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Abstract

Background

Increasing evidence suggests the presence of structural changes affecting the right ventric-

ular outflow tract (RVOT) in patients with Brugada Syndrome (BrS). The aim of this study

was to characterise the RV morphology in BrS and explore associations between morpho-

logic, clinical, electrical, and genetic parameters using non-invasive multimodality testing.

Methods

Consecutive BrS patients (recruited 2013–2015) underwent clinical assessment, dedicated

RV imaging using cardiac magnetic resonance (CMR) imaging (unless contra-indicated),

electrical assessment (electrocardiogram, Holter monitoring, signal-averaged ECG

[SAECG]) and genotyping. Morphologic data were compared to matched control and

unmatched ARVC (arrhythmogenic right ventricular cardiomyopathy) cohorts, and potential

associations between morphologic parameters and other variables were explored.

Results

BrS patients (n = 42, male 86%, age 46±12 years) exhibited normal global RV volume and

function, comparable to control, in contrast to significantly larger, impaired RVs in ARVC

cohort (RVESV p = 0.0001; RVEDV p<0.0001, RVEF p = 0.002). Compared with control,

BrS patients exhibited larger RVOT volumes (7.4 ± 0.7 vs 5.8 ± 0.7 mL/m2, p<0.0001) and

wall motion abnormalities (RWMA) (31% vs 0%, p = 0.005); compared with ARVC cohort,

the RVOT volumes were similar (7.4 ± 0.7 vs, 8.1 ± 1.7, p = 0.52) and there were less

RWMA (31% vs 76%, p = 0.01). Overall 67% BrS patients had abnormal RVOT morphology.

Patients with abnormal RVOT tended to be older (48 ± 12 y vs 41 ± 12y, p = 0.06). Rare

genetic variants were only observed in patients with abnormal RVOT morphology (36% vs

0%, p = 0.02).
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Conclusions

Patients with BrS frequently exhibit structural abnormalities localised to the RVOT and

these changes may be age- and gene-dependent.

Introduction

Brugada Syndrome (BrS) is an inherited arrhythmia syndrome characterised by coved-shaped ST

elevation in the right precordial leads on 12-lead electrocardiogram (ECG)[1–3]. BrS has typically

been considered a primary inherited channelopathy, most commonly due to loss of function of

the inward sodium current, in the absence of overt structural heart disease. However, there is

increasing evidence that BrS may represent a heterogeneous group of disorders with a unifying

ECG abnormality[4]. Recent radiological and histological studies have highlighted the BrS arrhyth-

mic substrate originates from the right ventricular outflow tract (RVOT) [5–9]. Several groups

have also proposed that the arrhythmic substrate and ECG changes in BrS may be ameliorated by

RVOT ablation[10–12]. There are few studies that have systematically explored the association

between structural abnormalities and the electrical and genetic profile of patients with BrS[13, 14].

Evaluation of patients with BrS has typically focussed on clinical, genetic and electrical

parameters based on ECG and/or EP testing[2, 3, 15]. However, given the mounting evidence

that BrS may not be a pure electrical disease, the inclusion of adjunctive investigations such as

dedicated RV imaging, signal-averaged ECG (SAECG), and 12-lead Holter monitoring as part

of a multimodality assessment approach may improve our understanding of BrS. The aim of

this study was to use multimodality assessment to characterise the structural pathophysiology

in BrS and specifically explore potential associations between morphologic changes and clini-

cal, electrical, and genetic parameters.

Methods

Patient selection and baseline assessment

From July 2013 to December 2015, consecutive BrS patients were recruited from Genetic

Heart Disease Clinics at Royal Prince Alfred Hospital and Concord Repatriation General Hos-

pital in Sydney, Australia, as well as the Australian Genetic Heart Disease Registry[16]. All

patients had a definite diagnosis BrS according to published criteria[2]. The study was

approved by the Sydney Local Health District Ethics Review Committee, Australia.

Patients underwent clinical review and ECG with precordial leads placed in standard posi-

tion and between 2nd and 4th ICS. In addition to measuring standard baseline ECG intervals

(e.g. PR, QRS, QTc) we also specifically interrogated ECGs for the presence of fragmented-

QRS [defined as�4 spikes in one lead or�8 spikes in all leads V1-V3][17] and inferolateral

ST change [defined as prominent J-point elevation of at least 1mm in any inferolateral lead]

[18]. Abnormal findings required concordance between 2 independent cardiologists (BG/RS).

After enrolment, all patients were prospectively followed and reviewed annually or following a

clinical event. All patients with suspected arrhythmic syncope underwent careful history by

two independent physicians (BG, RS).

Dedicated RVOT imaging and quantitative assessment using Cine MRI

All eligible patients were referred for CMR imaging with dedicated RV and RVOT analysis.

Patients with contraindications to CMR (ICDs in situ or severe claustrophobia) were referred
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for echocardiogram with quantitative analysis of the RV and RVOT. CMR was performed

using 1.5T scanner (GE Medical Systems). Detailed CMR protocol is found in S1 Text, S1 Fig

and S2 Fig. Echocardiogram was performed with RVOT measurements performed in para-

sternal short axis view, in accordance with the 2010 Task Force Criteria for arrhythmogenic

right ventricular cardiomyopathy (ARVC) (S2 Fig) [19–21]. Abnormal RVOT was defined as

the presence of RVOT regional wall motion abnormalities (RWMA; defined as akinesis, dys-

kinesis) or an RVOT diameter >25mm[22]. RV morphological parameters from BrS cohort

were compared to those in an age- (within 5 years) and gender-matched healthy control cohort

without heart disease, as well as an unmatched cohort of consecutive patients with ARVC who

were referred to our clinic during the study period. All patients in the ARVC cohort fulfilled

published criteria for definite diagnosis[20] and the two most common presentations were

documented ventricular arrhythmia (47%) and family history of premature sudden death or

ARVC (23%).

12-lead Holter monitoring & signal averaged ECG

Patients underwent 12-lead 24-hour Holter assessment with chest leads placed between the

parasternal 2nd and 4th ICS. The methods for collection and analysis of Holter data have been

previously described[23]. Only coved-type ST-elevation�2mm was used for ST analysis. “Spa-

tial burden” was calculated by number of precordial leads demonstrating diagnostic ST eleva-

tion at any time-point. “Global burden” was defined as the summed ST elevation across all

precordial leads during 24-hours (in mm). “Temporal burden” was defined as the total time

duration (in minutes) with type 1 pattern over the 24-hour period.

The presence of late potentials was defined as�1 out of the following 3 criteria: filtered

QRS duration >114ms, terminal (last 40ms) QRS root mean square<20μV or low amplitude

signal (under 40 μV) duration >38ms[20].

Genetic testing

The majority of patients (88%) were referred for research-based genetic testing including

previously reported cardiac arrhythmia, ARVC and other cardiomyopathy genes. This in-

volved cardiac gene panel testing in 21 patients [Illumina Trusight extended arrhythmia/car-

diomyopathy 174 gene panel (10 patients) or Blueprint Genetics (Finland) 133 heart gene

panel (11 patients)] or whole exome sequencing (Macrogen, Korea) in 16 patients. A minority

of patients (12%) were referred to our clinic with known genetic variants in BrS1-23 identified

on prior commercial testing. Any rare variants (allele frequency <0.02% in the Exome Aggre-

gation Consortium database, http://exac.broadinstitue.org) were then assessed for pathogenic-

ity using modified ACMG criteria[24] (see ClinVar, Agnes Ginges Centre for Molecular

Cardiology variant assessment and assertion criteria; https://submit.ncbi.nlm.nih.gov/ft/byid/

djgybgii/mdi-5363_505375_agnesginges_variantassess_clinvar.pdf).

Statistical analysis

Statistical analyses were carried out using SPSS (Version 23) and GraphPad Prism 7. Continu-

ous variables were assessed using unpaired T-tests and one-way analysis of variances for > 2

groups. If variables were not normally distributed they were summarized with medians and

interquartile ranges and compared with Mann-Whitney Test. Categorical variables were com-

pared using chi-square and Fisher’s exact tests. Linear regression analysis was performed to

study the relation between morphologic parameters, and continuous electrical parameters. Sig-

nificance was set at a two-sided p-value of<0.05.
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Results

Baseline characteristic

A total of 42 patients were recruited. Baseline characteristics are shown in Table 1. The major-

ity of the patients were male (n = 36, 86%), mean age at diagnosis was 46 ± 12 years and mean

follow-up was 2.2 ± 2.0 years. Most patients were probands (n = 37, 88%), 10 (24%) had a fam-

ily history of SCD or ACA and, 20 (48%) were classified as having a “spontaneous BrS pattern”

on the baseline ECG or Holter monitoring. There were 11 patients (26%) who were symptom-

atic at recruitment [n = 5 (12%) ACA, n = 6 (14%) syncope], all of whom had ICDs in situ.

Baseline morphologic characteristics are shown in Table 2. CMR imaging was performed in 29

(69%) patients. Echocardiogram with dedicated RV imaging was performed in remaining 13

(31%) patients due to contraindications to CMR (11 ICD, 2 claustrophobia). Overall biventricular

size and function were normal. One patient (3%) had an indexed RVEDV beyond the normal

range for the laboratory, and no patients had RVEF�40%. Mean RVOT diameter was 25 ± 4mm.

On baseline ECG, four patients (10%) had inferolateral ST change and five patients (12%)

fQRS (Table 2). Holter Monitoring demonstrated mean summed type 1 ST elevation of

102 ± 266mm over 24-hour period. The mean time with type 1 pattern ST elevation (i.e. tem-

poral burden) was 512 ± 1330 minutes, and mean spatial burden was 1.1 ± 1.6 leads. The over-

all PVC burden was low (149 ± 452 beats) and no patients demonstrated VT. Late potentials

were observed in 15 patients (36%).

Rare variants in BrS genes were identified in 24% of patients, and the variant was defined as

pathogenic or likely pathogenic in 17% (Table 1). Specific genetic variants are described in S1

Table.

Morphologic RVOT abnormalities in Brugada syndrome

The imaging data from the BrS cohort were compared to the ARVC and control groups

(Table 3). BrS patients had similar global left ventricular volume and function as both ARVC

and control groups, except for lower LVEDV compared to ARVC cohort (p = 0.04).

Table 1. Baseline characteristics.

Characteristic Value�

Male 36 (86)

Age at diagnosis (yrs) 46 ± 12

Follow up (yrs) 2.2 ± 2.0

Spontaneous type 1 pattern on ECG or Holter20 20 (48)

Proband 37 (88)

History of ACA 5 (12)

History of Syncope 6 (14)

Shanghai Score3 3.7 ± 1.7

Family History of sudden cardiac death/ACA< 45 years 10 (24)

ICD at recruitment 11 (26)

Previous Electrophysiology study 4 (10)

Ventricular Effective Refractory Period <200ms 0 (0)

Inducible VF/VT 1(25)

Genetic Testing Result

Pathogenic/Likely Pathogenic 7(17)

Any rare variant 10 (24)

ACA- aborted cardiac arrest.

�values are mean ± SD or n (%).

https://doi.org/10.1371/journal.pone.0195594.t001
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BrS global RV volume and function was comparable to control except for lower RVEDV

(p = 0.03), though probably not clinically relevant because both groups were within normal

ranges. ARVC patients had larger global RV volumes and reduced systolic function when com-

pared to both BrS patients and controls (RVESV = 33 ± 9 [BrS] vs 37 ± 7 [control] vs 60 ± 38

Table 2. Morphologic and electrical characteristics.

Characteristic Value�

Imaging
LVESVI (mL/m2)+ 26 ± 8

LVEDVI (mL/m2)+ 70 ± 19

RVESVI (mL/m2)+ 35 ± 12

RVEDVI (mL/m2)+ 80 ± 26

LVEF (%)� 64 ± 7�

RVEF (%)� 56 ± 6�

RVOT dimension (overall)� 25 ± 4�

-CMR dimension 26 ± 4

-TTE dimension 25 ± 3

RVOT length 33 ± 5

RVOT volume 14 ± 2

RVOTI: RVEDVI ratio 0.11 ± 0.04

RVOT wall motion abnormality� 12 (29)�

ECG
Heart rate (bpm) 68 ± 12

PR (ms) 168 ± 25

QRS(ms) 115 ± 17

QTc (ms) 400 ± 20

Inferolateral ST change 4 (10)

Fragmented QRS 5 (12)

12 lead 24 hour Holter Monitoring
Spatial burden: Maximum number of leads[23] 1.1 ± 1.6

Global burden: Total ST elevation (mm)[23] 102 ± 266

Temporal burden: Total Time Burden ST elevation (min)[23] 512 ± 1330

SDNN (ms) 135 ± 40

rMSSD (ms) 38 ± 18

SDANN (ms) 97 ± 46

pNN50 (%) 11 ± 10

Premature ventricular contractions 149 ± 452

SAECG
Late Potentials 15 (36)

Positive Late Potential Count 0.7 ± 1

HF QRS duration 102 ± 14

RMS last 40ms 32 ± 21

Duration<40μV 33 ± 10

LV/RVES/DVI- left/right ventricular end-systolic/diastolic volume indexed, LV/RVEF- left/right ventricular ejection

fraction, QTc- corrected QT interval, SD(A)NN- SD of normal (averaged) RR intervals, rMMSD- root mean square

of successive normal sinus RR interval difference, pnn50- % normal sinus RR intervals >50ms.

(Values are mean ± or SD or n(%)).
+Indexed.

�Includes echo if no CMR.

https://doi.org/10.1371/journal.pone.0195594.t002
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[ARVC] mL/m2, p = 0.0001; RVEDV = 75 ± 16 [BrS] vs 83 ± 12 [control] vs 111 ± 44 [ARVC]

mL/m2, p<0.0001, one-way ANOVA Fig 1A; RVEF = 56 ± 6% [BrS] vs 56 ± 5% [control] vs

49 ± 10% [ARVC], overall p = 0.002 one-way ANOVA [BrS vs control p = 0.9, BrS vs ARVC

p = 0.001, Mann-Whitney test], Fig 1B).

When specifically assessing function and size of the RVOT, BrS patients were found to have

significantly greater indexed RVOT volumes compared with control (7.4 ± 0.7 vs 5.7 ± 0.6 mL/

m2, p<0.0001) and similar to the ARVC cohort (7.4 ± 0.7 vs, 8.1 ± 1.7, p = 0.52 Mann-Whitney

test, Fig 1C). BrS patients exhibited significantly more focal RVOT regional wall motion

abnormalities than the control group (31% vs 0%, p = 0.005) but less than the ARVC cohort

(31% vs 76%, p = 0.01, overall p<0.0001, Fishers Exact Test Fig 1D). BrS patients had signifi-

cantly greater indexed RVOT volume:RVEDV ratios than ARVC and control (RVOTVI:

RVEDVI = 0.11 ± 0.04 [BrS] vs 0.07 ± 0.02 [ARVC] vs 0.07 ± 0.01 [control], p<0.0001, overall

one-way ANOVA; BrS vs control p<0.0001 Mann-Whitney test, BrS vs ARVC p<0.0001

Mann-Whitney test). The RVOTVI:RVEDVI ratio in the ARVC cohort was not significantly

different to the control group (ARVC vs control p = 0.92, Mann-Whitney test). There was no

evidence of right or left ventricular late gadolinium enhancement (LGE) in any group. None

of the BrS patients fulfilled major or minor imaging criteria for ARVC [21].

Relation between morphologic parameters, clinical characteristics and

genetic profile

Using dedicated RVOT imaging, 28 BrS patients (67%) exhibited abnormal RVOT morphol-

ogy; 12 patients (29%) with regional RVOT wall motion abnormality, 19 patients (45%) with

RVOT diameter >25mm, (3 patients with both). The baseline characteristics and investiga-

tions of BrS patients according to RVOT morphology are shown in Table 4. There were no sig-

nificant differences in the baseline clinical characteristics between the two groups, although

Table 3. Comparison of CMR data.

Characteristic Brugada cohort n = 29 ARVC cohort n = 17 Control Group n = 29 p value

Age at scan 48 ± 12 39 ± 17 48 ± 10 0.10

Male sex 25 (86) 11 (65) 17 (81) 0.22

Body surface area 1.9 ± 0.2 1.9 ± 0.3 2.1 ± 0.2 0.08

LVESVI (mL/m2)+ 25 ± 8 31 ± 11 27 ± 9 0.11

LVEDVI (mL/m2) + 67 ± 14 79 ± 18 73 ± 13 0.04�

RVESVI (mL/m2) + 33 ± 9 60 ± 38 37 ± 7 0.0001�

RVEDVI (mL/m2) + 75 ± 16 111 ± 44 83 ± 12 <0.0001�

LVEF (%) 64 ± 7 61 ± 8 64 ± 6 0.36

RVEF (%) 56 ± 6 49 ± 10 56 ± 5 0.002�

RVOTDI+ (mm/m2) 13.4 ± 2.1 14.6 ± 1.5 13.0 ± 1.4 0.03�

RVOTVI+ (mL/m2) 7.4 ± 0.7 8.1 ± 1.7 5.7 ± 0.6 <0.0001�

RVOT WMA 9 (31) 13 (76) 0 (0) <0.0001�

RVOTVI:RVEDVI 0.11 ± 0.04 0.07 ± 0.02 0.07 ± 0.01 <0.0001�

RV late gadolinium enhancement 0 0 0 0.93

[Results are n (%) or mean ± SD (one-way ANOVA)].
+Indexed.

�p<0.05.

LV/RVES/DVI- left/right ventricular end-systolic/diastolic volume indexed, LV/RVEF- left/right ventricular ejection fraction, RVOTD/VI- right ventricular outflow

tract diameter/volume indexed.

https://doi.org/10.1371/journal.pone.0195594.t003
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patients with abnormal RVOT tended to be older (48 ± 12 y vs 41 ± 12y, p = 0.06). There was

no association between abnormal morphology and clinical events (OR [95% CI] = 1.2 [0.31–

4.5], p = 0.82).

Rare variants identified in a BrS gene were only observed in patients with abnormal RVOT

morphology (36% vs 0%, p = 0.02). Pathogenic variants in sodium channel genes gene were

also only observed in patients with abnormal RVOT morphology (25% vs 0%, p = 0.08).

Relation between morphologic parameters and electrical parameters

The presence of a spontaneous type 1 ECG pattern on ECG or Holter monitoring was associ-

ated with a lower RVEF (53.1 ± 4.1% vs 57.8 ± 6.0%; p = 0.03) but similar RVOT diameter

(12.8 ± 2.1 vs 13.7 ± 2.0 mm; p = 0.25). The relation between RV morphology and f-QRS and

inferolateral ST change could not be evaluated because of the low number of patients with

these electrical abnormalities. Based on SAECG, patients with late potentials had a lower

RVEF (53.7 ± 7.4 vs 57.5 ± 4.7; p = 0.06) but similar RVOT diameter (12.6 ± 2.2 vs 13.9 ± 2.0

mm; p = 0.17).

There was also weak statistical correlation between lower RVEF and increased QRS dura-

tion (R2 0.32, p = 0.002), but no correlation between morphologic parameters and PR interval

Fig 1. Morphology comparison between BrS, ARVC and control cohort. Box and whiskers plot of (A) RVEDV (B) RVEF (C) RVOT volume; column graph of (D)

RVOT RWMA in BrS compared with control and ARVC cohorts. Box and whiskers values are median (IQR). Whiskers include values within 1.5 IQR of the nearest

quartile. Boxes are based on Tukey’s Hinges. �overall comparisons RVEDV/RVEF/RVOT volume one-way ANOVA; RVOT RWMA Fishers-exact test. ��column

comparisons Mann-Whitney test.

https://doi.org/10.1371/journal.pone.0195594.g001
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(S2 Table). Similarly, there was weak statistical correlation between increased RVESV and an

increased spatial (R2 0.26, p = 0.009) and global (R2 0.26, p = 0.04) burden of Type 1 ECG

changes. There was no correlation between morphologic parameters and temporal burden of

Type 1 ECG changes.

Discussion

Potential relations between morphological abnormalities and clinical, genetic and electrical

characteristics in BrS were explored using multimodality non-invasive assessment including

quantitative evaluation of the RV. The key findings of this study are: (1) patients with BrS had

preserved overall RV volume and function but frequently exhibit localised abnormalities in the

RVOT when compared with a matched control group; (2) the development of morphological

abnormalities may be related to age and rare genetic variants, and; (3) patients with spontane-

ous type 1 ECG changes may exhibit subclinical RV dysfunction (lower RVEF) while other

minor correlations between morphologic abnormalities and non-invasive electrical parameters

were also observed.

Morphologic RVOT abnormalities in Brugada syndrome

Several CMR studies have suggested RVOT morphological abnormalities in BrS patients[6,

25]. Studies have demonstrated significantly larger RVOT area and reduced RVOT ejection

fraction in BrS patients compared with normal controls[5, 6, 13, 14]. However this has not

been a universal finding[26]. Using quantitative analysis of the RV and RVOT, we confirmed

that the overall incidence of RVOT morphologic abnormalities was high, being 67% in our

cohort. The present study was unique in that it not only compared BrS cohort against age-

matched controls, but also consecutive patients with definite ARVC referred to our clinic

over the same time period. By doing so, we were able to demonstrate that BrS is differentiated

from the normal population by the presence of increased RVOT volume and abnormal RVOT

function, but that BrS is also differentiated from classic ARVC by the absence of global RV

Table 4. Association between morphological abnormality and clinical and genetic characteristics.

Characteristic RVOT normal

n = 14

RVOT abnormal

n = 28

p value

Male sex 13 (93) 23 (82) 0.65

Age at diagnosis 41 ± 12 48 ± 12 0.06

Asian ethnicity 5 (36) 9 (32) 1.0

Family history of SCD/ACA 3 (21) 7 (25) 1.0

Proband 13 (93) 24 (86) 0.65

Shanghai Score 4 ± 1.6 3.7 ± 1.7 0.68

Clinical events:

Hx of ACA 1 (7) 4 (14) 0.65

Hx of syncope 3 (21) 3 (11) 0.38

Follow up (years) 2.5 ± 2.5 2.1 ± 1.6 0.59

Genetic Testing

Rare variants + 0 (0) 10 (36) 0.02

- Pathogenic/ likely pathogenic 0 (0) 7 (25) 0.08

- VUS 0 (0) 3 (11) 0.54

[Results are n (%) or mean ± SD].
+Rarity defined as MAF<0.02% ExAC.

https://doi.org/10.1371/journal.pone.0195594.t004
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dilatation or dysfunction. The potential overlap between ARVC and BrS as part of an arrhyth-

mogenic cardiomyopathy spectrum, was first highlighted in a series of young sudden death

victims in Italy whereby 14% of the patients had a previously documented type 1 BrS ECG pat-

tern, of whom all except one had ARVC at post-mortem[27]. Cerrone et al identified coexis-

tence of PKP2mutations and sodium channel dysfunction in BrS patients with no overt

ARVC phenotype. The sodium channel deficiency was due to reduced number of channels at

the intercalated disk and increased microtubular separation at a cellular level[28]. Patients

with ARVC have been shown to demonstrate BrS-like ECGs spontaneously and following

Ajmaline provocation[29, 30]. Moreover, patients with ARVC may harbour rare SCN5A vari-

ants[31].

LGE was not observed in either our BrS or ARVC cohorts. Other groups have also

described a low incidence of LGE in ARVC[32]. Basitaenen et al recently reported that 8% of

their BrS patients exhibited LGE (most often in the LV)[14], reflecting the heterogeneous sub-

strate in BrS. It is possible that the morphologic changes in BrS may be under-estimated in the

present study because patients with the most severe clinical phenotype had ICDs, which pro-

hibited CMR evaluation.

Relation between abnormal RVOT morphology and clinical and genetic

profile

Royer et al first demonstrated how ion channel defects can lead to structurally abnormal

hearts, demonstrating aged-related changes in SCN5A knockout mouse models whereby the

old but not the young SCN5A-mutant mice showed extensive myocardial fibrosis with hetero-

geneous expression of connexin-43[33]. Previous investigators have also found that SCN5A-

mutation carriers have larger biventricular volumes and lower LVEF compared to SCN5A-

mutation negative patients or healthy volunteers[13]. More recently, SCN5A-mutation carriers

have also been demonstrated to have larger RV volumes and lower RVEF compared to muta-

tion negative patients or controls[7]. In the present study, we also demonstrated that rare

variants in BrS-associated genes (especially SCN5A) were over-represented in patients with

abnormal RVOT morphology, and such variants were not found in patients with normal

RVOT morphology. Coronel et al explored the substrate of an explanted RVOT following car-

diac transplantation in a patient with SCN5Amutation. They showed RVOT histological evi-

dence of hypertrophy and fibrosis[10]. Additionally, Frustaci et al showed right ventricular

myopathic changes in association with SCN5Amutations[8]. Indeed SCN5A-mutations have

been implicated in clinical phenotypes beyond BrS such as dilated cardiomyopathy and ARVC

[31, 34]. These findings suggest a unifying pathogenic basis for disease whereby genetic muta-

tions may result in cardiac channel dysfunction as well as subtle RVOT structural changes in

many patients with BrS. Nevertheless it is worth noting that RVOT fibrosis has also been iden-

tified in BrS patients irrespective of mutation status again highlighting the likely underlying

structural RVOT abnormalities of BrS[9]. In addition, there is increasing evidence to suggest a

possible oligogenic basis to BrS with genotype-phenotype mismatch identified even in families

with presumed pathogenic SCN5A mutations[35, 36].

We also observed that patients with RVOT abnormalities were on average 7 years older

than patients without such abnormalities. One may speculate that structural manifestations

are age-dependent and may be preceded by the electrical phenotype. Cardiac MRI is currently

the gold standard for imaging the RV and RVOT because of its high spatial resolution, supe-

rior tissue characterization and ability to reproducibly quantify local RVOT volume and func-

tion. However, there remain limitations in the assessment of ultrastructural changes that may

precede detectable morphologic abnormalities using existing imaging technology. For
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example, a recent pathological study assessing the arrhythmic substrate in post-mortem BrS

hearts identified increased collagen and connexin-43 as markers of fibrosis, with the highest

degree of fibrosis in the RVOT[9]. Therefore, the absence of structural RVOT changes on

CMR in younger patients with BrS may not equate to the absence of an arrhythmogenic sub-

strate in this region but rather our inability to detect early changes with current imaging tests.

Serial prospective imaging studies may allow us to define the evolution of structural abnormal-

ities in BrS.

Relation between abnormal RVOT morphology and electrical

manifestations

There have been multiple recent studies observing the importance of the RVOT in arrhythmo-

genesis in BrS[8–12, 37]. This has led some investigators to consider epicardial RVOT ablation

as a means of ‘curing’ BrS [8, 10–12]. However, there are only a few studies that have carefully

explored the association between structural abnormalities and electrical manifestations. Velt-

mann et al correlated the anatomical location of the RVOT on CMR imaging with the localised

ECG changes[38]. Nadamanee et al showed correlation between the presence of fibrosis and

abnormal late fractionated potentials indicative of slowed conduction in the RVOT region of

patients with BrS[9]. Papavassiliu et al also showed that patients with spontaneous type 1 ECG

pattern were more likely to have enlarged RVOT area, larger RV end-systolic volumes, lower

LV and RV ejection fraction[25]. Association between PR and QRS prolongation on surface

ECG with lower biventricular function have also been observed in patients with BrS[13].

The present study provided additional insights into potential relations between morpho-

logic abnormalities and electrical manifestations of disease. We confirmed that the presence of

a spontaneous type 1 ECG pattern was associated with a lower RVEF. We also found that BrS

patients with late potentials tended to have a lower RVEF. Weak statistical correlation was also

observed between QRS prolongation and lower RVEF, as well as between increased spatial and

global burden on Holter analysis and an increased RVESV.

In totality, these findings further support recent observations of a focal arrhythmic substrate

harboured in the RVOT that may be amenable to ablation in some patients with BrS. Invasive

electroanatomical mapping and novel non-invasive electrocardiographic imaging methods

may provide further insight into correlations between electrophysiological substrate (eg. areas

of abnormal slow conduction or low voltage) and structural changes in the RVOT detected on

CMR[39, 40]. Finally, future studies should evaluate whether pre-procedural CMR may assist

in the identification of specific BrS patients who are more likely to benefit from epicardial

mapping and ablation, notwithstanding the potential limitations of the MRI in detecting early

electrical and ultrastructural changes.

Limitations

A limitation of our study is the small size of the study, despite recruitment of consecutive

patients from multiple Australian centres. The preliminary results of the present study should

ideally be validated in a larger multicentre study. Due to contraindications (largely, the pres-

ence of ICDs), not all patients had CMR with some having RVOT focused echocardiograms.

Recent data from Gotschy et al showed that the parasternal short axis view on echocardiogram

and CMR (as used in the present study) resulted in RVOT measurements with reasonable cor-

relation and excellent inter- and intra-reader reproducibility[19]. Another potential limitation

is variability in the observation of RVOT wall motion abnormalities as highlighted by Teske

et al, and therefore wall motion abnormalties in the present study required confirmation by

two independent observers [41]. The lack of invasive RVOT electrophysiological data also

Right ventricular morphology in Brugada Syndrome

PLOS ONE | https://doi.org/10.1371/journal.pone.0195594 April 13, 2018 10 / 14

https://doi.org/10.1371/journal.pone.0195594


needs to be acknowledged. At the time of study inception, the results from PRELUDE made

ethics approval for routine invasive assessment on clinical grounds challenging[15]. With

recent renewed interest, it is possible that the addition of invasive electrophysiologic parame-

ters may further enhance comprehensive multimodality assessment.

Conclusions

This study demonstrated a high incidence of RVOT morphologic abnormalities in BrS as well

as important relations between such abnormalities and clinical, genetic and electrical manifes-

tations of disease. It confirmed that BrS is indeed a heterogeneous disorder covering the spec-

trum of channelopathy and “cardiomyopathy” with the abnormalities anatomically localised

to the RVOT in many cases.
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