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Abstract
MicroRNAs (miRNAs) are short regulatory RNAs that down-regulate gene expression. They are essential for cell
homeostasis and active in many disease states. A major discovery is the ability of miRNAs to determine the efficacy
of drugs, which has given rise to the field of ‘miRNA pharmacogenomics’ through ‘Pharmaco-miRs’. miRNAs play a
significant role in pharmacogenomics by down-regulating genes that are important for drug function. These inter-
actions can be described as triplet sets consisting of a miRNA, a target gene and a drug associated with the gene.
We have developed a web server which links miRNA expression and drug function by combining data on miRNA
targeting and protein^ drug interactions. miRNA targeting information derive from both experimental data and
computational predictions, and protein^ drug interactions are annotated by the Pharmacogenomics Knowledge
base (PharmGKB). Pharmaco-miR’s input consists of miRNAs, genes and/or drug names and the output consists of
miRNA pharmacogenomic sets or a list of unique associated miRNAs, genes and drugs.We have furthermore built
a database, named Pharmaco-miR Verified Sets (VerSe), which contains miRNA pharmacogenomic data manually
curated from the literature, can be searched and downloaded via Pharmaco-miR and informs on trends and general-
ities published in the field. Overall, we present examples of how Pharmaco-miR provides possible explanations for
previously published observations, including how the cisplatin and 5-fluorouracil resistance induced by miR-148a
may be caused by miR-148a targeting of the gene KIT. The information is available at www.Pharmaco-miR.org.
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INTRODUCTION
MicroRNAs (miRNAs) are short (�22 nucleotides)

regulatory RNAs that down-regulate gene expres-

sion at the posttranscriptional level by inhibiting

translation or initiating mRNA degradation [1, 2].

The mature miRNA functions in the RNA-induced

silencing complex (RISC) [3] and recognizes its

mRNA targets by a system of partial complementar-

ity between the miRNA and the 30UTR of

the target gene [1, 2, 4]. In the ‘miRbase’ database

of miRNAs [5], 2042 human mature miRNAs are

registered, although the role of many of these is still

unclear. miRNA target genes are available from

a variety of sources, including computational predic-

tions [6–8], single gene studies [9, 10] and, most

recently, large-scale experimental studies that com-

bine cross-linking of loaded RISC complexes

to target UTRs, immunoprecipitation and next-

generation sequencing to identify miRNA targets

[11–13].
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More than half of human genes are likely targets of

evolutionarily conserved miRNA regulation [14].

miRNAs are therefore important regulators of gene

expression, and many cellular processes, including dif-

ferentiation, apoptosis and stress responses, are con-

trolled by miRNAs [15]. miRNAs are essential for

cell homeostasis and tissue identity, regulate many

disease provoking genes and are as such implicated

in many diseases, including diabetes [16], neurological

diseases [17] and cardiovascular diseases [18]. They are

significantly deregulated in cancer [19] and individual

types of cancer can in fact be defined and identified by

their miRNA profile [19–21]. miRNAs are therefore

broadly recognized to have great potential, both

within diagnostics and therapeutics.

A recent major observation involving a new role

for miRNAs is their ability to determine the efficacy

of drugs. These findings gave rise to the field of

miRNA pharmacogenomics [22]. Traditionally,

pharmacogenomics deals with how genomic vari-

ations, for instance sequence variation within specific

genes, determine drug function. One ultimate aim of

pharmacogenomics is to predict which drugs will be

the most effective and safe for a patient based on

individual genomic and transcriptomic features,

thereby allowing personalized treatment strategies.

Pharmacogenomics therefore has great clinical po-

tential. The majority of pharmacogenomic research

to date has focused on the role of single-nucleotide

polymorphisms (SNPs), variations in unique DNA

nucleotides in the genome and studying copy

number variations (duplications or deletions of

genes or larger genomic segments). Alternative

mRNA splice patterns and differences in gene ex-

pression levels constitute other research strategies

within pharmacogenomics.

AROLE FORmiRNAs IN
PHARMACOGENOMICS
Many drugs require the expression of specific genes

to function, and drug function can be affected by

changes in the expression level of these pharmaco-

genomic genes. miRNAs are essential for tissue iden-

tity and hardwired into cell-specific regulation. As

such miRNAs regulate many genes involved in

pharmacogenomics. Furthermore, the transition

from healthy to disease tissue is accompanied by ex-

tensive changes in miRNA profiles. These changes

may either be a direct cause of the disease or a sec-

ondary effect of other regulatory changes in the cell

[20]. The change may in both cases be important for

the expression of pharmacogenomic genes. Finally,

tissues deriving from the same disease, for instance

tumors of the same type, can vary in their miRNA

profile between patients [19]. miRNA profiling is

therefore used to sub-categorize cancers and other

diseases [19–21]. These differences in miRNA pro-

files may be fundamental in miRNA pharmacogen-

omics, since different profiles will affect

pharmacogenomics related genes differently, with

extensive downstream consequences for drug effect.

In support of this, there is evidence that variations in

miRNA patterns in similar diseases do in fact lead to

differences in gene expression [23, 24]. If genes af-

fected by such differences are involved in drug func-

tion, the efficacy of the drug may also be affected.

It is therefore not surprising that a series of recent

miRNA pharmacogenomic studies document how

miRNAs are important for the ability of drugs to

induce their effect (reviewed in [25]). In general,

these studies identify miRNA targets in genes that

are also known to bind or transport chemotherapeu-

tic drugs. They then show that affecting gene expres-

sion with varying levels of miRNAs also affects the

efficacy of the drugs known to depend on the gene

for its function. One example of this is the import-

ance of miR-125b for calcitriol (active vitamin D)

efficacy in breast cancer MCF-7 cells. Calcitriol binds

to the vitamin D receptor (VDR) and thereby in-

duces the formation of an active transcription factor

complex. Mohri et al. [26] have shown that VDR

protein levels are lowered by miR-125b. When

this occurs, the efficacy of calcitriol is similarly

decreased, resulting in higher cancer cell proliferation

(Figure 1A).

miRNA PHARMACOGENOMIC
SETS:THE LINEARRELATIONSHIP
BETWEENmiRNAs, GENESAND
DRUGS
As exemplified above, the principle of miRNA

pharmacogenomics entails that increased miRNA

expression down-regulates genes encoding proteins

that promote drug efficacy. Conversely, lowered

miRNA levels may result in up-regulated genes

with products that inhibit drug function. Both

these processes may affect drug function and there-

fore make miRNAs indirect, potentially potent

regulators of drug efficacy. Thus, the role of

miRNAs in pharmacogenomics can conceptually
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be viewed as collections of miRNA pharmacoge-

nomic sets consisting of miRNA, gene and drug

(Figure 1B). According to this model, a miRNA af-

fects drug function via the regulation of a gene

whose protein product interacts with that drug. For

example, since 125b targets VDR and thereby affects

calcitriol function, miR-125b–VDR–calcitriol con-

stitutes a miRNA pharmacogenomic set (Figure 1A).

Pharmaco-miRVerSe: A DATABASE
OF miRNA PHARMACOGENOMIC
SETS
Here, we present a database of experimentally

verified miRNA pharmacogenomic sets consisting

of a miRNA, a target gene and a drug depending

on the gene for its function. The database is named

Pharmaco-miR Verified Sets (VerSe). It has been

built as part of the Pharmaco-miR web server and

is available for download on the server at Pharmaco-

miR.org. While the Pharmaco-miR web server

includes the VerSe database, it also offers parsing

and data filtering, as will be described below. The

miRNA pharmacogenomic sets in Pharmaco-miR

VerSe are curated from published studies. As also

exemplified above, two aspects can be said to char-

acterize miRNA pharmacogenomic sets and have to

be fulfilled for inclusion in Pharmaco-miR VerSe:

(1) the miRNA must be shown to target the gene

directly in the specified context (typically shown by

luciferase experiments) and (2) the subsequent inhib-

ition of gene expression must affect drug efficacy in

the same context. Based on these criteria, we have

collected miRNA pharmacogenomic sets described

in the literature. The database consists of 269 phar-

macogenomic sets annotated from 149 original art-

icles. The sets encompass 105 miRNAs, 119 genes

and 72 drugs (Table 1).

AGROWING FIELD
Looking at the articles in VerSe reveals a steady in-

crease in the number of publications in miRNA

pharmacogenomics. The first article to present a

miRNA pharmacogenomic set (and therefore the

earliest set in Pharmaco-miR VerSe) was published

in 2007 by Mishra et al. [27]. This first example of

miRNA pharmacogenomics is slightly atypical, since

A B C D

Figure 1: (A) An example of an experimentally verified miRNA pharmacogenomic set. miR-125b inhibits vitamin
D receptor (VDR) expression.VDR is a co-factor for calcitriol, and lower protein levels decrease calcitriol efficacy
[26]. (B) The concept of miRNA pharmacogenomics.While increased levels of miRNA always inhibits gene expres-
sion, protein levels can either increase or decrease drug response, depending on protein function. Together, a
miRNA, a target gene and a drug that interacts with the target gene’s product forms a miRNA pharmacogenomic
set. (C) Sources integrated in Pharmaco-miR. miRNA targets are fetched fromVerSe, miRecords [10], miRTarBase
[9], TargetScan [14], miRanda [7] and PITA [8], and gene^ drug interactions are from VerSe or annotated by the
Pharmacogenomics Knowledge Base [37]. (D) The conceptual difference between searching for ‘all associations’
and ‘overlapping associations’. When searching for all associations, the output consists of all miRNA pharmacoge-
nomic sets which contain at least one of the input parameters, while when searching for overlapping associations
the output consist of miRNA pharmacogenomic sets that contain objects which are shared by all the search terms
entered. In this example, by entering three genes as the search entries and choosing ‘all associations’, both miR-A
and miR-C are included with one set each (miR-A^Gene 1^Drug 1 and miR-C^Gene 3^Drug 3, respectively),
while miR-B occurs in three sets (miR-B^Gene 1^Drug 1, miR-B^Gene 2^Drug 2 and miR-B^Gene 3^Drug 3).
However, when choosing ‘overlapping associations’, at least one component in every output set must be associated
with all the search entries. In this example, only miR-B connects all three genes entered. Thus, only sets with
miR-B occur in the output, while sets with miR-A and miR-C are not included. Notice that in this case, it is not ne-
cessary for any of the drugs to be associated with all three genes; it is sufficient that they occur in sets where
miR-B is also present.

650 Rukov et al.



obstructed miRNA function occurs due to a SNP in

a miR-24 target site in the gene dihydrofolate re-

ductase, affecting methotrexate efficacy. Since then,

miRNA pharmacogenomic papers have steadily

increased in frequency, with 46 papers in 2011 and

57 expected for 2012 (Figure 2).

THE CENTRALROLEOF miR-21
One trend apparent in Pharmaco-miR VerSe is that

many published miRNA pharmacogenomic sets con-

tain miR-21. In fact, 24 of 269 unique sets in

Pharmaco-miR VerSe include miR-21. It has, for

instance, been shown to affect 5-flouruoracil (5-FU)

action alone through targets in SPRY2 [28], PDCD2

[29], PTEN [29] and MSH2 [30]. While some of the

many examples of miR-21 effect on drug function

may partly be due to the large focus on miR-21 in the

RNA community, it also fits well with the important

role of miR-21 as an ‘onco-miR’, targeting many

tumor suppressor genes, among them PTEN

[29, 31, 32] and PDCD4 [32, 33].

Due to the important role for these genes in cancer,

they are also central in chemotherapy. For example,

miR-21 regulates drug efficacy and also has a part

regulating tumorigenesis [30]. MSH2, for instance,

encodes a DNA tumor suppressor protein involved

in DNA repair, and its disruption leads to an increased

mutational rate in cancer cells. The 5-FU, on the

other hand, has an anti-cancer effect, since 5-FU me-

tabolites are incorporated into and disrupt the DNA

of proliferating cells. MSH2 and 5-FU therefore both

have related to DNA replication and repair. Although

MSH2 is a tumor suppressor, its gene product in-

creases the efficacy of 5-FU, since it promotes incorp-

oration of 5-FU metabolites into DNA. Therefore,

during 5-FU treatment, decreased MSH2 levels, for

instance after miR-21 targeting, attenuates the effect

of 5-FU, and increased miR-21 levels leads to 5-FU

resistance [30]. Thus, the same factors that make

miR-21 central in cancer also provide miR-21 with

the ability to strongly regulate drug efficacy, testifying

to the link between cancer miRNAs and

Pharmaco-miRs.

LIMITATIONSTOTHEmiRNA
PHARMACOGENOMIC
EXPERIMENTALMODEL
The focus on cancer miRNAs and chemotherapeu-

tics hints at a common structure of many miRNA

pharmacogenomic studies. Drug-resistant cancer cell

Table 1: Databases included in Pharmaco-miR

Conserved
miRNAsa

Nonconserved
miRNAs

miRNA^gene
links

Genes Gene^drug
links

Drugs

miRTarBase 227 998 466

miRecords 132 375 215

Targetscan

Conserved targets 247 402 28 436 1615

Non-conserved targets 249 428 191834 2300

Total 249 428 211795 2280

miRanda

High mirSVR 249 851 365910 2307

Low miRSVR 249 851 674 011 2312

Total 249 851 884911 2316

PITA
Top predictions 673 30752 1365

All predictions 677 526 624 2198

VerSe 105 190 119 210 72

PharmGKB 2397 11300 921

Total 1154 1026 667 2463 11482 951

aIncludes broadly conserved TargetScanmiRNAs.
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lines are developed (often accompanied by miRNA

deregulation as the cells become resistant), changes in

miRNA and mRNA expression are monitored, a

candidate miRNA (and consequently also its target

gene) is perturbed and this interaction is shown to

reinstate drug sensitivity. This last point is deter-

mined by two phenotypes that are typical for

cancer: apoptosis and cell invasiveness after addition

of the drug. While this model is both elegant

and experimentally straightforward, it is by nature

limited to chemoresistance studies. Testing non-

chemotherapeutic drugs is more experimentally

challenging, since they in most cases require other

proxies for drug efficacy.

Similarly, toxicity studies are remarkably absent

from miRNA pharmacogenomic literature, most

likely due to the lack of an experimental model that

can be broadly applied. As the field of miRNA

pharmacogenomics develops, one challenge will be

studying links between miRNAs and drug toxicity.

Another type of studies only rarely performed link

drug metabolism and miRNA activity. One explan-

ation for this may be that many drugs are primarily

metabolized in the liver while they function in other

tissues. In this case, standard stable cell line experi-

ments do therefore not suffice.

Only two studies in the VerSe database (which

describe full miRNA pharmacogenomic sets) include

members of the cytochrome P450 families, the major

group of drug metabolizing enzymes. Komagata et al.
[34] showed that miR-125b affects calcitriol efficacy

by targeting CYP24A1, a calcitriol metabolizer.

However, this case is not typical, since the drug in

this example is metabolized and performs its function

(binding to the vitamin D receptor) in the same

tissue (MCF-7 breast cancer cells). Similarly, Pan

et al. [35] induced CYP3A4 in pancreas cancer cells

which activated cyclophosphamide to produce cyto-

toxic agents. Introducing miR-27a down-regulated

CYP3A4 expression and simultaneously attenuated

the cytotoxic effect of cyclophosphamide. Thus, in

both the above cases, drug metabolism and function

occurred in the same tissue, unlike what is the case in

most in vivo situations.

We have previously shown that miRNA targets are

significantly underrepresented in genes that metabol-

ize drugs when compared with genes in general [36].

However, considering the large number of drugs po-

tentially metabolized by a few enzymes, the pharma-

cokinetic impact of a single miRNA target in one

gene can be quite dramatic. CYP3A4 is thought to

be involved in the metabolism of more than half of all

drugs, and it is associated with 243 drugs and drug

classes according to PharmGKB, a valuable source of

accumulating knowledge within the pharmacogen-

omics field [37]. One future challenge, to identify

the true scope of miRNA pharmacogenomics, is

therefore to apply new experimental setups, for in-

stance to animal models, so that miRNA targeting

and drug action can be tested in different tissues.

These above examples illustrate how limitations in

methodology and hypothesis building may limit the

scope of the studies performed, and the pervasiveness

of miRNA pharmacogenomics may be broader than

work done to date within the research area indicates.

In general, a major limitation within miRNA

pharmacogenomics today is determining the mech-

anism of action linking miRNAs and drug response.

In hindsight, the mechanism is often obvious as

exemplified by Mohri et al. [26], but the denovo iden-

tification of such triplet sets of interdependent mol-

ecules (miRNAs, genes and drugs) is very

challenging, since a plethora of miRNA targets and

gene drug dependencies exist, creating a virtually

endless number of possible combinations. It is thus

a continuous challenge for miRNA pharmacoge-

nomic studies to determine the exact associations be-

tween miRNAs, genes and drugs and thereby

identify valid miRNA pharmacogenomic sets. For

instance, miRNAs are often found to be perturbed

in drug-resistant cells [26, 38–40]. There is, however,

no necessary causal connection between such

deregulated miRNAs and the drug resistance pheno-

type. On the other hand, identifying potential con-

nections between perturbed miRNAs and the drug

resistance phenotype would contribute important in-

formation about the mechanism of drug resistance

and facilitate the use of miRNA profiling to predict

drug responses. In particular, the challenge is to iden-

tify possible miRNA targets that may at the same

time be effector genes generating drug resistance.

In other cases, specific sets of genes may be deregu-

lated in drug-resistant cells, but the underlying regu-

latory reason (for instance involving miRNA

regulation) will be difficult to predict. In a clinical

context, the challenge will be to predict which drugs

may show unwanted efficacy and toxicity effects

based on miRNA expression profiling alone.

Establishing candidate miRNA pharmacogenomic

interactions as outlined above has demanded exten-

sive searches in miRNA targeting databases (typically

consisting of computational predictions; detailed

652 Rukov et al.



later in the text), drug databases such as the

PharmGKB [37] as well as biomedical literature to

produce the link between miRNA targeting and

genes relevant for drug efficacy. Many studies there-

fore fall short of identifying the full drug resistance

pathway, and some offer two out of the three com-

ponents, usually drugs and miRNAs [38–40].

To assist in determining such complete miRNA-

pharmacogenomic sets of miRNAs, their target

genes and the associated drugs, we have constructed

a web server named Pharmaco-miR (www.

pharmaco-miR.org). Pharmaco-miR accepts

miRNA, gene and drug names as input and provides

the relevant associated miRNA pharmacogenomic

sets as output. The database combines data from a

variety of sources, including several miRNA target

prediction databases, curated literature of experimen-

tally validated miRNA target genes and published

gene–drug interactions as annotated by PharmGKB

or in the VerSe database that accompanies the web

server. Thus, Pharmaco-miR allows researchers to

quickly and uniquely determine which miRNAs,

genes and drugs may interact in a pharmacogenomic

context.

miRNADATA INTEGRATION
Pharmaco-miR is designed to determine miRNA

pharmacogenomic sets, consisting of a miRNA, a

target gene and a drug described in literature as

being associated with the target gene. To this end, a

variety of databases have been integrated (Figure 1C).

Two databases, miRecords [10] and miRTarBase [9],

collect experimentally verified miRNA targets as

described in the literature. Although the number of

validated targets is growing fast, only a small fraction is

thought to have been identified so far.

Pharmaco-miR therefore also includes several data-

bases of computational miRNA target predictions:

TargetScan [6, 14], miRanda [7, 41] and PITA [8]

(Table 1). The different database methodologies are

described below, and the data files used in

Pharmaco-miR are described in the Supplementary

Materials accompanying this article.

COMPUTATIONALmiRNATARGET
PREDICTIONS
TargetScan was the first miRNA target database

published [6]. It was originally launched as part of

the first major target search, revealing the importance

of the ‘seed’ region [6], but has been regularly

updated and improved [14]. The database includes

all potential target sites with minimum a 6mer seed

match but does not allow for mismatches in the seed

sequence. It permits stringent filtering based both on

target conservation and conservation of the miRNA

family. Target sites can furthermore be evaluated

based on seed type and context contribution as

well as depth of evolutionary conservation [6, 14].

The version of TargetScan included in Pharmaco-

miR is 5.2.

The miRanda algorithm [7] uses less stringent

criteria than TargetScan for prediction of target

sites. miRNA are aligned to mRNAs to identify

complementarity, but while seed match is weighed

more strongly, G:U wobble base pairing and mis-

matches in the seed do not lead to exclusion from

the set of predictions [7]. Similarly, the algorithm

considers conservation throughout the potential

miRNA matching region rather than only seed con-

servation. Targets are scored based on the free energy

of the mRNA:miRNA heteroduplex. miRanda

therefore includes de facto targets that may be

missed by more stringent algorithms; however, this

increase in sensitivity is likely accompanied by a sig-

nificant loss of specificity. The version of miRanda

used in Pharmaco-miR is the August 2010 release.

PITA [8] differs from the two above algorithms

mainly by considering not only the miRNA:mRNA

match but also structural features surrounding the

putative target site and the energy cost to open and

expose the target site to the miRNA-loaded RISC.

Full seed match is required for 6mer sites, while

7mer and 8mer matches are allowed one wobble

G:U pair. Catalog version 6 of PITA is used in

Pharmaco-miR.

GENE^DRUGASSOCIATIONS
Information on gene–drug associations is based

on literature annotations from two different sources.

The majority of drugs (921) derive from PharmGKB,

which among other things include a list of genes and

drugs which have been linked experimentally ac-

cording to the literature. The PharmGKB drugs are

linked to 2397 genes. Other gene–drug associations

derive from the database VerSe build specifically for

Pharmaco-miR. Both are built from literature anno-

tations. The VerSe database contains 269 sets, linking

119 genes and 73 drugs (Table 1).
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WORKFLOW
Pharmaco-miR searches are performed by entering

the name of a gene, drug and/or miRNA of interest

in the search field. The search page also contains an

option to change query features and the databases

searched. Using the default options, the Pharmaco-

miR output consists of detailed miRNA pharmaco-

genomic sets of miRNAs, genes and drugs. Also, in

the database features, sets and subsets of miRNA

target predictions may be picked. These choices

vary depending on the structure of the different data-

bases. For TargetScan, conserved and non-conserved

miRNA targets may be searched independently, and

miRNAs with varying levels of conservation may

be included in the search. Similarly, conserved and

non-conserved targets may be selected for miRanda

which also allows for searching different miRSVR

scores, an indicator of the efficacy of the target site

[41]. PITA targets are separated into top targets,

which are the most likely to be functional miRNA

binding sites, or can be expanded to include all pre-

dicted miRNA targets.

‘DETAILEDASSOCIATIONSTABLE’
AND ‘REDUCEDASSOCIATIONS
TABLE’ IN QUERY FEATURES
As mentioned above, Pharmaco-miR output consists

of detailed miRNA pharmacogenomic sets of

miRNAs, genes and drugs, available when choosing

the default ‘detailed association table’ option.

A reduced output option (‘reduced associations

table’) may also be chosen in the query features

and results in a list of unique miRNA/gene/drug

names, where each name occurs only once. Thus,

this output option does not inform on the specific

miRNA pharmacogenomic sets but shows the names

of all objects in the sets without duplications. This

feature is useful to get an overview of larger datasets.

RANKINGTHE PREDICTIONS
Setting the search options provides the initial filter-

ing of Pharmaco-miR predictions. However, it will

often be necessary to further sort the sets. Pharmaco-

miR predictions derive from a variety of sources, and

targets are generated and scored on the basis of dif-

ferent algorithms that cannot be easily aligned.

Pharmaco-miR predictions can therefore be scored

on the basis of the original ranking system for the

different target predictors. This statistical information

can be accessed by selecting the ‘Associations

Statistics’ checkbox in the results page. For

TargetScan, Context Scores are given, for miRanda

the mirSVR score and for PITA the total free energy

score. These scores are described in more detail on

the web server. For the remaining databases, which

are all based on literature annotations, the number of

papers describing the associations is given as a proxy

for the support for the association.

‘ALLASSOCIATIONS’AND
‘OVERLAPPINGASSOCIATIONS’
IN QUERY FEATURES
The output miRNA pharmacogenomic sets may be

generated by two different methods: the default ‘all

associations’ output provides all miRNA pharmaco-

genomic sets which contain at least one of the search

input terms. While this gives the largest amount of

information, it may in some cases be preferable to

focus only on sets that share some components. For

instance, if experiments reveal that some miRNAs are

perturbed in drug-resistant cells, it may be interesting

to know whether these miRNAs may have an addi-

tive effect on drug resistance, even though they do

not target the same genes. In this case, ‘overlapping

associations’ should be selected rather than ‘all associ-

ations’. In the ‘overlapping associations’ analysis, all

sets must contain at least one component that

co-occurs with all the entered search terms (Figure

1D). If miRNAs are entered, for instance, all sets in

the output will contain a gene that is targeted by all

entered miRNAs and/or a drug which may be af-

fected by all the miRNAs, possibly through the ac-

tions of different genes. This gene/drug in question

will then be shown with bold letters in the output.

EXPORTANDLINKS
An export option allows the tables in Pharmaco-

miR to be exported (as comma delimited .csv files)

and automatically opened in Microsoft Excel.

Furthermore, a series of links couple the output

with the background databases. Since the informa-

tion in Pharmaco-miR largely consists of data inte-

grated from other sources, it may be important to

refer back to these sources to gain more detailed

knowledge on parts of the Pharmaco-miR output.

Also, since associations are partly based (when using

computational miRNA target predictions) or fully

based (when validated targets are used) on literature

654 Rukov et al.



annotations, links are also provided to PubMed

entries for relevant papers.

USING Pharmaco-miR
PREDICTIONS
A simple way of using Pharmaco-miR is looking for

miRNA targets in genes relevant for pharmacogen-

omics. A search among such genes reveals that many

genes have experimentally confirmed miRNA tar-

gets, but the target has not been studied in a pharma-

cogenomic context. It can therefore be hypothesized

that the effect of these drugs may be influenced by

perturbations in the predicted miRNAs. For instance,

the anticoagulant warfarin has a narrow therapeutic

window and is the leading cause of adverse drug

event-related hospitalizations in the United States

[42]. Warfarin is metabolized in part by CYP1A1,

and the CYP1A1 gene carries an experimentally con-

firmed miR-125b target. It is therefore plausible that

the optimal dose of warfarin depends on, among

other factors, the level of miR-125b.

The difficulty in identifying full miRNA pharma-

cogenomic sets is exemplified in the many studies

that succeed in determining which miRNAs are

deregulated in drug-resistant cells, but then fail to

determine the relevant target genes and therefore

the mechanism of action that generates drug resist-

ance. For instance, Hummel et al. convincingly show

that miR-148a induces sensitivity to cisplatin and

5-FU in previously resistant esophageal adenocarcin-

oma (EAC) and squamous cell carcinoma (SCC) cell

lines, however, they do not identify relevant target

genes [38]. Using default Pharmaco-miR search set-

tings, five sets containing miR-148a and cisplatin are

identified (as shown in Table 2) and may contain

relevant effector genes for cisplatin resistance.

Among them is the gene KIT which encodes a sig-

naling protein with oncogenic potential.

Interestingly, inhibition of KIT signaling has been

shown to increase responsiveness to cisplatin in ovar-

ian cancer cells [43]. It is therefore possible that a

similar mechanism exists in EAC and SCC cells,

so miR-148a down-regulates KIT and, by inhibiting

its signaling activity, increases cisplatin efficacy.

This is only one example of the usefulness of

Pharmaco-miR in hypothesis building and experi-

mental planning.

That said, it is important to note that both

miRNA targeting of genes and gene–drug inter-

actions vary in a context-dependent manner, and

some of the output of Pharmaco-miR is based on

computational predictions only. The predictions

made by the web server, therefore, do not replace

experimental verification but rather provide a signifi-

cant and useful focus for such experiments. Stronger

predictions can be achieved by using only experi-

mentally verified targets or targets with strong statis-

tical support, and more sets, although less likely to be

functional, can be searched by adding low-value

databases or databases with nonconserved miRNA

targets.

Moreover, Pharmaco-miR can be used to build

hypothesis on which functionally important miRNA

pharmacogenomic sets may not yet been identified.

For instance, six genes very important in pharmaco-

genomics (named VIP genes by PharmGKB) contain

miRNA targets that have previously been validated

experimentally (Table 3). These genes are in turn

associated with the function of dozens of drugs,

some of which are listed in Table 3. Only

very few of these sets (such as miR-125b–VDR–

calcitriol) have been tested in a pharmacogenomic

context (and is therefore included in VerSe).

However, the strict criteria for target selection (ex-

perimental testing) and the well-studied gene–drug

relationships (as VIP genes) increase the likelihood

that these sets are relevant for miRNA pharmaco-

genomics and therefore worth studying

experimentally.

For instance, in the folate cycle, thymidylate

synthetase (TYMS) catalyzes the methylation of

dUMP to dTMP and is essential for the synthesis

of dTTP and hence for de novo DNA synthesis.

Table 2: Examples of papers that identify deregulated
miRNAs in drug resistance, but not the effector genes,
and the genes suggested by Pharmaco-miR

Study Resistance
drug

Deregulated
miRNA

Pharmaco-miR
putative
effector gene

Hummel et al. [38] Cisplatin miR-148a ATP7A
Cisplatin miR-148a KIT
Cisplatin miR-148a ERBB3
Cisplatin miR-148a PTEN
Cisplatin miR-148a LRP2

Dai et al. [40] Docetaxel miR-130a TGFBR2
Docetaxel miR-130a CDKN1A
Docetaxel miR-130a PTEN
Docetaxel miR-181d MAPT
Docetaxel miR-181d BCL2

Bian et al. [39] Cisplatin miR-451 CDKN2D
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TYMS is therefore an important target for anti-

cancer and immunosuppressant drugs such as metho-

trexate [44], and overexpression of TYMS has been

linked to drug resistance [45]. Since TYMS is a

verified target of let-7b, it is possible that let-7b

(and possibly other miRNAs in the let-7 family)

influences the effect of at least some of the many

associated drugs. If this is true, let-7b mimics may

have potential as adjuvant therapeutics to counter

TYMS-related drug resistance. Over-expression of

let-7b in, for instance, solid tumors may also indicate

a high likelihood of treatment success for drugs

targeting the folate cycle, such as methotrexate.

LIMITATIONSTOAONEmiRNA,
ONEGENE, ONEDRUGMODEL
As apparent from above, the concept of one miRNA

regulating one gene affecting response to one drug

may not take the full scope of miRNA regulation

into account. For instance, the same miRNA may

target multiple genes that are relevant for the func-

tion of one particular drug [46, 47] as exemplified by

the several miR-125b target genes in calcitriol resist-

ance affecting both the drug’s metabolism and its

target protein level [26, 34]. In the context of

Pharmaco-miR, the same gene–drug combination

can, for instance, occur multiple times if the gene

is predicted to be targeted by more than one

miRNA. Also, multiple miRNAs are often deregu-

lated in the same disease tissue, and drug resistance

may therefore be the result of the combined actions

of several miRNAs working on different genes. Such

cases may be identified by using the ‘overlapping

associations’ option in Pharmaco-miR. For instance,

cancer cell line resistance to cisplatin has been asso-

ciated with down-regulation of four different genes

by seven different miRNAs [48–51]. Finally,

miRNA deregulation may only initiate a signaling

cascade which involves secondary effects that lead

to deregulation of several genes. This is exemplified

in a study by Giovannetti et al. [52], where in

gemcitabine-resistant pancreatic cancer cells,

miR-21 induction leads to an increase in

metalloproteinase-2 and �9 (MMP-2 and MMP-9)

and vascular endothelial growth factor (VEGF) ex-

pression levels as part of cell invasiveness. MMP-2,

MMP-9 and VEGF are therefore indirect, down-

stream targets of miR-21 that play a role in gemci-

tabine resistance. Such cases where genes are

deregulated due to secondary effects are not included

in Pharmaco-miR, since the database only includes

Table 3: PharmGKB VIP genes with experimentally validated miRNA targets and selected associated drugs, as
identified by Pharmaco-miR

Gene miRNAs Drugs (selected)

AHR miR-124, miR-375 GS-9350, omeprazole

BRCA1 miR-146a Mifepristone, tamoxifen

NR1I2 let-7a GS-9350, amlodipine, amoxicillin, ampicillin, antineoplastic agents, artemisinin and derivatives, aspirin, bexaro-
tene, budesonide, carbamazepine, cefadroxil, cefuroxime, celecoxib, chlorpromazine, cyclophosphamide,
cyclosporine, dexamethasone, diclofenac, diethylstilbestroldocetaxel, doxorubicin, econazole, erythromycin,
estradiol, estriol, etoposide, flurbiprofen, fluvastatin, glibenclamide, griseofulvin, hydrocortisone, ifosfamide,
isradipine, lansoprazole, lovastatin, meloxicam, methadone, miconazole, mifepristone, montelukast, nafcillin,
nevirapine, nifedipine, ondansetron, oxiconazole, paclitaxel, penicillin, phenobarbital, phenytoin, pravastatin,
progesterone, protease inhibitors, rabeprazole, reserpine, rifampin, ritonavir, saquinavir, simvastatin, sulfa-
methazine, sulfinpyrazone, tamoxifen, tetracycline, topotecan, troglitazone, valproic acid, vinblastine, vincris-
tine, vitamin D and analogs, xenobiotics

PTGS2 let-7b, miR-16 Anti-inflammatory agents, BSI-201, coxibs, olaparib, aspirin, capecitabine, celecoxib, cetuximab, clomipramine,
dexamethasone, diclofenac, gefitinib, glucocorticoids, HMG CoA reductase inhibitors, ibuprofen, interferon
alfacon-1, nimesulide, omega-3 polyunsaturated fatty acids, oxaliplatin, prostaglandins, rofecoxib, tacrolimus,
valdecoxib

TYMS let-7b Pyrimidine analogs, antimetabolites, antineoplastic agents, asparaginase, bevacizumab, capecitabine, carbopla-
tin, cisplatin, cyanocobalamin, cytarabine, daunorubicin, dexamethasone, etoposide, fluorouracil, folic acid,
gemcitabine, ibuprofen, irinotecan, L-glutamine, leucovorin, mercaptopurine, methotrexate, oxaliplatin, peme-
trexed, prednisone, pyridoxine, raltitrexed, vincristine

VDR let-7a, miR-125b Alendronate, asparaginase, calcipotriol, calcitriol, calcium, clodronate, cyclophosphamide, cyclosporine, cytar-
abine, daunorubicin, dexamethasone, estrogens, etidronic acid, etoposide, leucovorin, mercaptopurine,
methotrexate, prednisone, raloxifene, torcetrapib, tretinoin, vincristine, vitamin D and analogs
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direct targets, although Pharmaco-miR could be

used to determine candidates for direct targets in

gemcitabine resistance.

miRNAs AS DRUGS
Efforts are ongoing to develop miRNA-based drugs,

either in the form of miRNA mimics, amplifying the

impact of a miRNA, or miRNA inhibitors, essentially

quenching the effect of a miRNA. miRNA drugs

have the advantage that one miRNA may target

and modify the expression of several genes with dif-

ferent roles in the same pathway. The most advanced

miRNA drug to date is a miRNA inhibitor which

targets miR-122 in liver to treat hepatitis C virus

(HCV) [53]. One challenge as such drugs approach

clinical use is testing for interactions between the

novel miRNA drugs and traditional drugs already in

the market. The link from miRNAs to drugs allows

Pharmaco-miR to predict putative interactions be-

tween novel miRNA drugs and more traditional

drugs, which can then be tested experimentally.

miR-122 is for instance predicted to target estrogen

receptor 1 (ESR1), whose gene product is essential for

the important drug families of estrogens (e.g. estra-

diol) and anti-estrogens (e.g. tamoxifen). If this pre-

dicted target is functional, treating patients for HCV

with miR-122 may cause adverse drug effects if the

patient is also undergoing treatment with estrogens or

anti-estrogens.

CONCLUSION
In recent years, an increasing number of papers de-

scribe a link between miRNAs and drug function

through deregulation of pharmacogenomics relevant

genes. These studies are mainly performed in cancer

cell lines and mainly describe chemoresistance. Drug

toxicity studies and studies on drug metabolizers are

remarkable scarce. Also, many studies report miRNA

deregulation in drug-resistant cells but fail to identify

the miRNA target effector genes. The lack of such

studies highlights how elusive it can be to link

miRNA expression with the relationship between

genes and drug efficacy/toxicity. Pharmaco-miR is

a web server designed to assist in identifying such

interactions among miRNAs, target genes and asso-

ciated drugs by integrating the leading sources on

miRNA targeting and pharmacogenomics. The

output typically consists of miRNA pharmacoge-

nomic sets comprising a miRNA, a target gene and

a drug annotated in the literature as being associated

with the target gene. Accompanying Pharmaco-miR

is the VerSe database, consisting of miRNA pharma-

cogenomic sets which have been experimentally

verified. Pharmaco-miR is thus a useful tool when

predicting the effect of miRNAs on drug efficacy

and toxicity or when developing hypothesis within

miRNA pharmacogenomics. Identification of

miRNA pharmacogenomic sets makes it possible to

outline potential mechanisms for miRNA–drug

interactions when planning experiments and assists

in the interpretation of results. As the field of

miRNA pharmacogenomics matures, Pharmaco-

miR can be extended to collect relevant information

within the field and allow searches specifically for

miRNA pharmacogenomic sets, where the full set

has been investigated in a pharmacogenomic con-

text. We therefore believe that Pharmaco-miR will

contribute significantly to the progress of miRNA

pharmacogenomics both in short and long terms.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� MicroRNAs (miRNAs) play a role in pharmacogenomics by
regulating genes that are important for drug function.

� Theweb server Pharmaco-miR combinesmiRNA targeting data
with gene^drug interactions and thereby helps identify sets
of miRNAs, their target genes and drugs depending on these
genes for their action. Thus, Pharmaco-miR predicts inter-
actions betweenmiRNA regulation and drug function.

� Pharmaco-miR can be an important tool when planning and in-
terpreting miRNA pharmacogenomic experiments and building
hypothesis onmechanisms ofmiRNA^drug interdependence.
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