, studies
with non-significant findings are more difficult to locate and
are less likely to be included in a meta-analysis. Due to pub-
lication bias, effect sizes of primary studies and, in turn, also
the overall effect size of a meta-analysis are most likely pos-
itively biased (Kraemer et al., 1998; van Assen et al., 2015;
Lane & Dunlap, 1978). We expect estimation and inferences
based on the MAREMA model to be inaccurate if publica-
tion bias is severe, and recommend researchers to also apply
and report methods that correct for publication bias in this
case.

To conclude, we have proposed Bayesian hypothesis tes-
ting and estimation using the MAREMAmodel. The propo-
sed Bayes factors allow testing point and one-sided hypo-
theses for both the overall effect and heterogeneity in true
effect size. We hope that our methods together with the
easy-to-use software included in the R package BFpack
enables researchers to frequently use Bayesian methods in
their meta-analyses.

Appendix A: Gibbs sampler for Bayesian
estimation under theMAREMAmodel

We show in this appendix how the MAREMA model can
be estimated by means of a Gibbs sampler. The likelihood

of the MAREMA model given the prior distributions in
Eq. 7 is

h(y|μ, ρ) = (2π)−
k
2

∏ [
σ 2

i + σ̃ 2ρ/(1 − ρ)
]− 1

2

× exp

[
−1

2

∑ (yi − μ)2

σ 2
i + σ̃ 2ρ/(1−ρ)

]
(1−ρmin)

−1. (13)

We first derive the conditional distribution of μ, i.e.,

μ|y, ρ ∝ exp

[
− 1

2

∑ (yi − μ)2

σ 2
i + σ̃ 2ρ/(1 − ρ)

]

∝ exp

[
− 1

2

(
μ2

∑ 1

σ 2
i + σ̃ 2ρ/(1 − ρ)

− μ
∑ 2yi

σ 2
i + σ̃ 2ρ/(1 − ρ)

)]
.

(14)

If we let c = ∑
1/

(
σ 2

i + σ̃ 2ρ/(1 − ρ)
)
and v =∑

2yi/(σ
2
i + σ̃ 2ρ/(1− ρ)) and we complete the square for

μ, we get

μ|y, ρ ∼ N

(∑
yi/(σ

2
i + σ̃ 2ρ/(1 − ρ))∑

1/(σ 2
i + σ̃ 2ρ/(1 − ρ))

,
1∑

1/(σ 2
i + σ̃ 2ρ/(1 − ρ)

)
.

(15)

Using the conditional distribution of μ and a random
walk procedure to approximate the conditional distribution
of ρ, the Gibbs sampler can be written as

1. Set the initial value ρ0 and the variance of the proposal
distribution s2.

2. Repeat the following steps to obtain j = 1, 2, ..., J draws
and verify after every 100 draws whether the acceptance
rate a in the random walk procedure is between 0.15

and 0.5 and adjust s2 to
[√

s2
(

a−0.5
1−0.15 + 1

)]2
if a > 0.5

and to
[ √

s2

2−a/0.15

]2
if a < 0.15.

(a) Draw a candidate sample ρ∗ from the proposal dis-
tribution
q(ρ∗|ρj−1, s

2), which is a truncated normal distri-
bution with mean ρj−1, variance s2, lower bound of
truncation −σ 2

min, and upper bound of truncation 1.
(b) Draw a μj from the conditional distribution of μ in

Eq. 15 with ρ = ρ∗.
(c) Compute the ratio

R = h(y|μj , ρ
∗)/q(ρ∗|ρj−1, s

2)

h(y|μj , ρ∗)/q(ρj−1|ρ∗, s2)
.

(d) Draw a number from a uniform distribution ranging
from 0 to 1 and denote this by b.

(e) If R < b, ρj = ρ∗ otherwise ρj = ρj−1.

3. Exclude a burn-in period from the draws.
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Appendix B: Computation of marginal
likelihoods

In this appendix, we describe how the marginal likelihoods
of the hypotheses can be computed. Note that point and one-
sided hypotheses are always specified for one parameter
while the other parameter not included in hypothesis is left
unconstrained.

B.1: Computing themarginal likelihood
of hypotheses withμ and ρ unconstrained (i.e., Hu)

The marginal likelihood of the hypothesis where both μ and
ρ are unconstrained is computed by first integrating out μ

in f (y|μ, ρ)π(μ, ρ) (see Appendix C for the derivation),

mq(y) =
∫

g(y|ρ)dρ =
∫

(2π)−
k+1
2

∏ [
σ 2

i + σ̃ 2ρ/(1 − ρ)
]− 1

2

× exp

[
− 1

2
(y − μ̂1)′�−1

ρ (y − μ̂1)
] [

k(1′�−1
ρ 1)−1

]− 1
2

(1 − ρmin)−1

× exp

[
− 1

2
(1′�−1

ρ 1)(μ̂2− μ̂2

1 + k−1
)

]
(2π)

1
2 (1′�−1

ρ 1)−
1
2 (1 + k−1)−

1
2 dρ (16)

where g(y|ρ) is the likelihood where μ is integrated out and
q refers to the particular hypothesis that is being tested. This
marginal likelihood in Eq. 16 can then be approximated by
using importance sampling,

mu(y)dρ =
∫

g(y|ρ)
π(ρ)

w(ρ)
dρ ≈ J−1

J∑
j=1

g(y|ρ)
π(ρ)

w(ρj )

(17)

where w(ρ) is a proposal density. This proposal density is
a stretched beta distribution and was proposed by (Mulder
& Fox, 2019) as a prior distribution for the ICC in
hierarchical models. This stretched beta distribution ranges
from ρmin till 1. The shape parameters of this stretched beta
distribution are computed with α = (ρmin − ρ̄)[(ρ̄ − 1)ρ̄ −
ρ̄ρmin + ρmin + λ]/[(ρmin − 1)λ] and β = α(ρ̄ − 1)/(ρ̄ −
ρmin) where ρ̄ and λ are the mean and variance of draws
from the posterior distribution of ρ. Both shape parameters
are multiplied by 0.6 to make sure that the proposal density
has heavier tails than the posterior distribution. These
heavier tails yield a more accurate approximation of the
marginal likelihood.

B.2: Computation of themarginal likelihood
of H0 : μ = 0

The marginal likelihood of the point hypothesis H0 : μ = 0
has to be approximated because ρ could not be integrated

out of f (y|μ, ρ)π(μ, ρ). Importance sampling is used for
approximating this marginal likelihood,

m0(y) =
∫

I (μ = 0)f (y|μ, ρ)dρ

=
∫

I (μ = 0)f (y|μ, ρ)
π(ρ)

w(ρ)
dρ

≈ J−1
J∑

j=1

I (μ = 0)f (y|μ, ρ)
π(ρ)

w(ρj )

(18)

The proposal density w(ρ) is the stretched beta distribution
that is also used for computing the marginal likelihood of
hypothesis Hu (see Appendix B.1).

B.3: Computation of themarginal likelihood
of H1 : μ < 0

The computation of the marginal likelihood for the
hypothesis H1 : μ < 0 is described in Section “Marginal
likelihood”. The posterior model probability P(μ <

0|y, Hu) is approximated using a random walk procedure
that closely resembles the one in the Gibbs sampler in
Appendix A and can be described as

1. Set the initial value ρ0 and the variance of the proposal
distribution s2.

2. Repeat the following steps to obtain j = 1, 2, ..., J
draws and verify after every 100 draws whether the
acceptance rate a is between 0.15 and 0.5 and adjust s2

to
[√

s2
(

a−0.5
1−0.15 + 1

)]2
if a > 0.5 and to

[ √
s2

2−a/0.15

]2

if a < 0.15.

(a) Draw a candidate sample ρ∗ from the proposal dis-
tribution
q(ρ∗|ρj−1, s

2), which is a truncated normal distri-
bution with mean ρj−1, variance s2, lower bound of
truncation −σ 2

min, and upper bound of truncation 1.
(b) Compute the ratio

R = g(y|ρ∗)/q(ρ∗|ρj−1, s
2)

g(y|ρ∗)/q(ρj−1|ρ∗, s2)
.

(c) Draw a number from a uniform distribution ranging
from 0 to 1 and denote this by b.

(d) If R < b, ρj = ρ∗ otherwise ρj = ρj−1.

3. Draw samples from the conditional posterior of μ

(denoted by μj ) given the sampled ρj . The conditional
posterior of μ is

N

( ∑
yi/(σ

2
i + σ̃ 2ρj /(1 − ρj )) + μ0/σ

2
j∑

1/(σ 2
i + σ̃ 2ρj /(1 − ρj )) + 1/σ 2

j

,
1∑

1/(σ 2
i + σ̃ 2ρj /(1 − ρj )) + 1/σ 2

j

)

(19)

where μ0 = 0 and σ 2
j = k∑

1/(σ 2
i +σ̃ 2ρj /(1−ρj ))

.
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4. Exclude a burn-in period from the draws.
5. Compute how many draws of μj are smaller than 0 to

approximate P(μ < 0|y, Hu).

B.4: Computation of themarginal likelihood
of H2 : μ > 0

Computation of the marginal likelihood of the hypothesis
H2 : μ > 0 is highly similar to that of H1 : μ <

0. That is, the marginal likelihood can be approximated
with

m1(y) =
∫∫

μ>0
f (y|μ, ρ)π2(μ, ρ)dμdρ = mu(y)

P (μ > 0|y,Hu)

P (μ > 0|Hu)

(20)

where P(μ > 0|y, Hu) and P(μ > 0|Hu) are the
posterior and prior model probabilities for μ > 0 under
the hypothesis Hu where both μ and ρ are unconstrained.
The probability P(μ > 0|Hu) is computed using the
prior distribution π(μ|ρ). The posterior model probability
P(μ > 0|y, Hu) is approximated by means of the
random walk procedure described in Appendix B.3 where
is computed how many draws are larger instead of smaller
than 0 in the final step.

B.5: Computation of themarginal likelihood
of H0 : ρ = 0

The marginal likelihood of the hypothesis H0 : ρ = 0 can
be computed with the likelihood function g(y|ρ) in Eq. 16
where μ is integrated out,

m0(y) = I (ρ = 0)g(y|ρ). (21)

B.6: Computation of themarginal likelihood
of H1 : ρ < 0

The marginal likelihood of the hypothesis H1 : ρ < 0 is
computed in a similar way as the marginal likelihood for
one-sided hypotheses on μ. That is,

m1(y) =
∫

ρ<0
g(y|ρ)dρ = m0(y)

P (ρ < 0|y, Hu)

P (ρ < 0|Hu)
(22)

where P(ρ < 0|y, Hu) and P(ρ < 0|Hu) are the posterior
and prior model probabilities for ρ < 0 under the hypothesis
Hu where μ and ρ are unconstrained. The probability
P(ρ < 0|Hu) is computed using the prior π(ρ). The
probability P(ρ < 0|y, Hu) is approximated by means of
the random walk procedure described in Appendix B.3 by
computing how many draws of ρj are smaller than 0.

B.7: Computation of themarginal likelihood
of H2 : ρ > 0

Computation of the marginal likelihood of the hypothesis
H2 : ρ > 0 is highly equivalent to that of H1 : ρ < 0,

m2(y) =
∫

ρ>0
g(y|ρ)dρ = m0(y)

P (ρ > 0|y, Hu)

P (ρ > 0|Hu)
(23)

with the exception that P(ρ > 0|y, Hu) and P(ρ > 0|Hu)

are now the posterior and prior model probability of ρ > 0.
The posterior model probability P(ρ > 0|y, Hu) is appro-
ximated by computing howmany draws of ρj are larger than
0 in the random walk procedure described in Appendix B.3.

Appendix C: Derivation of marginal
likelihood of MAREMAmodel whereμ
is integrated out

We show in this appendix how the marginal likelihood in
Eq. 16 can be obtained by integrating out μ in f (y|μ, ρ)π

(μ, ρ). The marginal likelihood of the MAREMA model in
Eq. 16 equals

∫ ∫
f (y|μ, ρ)dμdρ =

∫ ∫
(2π)−

k
2

∏[
σ 2

i + σ̃ 2ρ/(1 − ρ)
]− 1

2

×exp

[
− 1

2

∑ (yi − μ)2

σ 2
i + σ̃ 2ρ/(1 − ρ)

]
(2π)−

1
2

[
k

∑(
σ 2

i + σ̃ 2ρ/(1 − ρ)
)−1

]− 1
2

×exp

[
− 1

2

μ2

k/
∑

(σ 2
i + σ̃ 2ρ/(1 − ρ))−1

]
(1 − ρmin)−1dμdρ. (24)

Combining powers and replacing some expressions with
their equivalents in matrix algebra yields

∫ ∫
f (y|μ, ρ)dμdρ =

∫ ∫
(2π)−

k+1
2

∏[
σ 2

i + σ̃ 2ρ/(1 − ρ)
]− 1

2

× exp

[
− 1

2
(y − μ̂1)′�−1

ρ (y − μ̂1)
] [

k(1′�−1
ρ 1)−1

]− 1
2

(1 − ρmin)−1

× exp

[
− 1

2

(
(μ − μ̂)2

(1′�−1
ρ 1)−1

+ k−1μ2

(1′�−1
ρ 1)−1

)]
dμdρ. (25)

Rewriting Eq. 25 to facilitate integrating out μ gives

∫ ∫
f (y|μ, ρ)dμdρ =

∫ ∫
(2π)−

k+1
2

∏ [
σ 2

i + σ̃ 2ρ/(1 − ρ)
]− 1

2

× exp

[
− 1

2
(y − μ̂1)′�−1

ρ (y − μ̂1)
] [

k(1′�−1
ρ 1)−1

]− 1
2

(1 − ρmin)−1

× exp

[
− 1

2

(μ − μ̂/(1 + k−1))2

(1′�−1
ρ 1)−1(1 + k−1)−1

]
exp

[
− 1

2
(1′�−1

ρ 1)(μ̂2 − μ̂2/(1 + k−1)

]
dμdρ. (26)

Integrating out μ of Eq. 26 yields the marginal likelihood in
Eq. 16.
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Psychologie Appliquée/European Review of Applied Psychology,
62(4), 253–260.

Hox, J. J., Moerbeek, M., & Van de Schoot, R. (2018). Multilevel
analysis: Techniques and applications. Routledge, New York.
ISBN 9781315650982 1315650983 9781138121409 1138121401
9781138121362 1138121363 9781317308683 1317308689.

Ioannidis, J. P., Trikalinos, T. A., & Zintzaras, E. (2006). Extreme
between-study homogeneity in meta-analyses could offer useful
insights. Journal of Clinical Epidemiology, 59(10), 1023–1032.
https://doi.org/10.1016/j.jclinepi.2006.02.013

67Psychon Bull Rev (2022) 29:55–69

https://osf.io/jcge7/
https://osf.io/ejfsv/
https://osf.io/jcge7/
https://osf.io/ejfsv/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/job.719
https://doi.org/10.1007/s10729-007-9041-8
https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.1191
https://doi.org/10.1080/00031305.2018.1543135
http://www.jstor.org/stable/2245772
http://www.jstor.org/stable/2245772
https://doi.org/10.1214/ss/1009211804
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0258%2819981030%2917%3A20%3C2353%3A%3AAID-SIM923%3E3.0.COf%%g3B2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0258%2819981030%2917%3A20%3C2353%3A%3AAID-SIM923%3E3.0.COf%%g3B2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0258%2819981030%2917%3A20%3C2353%3A%3AAID-SIM923%3E3.0.COf%%g3B2-Y
https://doi.org/10.1002/jrsm.12
https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.1230
https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.1230
https://cran.r-project.org/package=logspline
https://doi.org/10.1198/016214507000001337
https://doi.org/10.1007/s11336-017-9577-6
https://doi.org/10.1080/23743603.2017.1326760
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1002/sim.1186
https://doi.org/10.1136/bmj.327.7414.557
https://doi.org/10.1136/bmj.327.7414.557
https://doi.org/10.1016/j.jclinepi.2006.02.013


Jackson, D. (2009). The significance level of the standard test for
a treatment effect in meta-analysis. Statistics in Biopharma-
ceutical Research, 1(1), 92–100. https://doi.org/10.1198/sbr.2009.
0009

Jackson, D., Riley, R., & White, I. R. (2011). Multivariate meta-
analysis: Potential and promise. Statistics in Medicine, 30(20),
2481–2498. https://doi.org/10.1002/sim.417

Jeffreys, H. (1961). Theory of probability, (3rd edition). Oxford:
Clarendon Press.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the
American Statistical Association, 90(430), 791.

Kass, R. E., & Wasserman, L. (1995). A reference Bayesian test for
nested hypotheses and its relationship to the Schwarz criterion.
Journal of the American Statistical Association, 90(431), 928–
934. https://doi.org/10.1080/01621459.1995.10476592

Konstantopoulos, S. (2011). Fixed effects and variance components
estimation in three-level meta-analysis. Research Synthesis Meth-
ods, 2(1), 61–76. https://onlinelibrary.wiley.com/doi/abs/10.1002/
jrsm.35

Konstantopoulos, S., & Hedges, L. V. (2019). Statistically analyzing
effect sizes Fixed- and random-effects models. In Cooper, H.,
Hedges, L.V., & Valentine, J.C. (Eds.) The handbook of research
synthesis and meta-analysis. (3rd edition, pp. 245–280). New
York: Russell Sage Foundation.

Kontopantelis, E., Springate, D. A., & Reeves, D. (2013). A re-
analysis of the Cochrane Library data. The dangers of unobserved
heterogeneity in meta-analyses. PLOS ONE 8 (7).

Kraemer, H. C., Gardner, C., Brooks, J., & Yesavage, J. A. (1998).
Advantages of excluding underpowered studies in meta-analysis.
Inclusionist versus exclusionist viewpoints. Psychological Meth-
ods, 3(1), 23–31. https://doi.org/10.1037/1082-989X.3.1.23

Lambert, P. C., Sutton, A. J., Abrams, K. R., & Jones, D. R. (2002).
A comparison of summary patient-level covariates in meta-
regression with individual patient data meta-analysis. Journal of
Clinical Epidemiology, 55(1), 86–94. http://www.sciencedirect.
com/science/article/pii/S0895435601004140

Lane, D. M., & Dunlap, W. P. (1978). Estimating effect size Bias
resulting from the significance criterion in editorial decisions.
British Journal of Mathematical &, Statistical Psychology, 31,
107–112.

Langan, D., Higgins, J. P. T., & Simmonds, M. (2016). Comparative
performance of heterogeneity variance estimators in meta-
analysis: A review of simulation studies. Research Synthesis
Methods, 8(2), 181–198. https://doi.org/10.1002/jrsm.1198

Lee, K. J., & Thompson, S. G. (2008). Flexible parametric models
for random-effects distributions. Statistics in Medicine, 27(3),
418–434. https://doi.org/10.1002/sim.2897

Lindley, D. V. (1957). A statistical paradox. Biometrika, 44(1-2),
187–192. https://doi.org/10.1093/biomet/44.1-2.187

Lunn, D., Barrett, J., Sweeting, M., & Thompson, S. G. (2013). Fully
Bayesian hierarchical modelling in two stages, with application
to meta-analysis. Journal of the Royal Statistical Society: Series
C, 62(4), 551–572. https://rss.onlinelibrary.wiley.com/doi/abs/10.
1111/rssc.12007

Mulder, J., & Fox, J.-P. (2013). Bayesian tests on components of the
compound symmetry covariance matrix. Statistics and Computing,
23(1), 109–122. https://doi.org/10.1007/s11222-011-9295-3

Mulder, J., & Fox, J.-P. (2019). Bayes factor testing of multiple
intraclass correlations. Bayesian Analysis, 14(2), 521–552. https://
projecteuclid.org:443/euclid.ba/1533866668

Mulder, J., Williams, D. R., Gu, X., Tomarken, A., Boeing-Messing,
F., Olsson-Collentine, A., . . . , van Lissa, C. (in press). BFpack:
Flexible Bayes factor testing of scientific theories in R. Journal of
Statistical Software.

Nielsen, N. M., A C Smink, W., & Fox, J.-P. (2021). Small and
negative correlations among clustered observations: Limitations

of the linear mixed effects model. Behaviormetrika, 48(1), 51–77.
https://doi.org/10.1007/s41237-020-00130-8

Normand, S.-L. T. (1999). Meta-analysis: Formulating, evaluating,
combining, and reporting. Statistics in Medicine, 18(3), 321–359.

R Core Team, R. (2020). A language and environment for statistical
computing. http://www.r-project.org/

Raftery, A. E. (1995). Bayesian model selection in social research. So-
ciological Methodology, 25, 111–163. https://doi.org/10.2307/271063

Raudenbush, S. W. (2009). Analyzing effect sizes: Random-effects
models. In Cooper, H., Hedges, L. V., & Valentine, J. C. (Eds.) The
Handbook of Research Synthesis and Meta-Analysis, (pp. 295–
315). New York: Russell Sage Foundation.

Raudenbush, S. W., & Bryk, A. S. (1985). Empirical Bayes meta-
analysis. Journal of Educational Statistics, 10(2), 75–98.

Rhodes, K. M., Turner, R. M., & Higgins, J. P. (2015). Predictive
distributions were developed for the extent of heterogeneity in
meta-analyses of continuous outcome data. Journal of Clinical
Epidemiology, 68(1), 52–60.

Rouder, J. N., & D Morey, R. (2012). Default Bayes factors for model
selection in regression. Multivariate Behavioral Research, 47(6),
877–903. https://doi.org/10.1080/00273171.2012.734737

Rouder, J. N., Haaf, J. M., Davis-Stober, C. P., & Hilgard, J.
(2019). Beyond overall effects: A Bayesian approach to finding
constraints in meta-analysis. Psychological Methods, 24(5), 606–
621. https://doi.org/10.1037/met0000216

Rouder, J. N., & Morey, R. D. (2011). A Bayes factor meta-analysis
of Bems ESP claim. Psychonomic Bulletin &, Review, 18(4),
682–689.
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