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Cancer immune function and tumor microenvironment are governed by long

noncoding RNAs (lncRNAs). Nevertheless, it has yet to be established whether

lncRNAs play a role in tumor-associated neutrophils (TANs). Here, a computing

framework based on machine learning was used to identify neutrophil-specific

lncRNA with prognostic significance in squamous cell carcinoma and lung

adenocarcinoma using univariate Cox regression to comprehensively analyze

immune, lncRNA, and clinical characteristics. The risk score was determined

using LASSO Cox regression analysis. Meanwhile, we named this risk score as

“TANlncSig.” TANlncSig was able to distinguish between better and worse

survival outcomes in various patient datasets independently of other clinical

variables. Functional assessment of TANlncSig showed it is a marker of myeloid

cell infiltration into tumor infiltration and myeloid cells directly or indirectly

inhibit the anti-tumor immune response by secreting cytokines, expressing

immunosuppressive receptors, and altering metabolic processes. Our findings

highlighted the value of TANlncSig in TME as amarker of immune cell infiltration

and showed the values of lncRNAs as indicators of immunotherapy.
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Introduction

Lung cancer is related with high mortality rates in China with

non-small cell lung cancer (NSCLC) accounting for >80% of lung

cancers (Zhu et al., 2017). The administration of immune checkpoint

inhibitors (ICIs) in cancer therapy has had remarkable results (Yue et

al., 2018; Dolladille et al., 2020; Galluzzi et al., 2020). For advanced

non-small cell lung cancer (NSCLC), several clinical trials have

confirmed that as first- or second-line treatment, ICIs are superior

to platinum-based chemotherapy (Ko et al., 2018; Vansteenkiste et al.,

2019; Chen et al., 2020). However, only 20%–40% of advanced

NSCLC patients achieve sustained clinical benefits from PD-(L)1

inhibitor therapy, with most patients having primary or acquired

resistance to immunotherapy (Socinski, 2014). Moreover, those who

do not respond to immunotherapy may suffer immune-related

adverse events (IRAE) and the high costs of anti-PD-(L)1

monoclonal antibody therapy (Khoja et al., 2017; Das and

Johnson, 2019; Schoenfeld et al., 2019). Thus, effective biomarkers

that distinguish potential responders from non-responders, and

indicate patient clinical response in real-time are urgently needed

to improve treatment outcomes.

The TME is comprised of a complex cell population that

includes tissue-resident lymphocytes, fibroblasts, endothelial cells,

and neurons that are present before tumorigenesis, as well as blood-

derived cells recruited to tumor sites (Butturini et al., 2019). Immune

cells are themain cellular components in tumors. Tumor-infiltrating

myeloid cells, including tumor-associated macrophages (TAM),

regulatory dendritic cells, tumor-associated neutrophils (TAN),

myeloid-derived suppressor cells (MDSC), as well as tolerogenic

dendritic cells (TOL-DC), facilitate the formation of

immunosuppressive microenvironments (Schupp et al., 2019).

These cells directly or indirectly inhibit the antitumor immune

response by secreting cytokines, expressing immunosuppressive

receptors, and altering metabolic processes, leading to tumor

immune escape. Tumor-associated neutrophils (TANs) are a key

part of tumor-infiltrating myeloid cells and are regularly detected in

the TME. Clinically, TANs can be used to predict treatment

outcomes and immunotherapy response (Nielsen et al., 2021).

Transcriptomic studies have identified gene expression

biomarkers as well as signatures for quantitative assessment of

TANs, as well as for stratification based on prognoses and

immunotherapeutic response (Lecot et al., 2019; Wu and Zhang,

2020).

Long non-coding RNA (lncRNAs) influence almost all

biological processes and pathways, and their dysregulation is

associated with various diseases. Additionally, lncRNAs have

wide functional diversity due to their influence on gene

expression levels at transcriptional, post-transcriptional and

epigenetic levels (Rinn and Chang, 2012; Fatica and Bozzoni,

2014; Marchese et al., 2017; Bao et al., 2020). The correlation

between lncRNAs and immune function has been reported.

Recent studies have shown that lncRNAs are abundant with

cell type specificity in various immune cell subsets (Rinn and

Chang, 2012; Atianand et al., 2017; Chen et al., 2017; Zhou et al.,

2017; Zhou et al., 2018). LncRNAs expression pattern has been

correlated with infiltrations of immune cells into the TME (Hu et

al., 2013; Ranzani et al., 2015; Sage et al., 2018; Wang et al., 2018;

Zhao et al., 2021). Nevertheless, neutrophil-specific lncRNAs as

well as their significance in assessing TANs and prediction of

clinical outcomes and immunotherapeutic responses require

further study.

Here, a computational framework is proposed for

determining neutrophil-specific lncRNA expression levels and

lncRNA signatures for TANs (TANLncSig) via integrative

immune, lncRNA, and clinical profiling analyses. The

TANLncSig’s ability to predict clinical outcome and response

to immunotherapy by NSCLC patients was also investigated.

Materials and methods

Neutrophil-specific long noncoding RNAs
screening

The data set can be obtained from the GEO database with

series accession number GSE28490 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE28490), These included chip data

on the expression of nine human immune cells (neutrophils,

monocytes, B cells, eosinophils, CD4 T cells, NK cells, mDCs,

CD8 T cells, and pDCs). The GEO2R tool fromGEOwas used for

differential expression analysis. Using adjusted p = <0.05 and

logFC >1 as cutoff thresholds identified 17 lncRNAs with high

neutrophil-specific expression.

Construction of risk scoring model

Clinical data and TCGA RNA-seq datasets for LUSC and

LUAD were downloaded by the UCSC Xena browser (https://

xenabrowser.net/). Lusc-LINC01272-neutrophils malignant/

Luad-LINC01272-neutrophils malignant results from single

cell sequencing datasets. First, a monovariate Cox regression

analysis was used to find neutrophil-specific lncRNAs with

prognostic value in LUSC and LUAD, and LASSO Cox

regression was used to determine their risk scores. The

multivariate Cox regression analysis (age, risk score, tumor

stage, gender), Kaplan-Meier (KM) survival analysis and 3, 5,

and 10 years survival AUCs were used to evaluate risk score.

Correlation analysis between risk score
and tumor clinical phenotype

Multivariate ANOVA was used to analyze differences

between neutrophil-specific, highly expressed lncRNA and risk

score in LUSC and LUAD samples at various TNM stages.
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Analysis of risk score related pathways

In LUSC and LUAD samples, genes with mean expression

levels >1 were identified and their correlation with risk score

analyzed. 1,000 genes with the highest absolute correlation

coefficient value were selected from those with positive

correlation coefficients (>0, p = <0.05) and those with

negative correlation coefficients (<0, p = <0.05).
ClusterProfiler for R was used to analyze GO terms of

biological process (BP), Molecular function (MF), cellular

component (CC), and KEGG pathway enrichment analyses.

After gene enrichment, the adjusted p-value < 0.05 and the

smallest TOP10 was selected for mapping.

Development of tumor-associated
neutrophils-derived long noncoding RNAs
signature to judge the prognosis of
immunotherapy for non-small cell lung
cancer using machine learning

Pearson correlation analysis was used to determine

correlations between risk score, neutropen-specific lncRNAs,

and the expression of common immune checkpoint inhibitors

and correlation heat maps drawn, with * denoting p ≤ 0.01 while

+ denotes p ≤ 0.05.

Results

Prognostic significance of neutrophil-
specific long noncoding RNAs

To recognize neutrophil-specific lncRNAs, dataset

GSE28490 was downloaded from GEO (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE28490). This dataset includes

chip data on expressions of nine human immune cells (CD4+

T cells, neutrophils, monocytes, B cells, eosinophils, CD8+ T cells,

NK cells, mDCs, and pDCs). Using GEO2R, 17 lncRNA

specifically highly-expressed in neutrophils (p =<0.05, log2>1)
were identified. These neutrophil-specific lncRNAs are referred

to as TAN-associated lncRNAs (TANlncRNA) (Figure 1).

Construction of a risk score based on
neutrophil-specific long noncoding RNAs
for prognosis prediction

To develop a neutrophil-specific lncRNA risk score for

predicting prognosis, the TCGA NA-SEQ dataset, TCGA lung

squamous cell carcinoma (LUSC) as well as adenocarcinoma

(LUAD) gene expression data, clinical features, and prognosis

data were downloaded from UCSC Xena. First, univariate Cox

regression analyses were used to establish neutrophil-specific

lncRNAs with prognostic value in LUSC and LUAD. The final

signature named TANlncSig (Table 1). This analysis identified

three lncRNAs with prognostic value in LUSC (LINC01272,

LINC00261, LINC00668, p = <0.05). Using these three

lncRNAs, the expression value of lncRNA was weighted using

multivariate Cox regression coefficient to obtain risk scores via

the formula: risk score = 0.09 * LNC00668 + 0.17 * LNC00261.

Then, TANlncSig scores for every patient in the discovery dataset

were determined, after which the 542 patients were grouped into

the high (n = 271) or low (n = 271) risk groups. Low risk group

patients were found to have longer overall survival (OS) relative

to the high-risk group patients (p = 0.039, ≤0.05, Figure 2A).

Multivariate Cox regression analyses revealed that risk score (p <
0.001), stage (p < 0.001), age (p = 0.037, ≤0.05), and gender (p =

0.007, ≤0.01) significantly affected the prognostic outcomes of

LUSC patients. The p-value and hazard ratio of TANlncSig were

better than those of stage and age (Figure 2B). That said,

TANlncSig has the potential to be a good predictor of

FIGURE 1
Using machine learning, 17 neutrophil-specific, highly expressed lncRNAs were identified. Differential expressions of lncRNAs between
neutrophils and various immune cell types.
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efficacy. The predictive capacity of TANlncSig was authenticated

using the TCGA internal testing dataset and revealed the 3-, 5-,

and 10-year OS rates for low-risk group patients to be 60.42,

54.47, and 54.23%, respectively (Figure 2C). Indicating that risk

score significantly correlates with OS in LUSC.

Similar analysis was done for LUAD. First, three

lncRNAs with prognostic values (LINC00528, LINC00967,

and LINC00261) were identified using univariate Cox

analysis. Using the above three lncRNAs, lncRNAs

expression value was weighted by multivariate Cox

TABLE 1 Detailed information of six lncRNAs in the TANlncSig.

Ensembl ID Gene symbol Location (GRCh37/hg19) HR Lower 0.95 Upper 0.95 p-value

LUAD ENSG00000259974 LINC00261 chr20:22,541,191–22,559,280 0.8726407 0.7771 0.98 0.021359

ENSG00000269220 LINC00528 chr22:18,260,056–18,262,247 0.5049413 0.2662 0.9577 0.036422

ENSG00000253138 LINC00967 chr8:67,104,349–67,109,554 0.0026941 9.72E-06 0.7471 0.039252

LUSC ENSG00000259974 LINC00261 chr20:22,541,191–22,559,280 1.2676382 1.1 1.461 0.001087

ENSG00000265933 LINC00668 chr18:6,925,473–6,929,868 0.8529687 0.7512 0.9685 0.01412

ENSG00000224397 LINC01272 chr20:48,884,015–48,896,333 1.14005 1.022 1.272 0.018818

FIGURE 2
Validation of TANlncSig in TCGA lung squamous cell carcinoma discovery and testing datasets. (A) Kaplan-Meier survival analyses of lung
squamous cell carcinoma patients. (B)Multivariate Cox regression analyses of patients with LUSC based on TCGA dataset. (C) ROC curve analyses of
patients with LUSC using the TCGA dataset.
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regression coefficient to determine risk score using the

formula: risk score = −5.32 * LINC00967-0.16 *

LINC00261-0.74 * LINC00528. Patients with LUAD in the

low-risk group had longer OS relative to high-risk group

LUAD patients (p = 0.0029, ≤0.01, Figure 3A). Cox

multivariate regression analyses revealed that risk score

(p < 0.001) and stage (p < 0.001) significantly correlated

with LUAD prognosis. In lung adenocarcinoma, the p-value

and hazard ratio of TANlncSig were equally better than those

of stage and age (Figure 3B). The 3-, 5-, and 10-year OS rates

in low-risk group patients were 61.01, 61.20, and 65.30%,

respectively (Figure 3C). These results indicate that risk

scores in the LUAD dataset significantly correlate with

patients’ OS.

Correlation analysis between risk score
and tumor clinical phenotype

Clinical phenotypic correlation analysis of single prognostic

lncRNA and risk score (tumor stage, T, N, and M staging) was

performed in lung adenocarcinoma as well as squamous cell

carcinoma. According to statistical analysis, the risk score in

different tumor stages of lung squamous cell carcinoma showed

significant statistical differences, and the statistical results

showed that p = 0.0013, <0.01 (Figure 4A). The risk score in

different tumor stages of lung adenocarcinoma also showed

significant statistical differences (p = 0.0081, <0.01) (Figure 4B).
The TNM staging system is the most widely used tumor staging

system, worldwide. T denotes tumor sizes and local invasion range,

FIGURE 3
Development and subsequent validation of TANlncSig in the lung adenocarcinoma TCGA testing as well as discovery datasets. (A) Kaplan-Meier
survival analyses for LUAD patients. (B) An analysis of the TCGA dataset of LUAD patients usingmultivariate Cox regression. (C) ROC curve analyses of
patients with LUAD in the TCGA dataset.

Frontiers in Genetics frontiersin.org05

Tang et al. 10.3389/fgene.2022.1002699

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1002699


N denotes lymph node involvement, and M denotes distant

metastasis. TNM staging has great clinical value in prognosis

prediction (Ficarra et al., 2007; Moch et al., 2009). The risk score

lack of significance in different T stages and N stages of lung

squamous cell carcinoma (Figures 5A,B). The risk score has

significant statistical difference in different M stages of lung

squamous cell carcinoma (p = 0.011, <0.05) (Figure 5C). The

risk score has significant statistical difference in different T stages

(T1, T2, T3, and T4 stages) of lung adenocarcinoma (p =

0.0023, <0.01) (Figure 5D). Similarly, the risk score has

significant statistical difference in different N stages (N0, N1, N2,

and N3 stages) of lung adenocarcinoma (p = 0.013, <0.05)
(Figure 5E). The risk score lack of significance in different M

stages of lung adenocarcinoma (Figure 5F).

FIGURE 4
Analysis of risk score differences across NSCLC tumor stages. (A) The risk score of lung squamous cell carcinoma patients at various disease
stages. (B) Risk scores of different lung adenocarcinoma stages.

FIGURE 5
Correlation between riskscore and different TNM stages of non-small cell lung cancer. (A) A comparative analysis of risk scores in LUSC T
staging. (B) A comparative analysis of risk scores in LUSC N staging. (C) A comparative analysis of risk scores in LUSC M staging. (D) A comparative
analysis of risk scores in LUAD T staging (E) A comparative analysis of risk scores in LUADN staging. (F) A comparative analysis of risk scores in LUADM
staging.
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Riskscore correlation pathway analysis

In LUSC and LUAD samples, genes with average expression

levels >1 were identified and their risk scores analyzed.

1,000 genes with the largest absolute correlation coefficient

values were selected from positive (correlation coefficient >0,
p ≤ 0.05) and negative (correlation coefficient <0, p ≤ 0.05) and

correlation genes and pathway enrichment analysis done using

cluster profiler on R. In LUSC, positive correlation genes are

mainly associated with biological processes (BP) associated with

T-cell activation, leukocyte proliferation, and leukocyte cell-cell

adhesion. For cellular component (CC) they were enriched in

endocytic vesicle, tertiary granule, and secretory granule

membrane. For molecular function (MF), they were enriched

in immune receptor activity and cytokine binding. KEGG

pathway analysis revealed enrichment mainly for cell adhesion

molecules cams (Figure 6A). Negative correlation genes in lung

squamous cell carcinoma are mainly enriched for biological

processes (BP) associated with skin development, epidermis

development, and cornification. For cellular component (CC),

they were enriched for cornified envelope, desmosome, and cell-

cell junction. For molecular function (MF), they were enriched

for microtubule binding and tubulin binding. For KEGG

pathways, they were enriched for basal cell carcinoma

(Figure 6B). Positive correlation genes in lung

adenocarcinoma were mainly enriched in biological processes

(BP) associated with translational termination and

adenocarcinoma. For cellular component (CC), they were

enriched for ribosomal subunits, ribosome and large

ribosomal subunit. For molecular function (MF) they were

enriched for structural constituent of ribosome and cadherin

binding. For KEGG pathways, they were enriched for ribosome

and cell cycle (Figure 6C). Genes associated with negative

correlations in LUAD are involved in biological processes

(BPs) associated with lymphocyte differentiation, leukocyte

proliferation, and antigen receptor-mediated signaling. For

cellular component (CC), they were enriched for external side

of plasma membrane and immunological synapse. For molecular

functions (MFs), they were enriched for guanyl-nucleotide

exchange factor activity. For KEGG pathways, they were

FIGURE 6
Pathway enrichment analysis using R’s cluster profiler. (A) Enrichment of positive correlation gene pathways in lung squamous cell carcinoma.
(B) Enrichment of negative correlation gene pathways in lung squamous cell carcinoma. (C) Enrichment of positively correlation gene pathways in
lung adenocarcinoma. (D) Enrichment of negative correlation gene pathways in lung adenocarcinoma.
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enriched for primary immunodeficiency and B-cell receptor

signaling pathway (Figure 6D).

The TANlncSig associates with tumor-
associated neutrophils

In accordance with previously reported expression levels of

the immune cell specific marker genes, cibersort (https://

cibersort.stanford.edu/) was further used to evaluate the levels

of immune infiltration of 22 immune subpopulations in high-risk

and low-risk patient groups. t-test was performed to determine

the difference in lymphocyte infiltration levels between the two

groups. As shown in Figures 7A,B, in both LUSC and LUAD,

high-risk patients were significantly enriched in 12 immune

subpopulations, while low-risk patients were enriched in

10 immune subpopulations. Additionally, mononuclear

immune cells, including neutrophils, were found to infiltrate

significantly more in the high-risk patient group than in several

other groups. Single-cell sequencing data of LUSC and LUAD

downloaded from GSE127465, cell type notes downloaded from

TISCH (http://tisch.comp-genomics.org/). The homologous

expression levels of LINC01272 of the TANlncSig in

neutrophil cell lines differed significantly from those of

malignant cell lines according to a subsequent analysis of

neutrophil cell lines (Figures 7C,D). This indicates that these

FIGURE 7
(A,B) An analysis of tumors with high and low TANlncSig based on the NES score from the GSEA in LUSC and LUAD provided the volcano plots
for the enrichment of immune cell subpopulations. (C,D) The boxplots show lncRNA expression in both LUSC and LUAD neutrophil cell lines.
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lncRNAs are expressed differently in neutrophils compared with

malignant cells. In the above study, we found that the TANlncSig

was not only associated with patient prognosis but also as a TAN

indicator.

TANlncSig was validated over several
independent datasets using a microarray
platform for prognostic value

TANlncSig was further validated in independent datasets by the

microarray platform in order to verify versatility and robustness of

TANlncSig. The Affymetrix HG-U133 Plus 2.0 platformwas used to

analyze 83 LUAD patients from the GSE30219 dataset. As

demonstrated again, TANlncSig can distinguish between patients

who have high and low survival risk. A total of 83 patients were

stratified into 41 high-risk patients and 42 low-risk patients in the

GSE30219 dataset. Furthermore, patients in the high-risk group had

a marginally poorer outcome than those in the low-risk group (p =

0.0024, ≤0.01; log-rank test) (Figure 8A). The AUC of ROC curve at

3, 5, and 10 years were 64.13, 66.87, and 60.58% respectively

(Figure 8B). The results show that TANlncsig can accurately

predict the 5-year overall survival of patients, indicating that

TANlncsig has good efficacy and certain stability. In order to

investigate whether TANlncSig is an independent prognostic

factor, a multivariate Cox regression analysis was conducted in

FIGURE 8
The TANlncSig was independently validated in the GSE30219 dataset (A). Kaplan–Meier survival curves of OS were plotted between high- and
low-risk groups stratified by the TANlncSig. (B)Time ROC curve of luad patients the GSE30219 dataset. (C) Visualization of the HRs from amultivariate
Cox analysis of the TANlncSig and clinicopathological factors in GSE30219.
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patient cohorts. In the independent GSE30219 dataset, the

TANlncSig still maintained a significant correlation with OS in

the multivariate analysis (HR = 6.74, 95% CI 1.283-35.5, p = 0.024,

≤0.01). Thus, these results demonstrate that the TANlncSig helps

predict OS independently of other conventional clinical factors

(Figure 8C).

Significance of TANlncSig as a marker of
immunotherapy

Next, prognostic lncRNAs and risk score were correlated

with immune checkpoint molecules expression in LUSC and

LUAD patients. In LUSC, risk score, LINC01272, and

LINC00261 positively correlated with the expression of most

ICBs, while LINC00668 had negative correlations with the

expression of most ICBs (Figure 9A). In LUAD, risk score

had negative correlations with expression levels of most ICBs,

while LINC00528 positively correlated with expression levels of

most ICBs (Figure 9B). The expressions of risk score were divided

into high and low groups and combined according to the median.

The combination was used to analyze the prognosis of

immunotherapy for non-small cell lung cancer. In lung

squamous cell carcinoma, the combination of CEACAM1,

TNFSF4, gem, CD47, vtcn1 and risk score can well stratify

the prognosis of patients. In lung adenocarcinoma, all ICB

molecules combined with risk score can well predict the

prognosis of patients. These results suggest that risk score can

be used as an index to predict the response of patients to

immunotherapy.

Discussion

In the peripheral blood, neutrophils are the most abundant

white blood cells (Dinh et al., 2020). They have a central role in

human non-specific immunity. Previous studies suggest that

neutrophils inhibit tumors by secreting cytokines and

producing reactive oxygen species (Vaughan and Walsh, 2005;

Mishalian et al., 2013; Coffelt et al., 2015; Ponzetta et al., 2019).

However, other studies indicate that neutrophils in the tumor

microenvironment (TME) promote tumorigenesis. Cytokines

and chemokines production by invasive neutrophils might

affect the recruitment and activation of inflammatory cells in

the TME, create an immunosuppressive microenvironment that

is conducive for tumorigenesis, regulate tumor growth,

FIGURE 9
Correlation analysis of lncRNA and riskScore with expression levels of immune checkpoint blockade (ICB). (A) In lung squamous cell carcinoma,
risk score, LINC01272, and LINC00261 positively correlated with the expression of most ICBs, while LINC00668 had negative correlations with the
expression of most ICBs. (B) In lung adenocarcinoma, risk score had a negative correlation with the expression of most ICBs, while
LINC00528 positively correlated with the expression of most ICBs.
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metastasis and angiogenesis, and influence patient prognosis.

Traditional methods for quantifying tumor immune cells

infiltration based on histology or immunohistochemistry may

have bias and variabilities (Yoshihara et al., 2013; Gibney et al.,

2016; Spranger and Gajewski, 2018; Zhang et al., 2020; Sanchez-

Pino et al., 2021). More recently, RNA-seq analyses have shown

that lncRNAs exhibit a better degree of cell type specificity,

relative to protein-coding genes in immune cells, highlighting

their potential as subpopulation-specific immune cells molecular

markers (Huang et al., 2018; Chen et al., 2019; Zhou et al., 2021).

Here, we used a machine learning-based computational

framework to identify lncRNA features for evaluating TANs

and explored their clinical significance using a combination of

lncRNA, immune, and clinical spectrum analyses. The

computational framework was used on the TCGA discovery

dataset of NSCLC to identify a lncRNA signature (TANlncSig)

comprised of 17 lncRNAs obtained from a list of neutrophil-

specific lncRNAs using machine learning. Functional

enrichment analysis of TANlncSig-related mRNAs showed

that TANlncSig is highly correlated with cancer markers of

immune response and sustained proliferative signals. Recent

experimental evidence on some TANlncSig components is

consistent with functional annotations using bioinformatics.

It appears that Mir-1303, which is upregulated in tumor

tissues, acts as a sponge for LINC01272 and negatively

correlates with its expression. A reduction in

LINC01272 expression in tissues and cells of NSCLC

patients may serve as an independent prognostic marker.

LINC01272 overexpression may inhibit NSCLC cells

proliferation, migration, and invasion by inhibiting MI-

1303 (Zhang and Zhou, 2021). LINC00261 downregulation

in gastric cancer is associated with poor prognosis. Ectopic

LINC00261 expression disrupts cell migration and invasion,

inhibiting metastasis in vitro as well as in vivo.

LINC00261 downregulation promotes cell migration and

invasion in vitro. LINC00261 overexpression influences

epithelial-mesenchymal transition (EMT) through the

regulation of E-cadherin, Vimentin and N-cadherin (Liu

et al., 2020; Zhai et al., 2021). LINC00668 expression is

significantly upregulated via STAT3 signaling in NSCLC

tissues as well as cell lines. Clinical studies show that

upregulated LINC00668 correlates with histological grade,

advanced TNM stage, and lymph node metastasis.

Additionally, multivariate analyses established that

LINC00668 as an independent marker of overall survival

(OS) in patients with NSCLC. LINC00668 downregulation

inhibits proliferation, migration, and invasion of NSCLC cells

and promotes apoptosis. Mechanistically, LINC00668 is a direct

target of miR-193a, leading to down-regulation in the expression

of its target gene KLF7. STAT3-initiated LINC00668 promotes

NSCLC progression by upregulating KLF7 via sponging Mir-

193a. Therefore, it may serve as a prognostic marker and

therapeutic target for NSCLC (An et al., 2019). From the

perspective of lncRNA, TANlncSig seems to be a

transcriptional marker as a potentially measurable indicator

of neutrophil activity and prognosis.

To further assess TANlncSig’s role in clinical risk

stratification, we evaluated its relationship with survival in

patients with NSCLC. When applied to the TCGA RNAseq

patient dataset, TANlncSig significantly correlated with

patient survival. In TANlncSig, three lung squamous cell

carcinoma, neutrophil-specific lncRNAs (LINC01272,

LINC00261, and LINC00668) were markedly associated

with prognostic outcomes. In lung adenocarcinoma, three

neutrophil-specific lncRNAs (LINC00528, LINC00967, and

LINC00261) significantly correlated with prognosis. In

squamous cell carcinoma and lung adenocarcinoma,

correlation analysis of individual lncRNAs and risk score

with clinical features (TNM staging) revealed that risk

score varied significantly with tumor stage. After adjusting

for traditional clinical factors, TANlncSig was verified to be an

independent prognostic marker for differentiating between

poor and good survival outcomes across patient datasets.

Immune checkpoint inhibitors (ICIs) have emerged as

effective lung cancer immunotherapies (Suresh et al., 2018;

Iams et al., 2020). Some of the drugs acting on the immune

checkpoints, CTLA4 and PD-1/PD-L1, have excellent

performance against various tumors. Although significant

breakthroughs have been made on CTLA4 and PD-1/PD-

L1 antibodies, single-drug effective rates are only about 20%,

and they benefit a limited proportion of patients (Magiera-

Mularz et al., 2017; Lingel and Brunner-Weinzierl, 2019;

Rotte, 2019; Yang and Hu, 2019; Liu and Zheng, 2020).

The limited efficacy is attributable to the immune system’s

complexity. Indeed, immune cells, cytokines, and immune

adjuvants in the TME interact with each other, limiting the

effects of drugs on individual targets. Thus, drugs that target

different links and aspects of tumor immunity are needed to

enhance immunotherapy outcomes. Up to

29 immunoglobulin superfamily members and 26 members

of the tumor necrosis factor receptor superfamily are

expressed on T-cell surfaces alone, and there have been

preclinical or clinical studies on related immune targets

and drugs. Specific immune checkpoints include

lymphocyte activating gene 3 (LAG-3), T-cell

immunoglobulin mucin 3 (TIM-3), and V region Ig

inhibitor (VISTA). Non-specific immune checkpoints

include human killer cell immunoglobulin like receptor

(KIR), indoleamine 2, 3-dioxidase (IDO), and CD47, these

novel immune checkpoint molecules are expected to provide

hints for clinical and basic research (Manser et al., 2015;

Munn and Mellor, 2016; Burugu et al., 2018; Huang et al.,

2020; Logtenberg et al., 2020). VISTA, (B7-H5, PD-1H) is an

immunomodulatory receptor that inhibits T-cell response.

VISTA is overexpressed on CD11b myeloid cells (e.g.,

macrophages, monocytes, neutrophils, and dendritic cells)
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and it is found that in humans and mice at a lower level in

primitive CD4+ and CD8+ T-cells as well as Tregs. With two

potential protein kinase C binding sites and proline residues

acting as docking sites in its cytoplasmic tail domain, VISTA

can serve as both a receptor and a ligand (Huang et al., 2020;

Mutsaers et al., 2021). OX40 (TNFRSF4) has been found to be

expressed in activated NK cells, T-cells, NKT cells, as well as

neutrophils, and acts as an auxiliary costimulatory immune

checkpoint (Curti et al., 2013; Aspeslagh et al., 2016; Buchan

et al., 2018). Combining immune checkpoint genes and

TANlncSig showed combined prognostic effects on patient

survival, in line with previous findings that immunomotor

interactions between neutrophilic infiltration and expression

levels of checkpoint genes affect the outcome of cancer

patients and immunotherapy may also be associated with

this condition. In combination with earlier findings, it

appears that TANlncSig is correlated with

immunosuppressive phenotypes and could predict ICI

response. Together, these results indicate that TANlncSig

can complement and/or add information to existing immune

checkpoint genetic markers.

Due to few genemutations, lung squamous cell carcinoma is less

selective than adenocarcinoma with regards to treatment options,

and its survival time (about 1 year) is shorter than that of

adenocarcinoma (Travis et al., 2021). Thus, novel, effective

advanced lung squamous cell carcinoma treatments are needed

to improve patient outcomes. The emergence of immune checkpoint

inhibitors in recent years has markedly improved treatment options

for advanced lung squamous cell carcinoma patients. Immune

checkpoint inhibitors have substantially changed advanced lung

squamous cell carcinoma treatment, leading to a shift from retro line

immunotherapy to front-line treatment options. Originally

approved as second-line treatment after platinum-based dual

therapy, palivizumab is now recommended as a single-agent

first-line treatment or in combination with chemotherapy.

Although treatments targeting the immune checkpoints PD-1

and CTLA4 are successful in many cancers, not all patients

benefit from them. Our findings indicate that the combination of

CEACAM1, TNFSF4, GEM, CD47, VTCN1, and TANlncSig in

squamous cell carcinoma can effectively stratify patients by

prognosis, highlighting these immune checkpoint receptors as

potential therapeutic targets against advanced lung cancer.

Conclusion

In conclusion, we used a machine learning-based computational

framework to identify lncRNA features of TANs (TANlncSig) via

comprehensive analyses of lncRNA, immune, as well as clinical

features. TANlncSig revealed a substantial and repeatable

correlation with outcomes, even after adjustments of clinical

covariates. Analysis of correlation between prognostic lncRNAs

and risk score with the expression of immune checkpoint

molecules demonstrated that TANlncSig can predict

immunotherapy. The study is the first to define lncRNA

characteristics of tumor-associated neutrophils, highlighting the

importance of lncRNAs in immune responses and the potential

for more precise and personalized treatment cancer immunotherapy.
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