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ABSTRACT Staphylococcus pseudintermedius is a pathogen of veterinary importance,
as it is the major causative agent of superficial pyoderma in dogs. We present the
complete genome sequences of six strains of S. pseudintermedius derived from dogs
affected with epidermal collarettes and superficial bacterial folliculitis, which are two
variants of superficial pyoderma.

Superficial pyoderma is a common diagnosis in the dog, with a prevalence of up to
10% in all dogs presented in private practices (1, 2). Staphylococcus pseudintermedius

is the principal pathogen for canine superficial pyoderma (3). Pathogenic S. pseudinter-
medius strains are underrepresented in genomic databases such as GenBank compared
to human pathogens. Here, we present the complete genome sequences of six strains of
S. pseudintermedius, which were isolated from dogs in Georgia, USA, suffering from two
clinical variants of superficial pyoderma, epidermal collarettes (strains 9261-1A, 11304-
1A, 11304-2A, 11304-3A, and 11306-1A) and superficial bacterial folliculitis (strain 11306-
4A). Two plasmids were assembled from the sequencing data from a single strain
(11304-3A). These complete genome sequences will improve researchers’ capacity for
using genomic data for an in-depth understanding of the mechanisms underlying the
pathogenesis of S. pseudintermedius-mediated superficial pyoderma clinical variants.

Swab samples were collected from dogs affected with superficial pyoderma at the
Veterinary Medical Center of the College of Veterinary Medicine, University of Georgia.
The Institutional Animal Care and Use Committee (IACUC) of the University of Georgia
(CR-459) approved the study protocol. The sample swabs were inoculated onto blood
agar (tryptic soy agar with 5% sheep blood; Thermo Fisher Scientific) and incubated for
24 h at 376 2°C in an aerobic incubator. Preliminary identification of isolated colonies
was made using conventional methods (i.e., positive catalase test, positive coagulase
test) and the Gram-positive organism bacterial auto-identification system (Sensititre;
Thermo Fisher Scientific) according to the manufacturer’s procedure. The species iden-
tification of S. pseudintermedius was performed using the multiplex PCR method for
species identification of coagulase-positive staphylococci using the bacterial DNA from
single bacterial colonies (4). Pure isolated colonies of S. pseudintermedius strains iso-
lated from canine superficial pyoderma were transported to the Penn State Animal
Diagnostic Laboratory for sequencing. The single isolated colonies were subcultured in
brain heart infusion (BHI) broth (BD) and incubated overnight at 37°C. DNA extraction
from each colony was done using the GenFind V2 DNA extraction kit (Beckman Coulter)
following the manufacturer’s instructions.
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Two platforms were used for sequencing; Illumina was utilized to generate short
paired-end reads, whereas long reads for closing the gaps in the genomic sequences
were generated with the MinION device from Oxford Nanopore Technologies (ONT).
The Illumina Nextera DNA Flex library prep kit was used to generate the libraries for
sequencing with Illumina MiniSeq. The one-dimensional (1D) native barcoding
genomic DNA protocol (EXP-NBD104 and SQK-LSK109; ONT) was used to generate the
libraries for sequencing with the MinION device. The quality of the short reads (150 bp)
generated with Illumina MiniSeq was assessed using FastQC v0.11.9 (5). Base-calling
and demultiplexing of reads from the MinION data were performed using MinKNOW
v20.10 and EPI2ME v2020.2.10, respectively; both software platforms are downloadable
from the ONT community website. Filtlong v0.2.0 (6) was used for quality control by
removing short reads and trimming off the regions of the lowest quality from each
read. A de novo hybrid assembly technique with Unicycler v0.4.8 (7) was utilized with
default options to generate complete circular chromosomes for all six isolates and two
plasmids for one isolate. The sequence overlap identification and trimming and the ge-
nome rotation are among Unicycler’s default options. The circular replicons are rotated
to start with dnaA and repA genes for chromosomes and plasmids, respectively. The
genome sequences were submitted to GenBank and annotated using the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) (8). The metric sequencing data and
genome assembly are provided in Table 1.

Data availability. The data were deposited in the NCBI’s databases under the BioProject
accession no. PRJNA683859. The complete genomes and the raw reads were deposited in the
GenBank and SRA databases, respectively. The accession numbers are provided in Table 1.
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