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Cancer and cardiovascular diseases are the leading causes of death and morbidity

worldwide. Strikingly, cardiovascular disorders are more common and more severe in

cancer patients than in the general population, increasing incidence rates. In this context,

it is vital to consider the anticancer efficacy of a treatment and the devastating heart

complications it could potentially cause. Oncocardiology has emerged as a promising

medical and scientific field addressing these aspects from different angles. Interestingly,

nanomedicine appears to have great promise in reducing the cardiotoxicity of anticancer

drugs, maintaining or even enhancing their efficacy. Several studies have shown the

benefits of nanocarriers, although with some flaws when considering the concept of

oncocardiology. Herein, we discuss how preclinical studies should be designed as closely

as possible to clinical protocols, considering various parameters intrinsic to the animal

models used and the experimental protocols. The sex and age of the animals, the size

and location of the tumors, the doses of the nanoformulations administered, and the

acute vs. the long-term effects of treatments are essential aspects. We also discuss

the perspectives offered by non-invasive imaging techniques to simultaneously assess

both the anticancer effects of treatment and its potential impact on the heart. The overall

objective is to accelerate the development and validation of nanoformulations through

high-quality preclinical studies reproducing the clinical conditions.

Keywords: anticancer drugs, cardiotoxicity, nanoformulations, non-invasive imaging, echography, photoacoustic,

small animals

INTRODUCTION

Recent advances in the treatment of cancers have improved patient care and cure
rates. Cancer, once fatal, is now emerging as a chronic disease, often at the cost of
cardiovascular complications. Moreover, cardiovascular diseases (CVD) are more common
and more severe in cancer patients (1–5). In this context, the development of novel
treatments with antineoplastic agents still raises concerns about undesirable effects at the
acute phase of the treatment and potentially during long-term therapy (6). Therefore, the
management of cancer patients has moved from general cardiology to a specialized discipline,
oncocardiology, with in-depth cardiovascular monitoring at each stage of cancer therapy
(1, 7). Among various areas that can help solve these problems, nanotechnology is being
increasingly investigated in preclinical studies to improve anticancer treatments and reduce
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their cardiotoxicity. This review will discuss the potential
of nanocarriers to optimize the use of anticancer drugs
through tailored preclinical approaches that can help
understand/control their adverse effects and how preclinical
models can be better designed to represent an oncocardiology
approach truly.

REDUCING CARDIOTOXICITY OF
ANTICANCER DRUGS THROUGH
NANOTECHNOLOGY

Cardiotoxicity is a broad term that embraces toxic effects
on cardiac structure, morphology, rest parameters, and the
dynamic function of the heart. Cytotoxic drugs and targeted
therapies used to treat cancer, including classic chemotherapeutic
agents, tyrosine kinase inhibitors, antiangiogenic drugs, and
immunotherapy, often impair the cardiovascular system (8). Of
note, cancer itself may promote CVD (6).

The cardiotoxicity evoked by conventional chemotherapy
is widely known and occur through multiple mechanisms,
including overproduction of free radical species, inhibition
of topoisomerase 2β causing DNA double-strand breaks and
activation of apoptosis, profound changes in the transcriptome
leading to the generation of reactive oxygen species, and
inhibition of VEGF receptors causing endothelial dysfunction
and vascular injury. In turn, the novel immunotherapeutic
agents can lead to the inhibition of the Human Epithelial
Receptor type 2 (HER2), impairing the cell signaling in
cardiomyocytes; and the inhibition of programmed cell
death proteins (PD-1) causing inflammatory infiltrates
in the heart tissue (8–10). This cardiotoxicity can lead to
bradycardia (paclitaxel and thalidomide), promote QT interval
prolongation and arrhythmias (amsacrine and anthracyclines),
evoke myocardial ischemia via coronary vasospasm (anti-
metabolites and 5-fluorouracil), impair the left ventricle function
(anthracyclines, tyrosine kinase inhibitors, alkylating agents, and
cisplatin), and evoke myocarditis, pericarditis, and heart failure
(immunotherapy) (6, 11, 12).

The objective of cardioprotection is to limit cardiac damage
while maintaining antineoplastic efficacy (8). In the clinics,
combinations with drugs like statins, antiarrhythmic, beta-
blockers, calcium-channel inhibitors, and ACE (angiotensin-
converting enzyme) inhibitors are some of the strategies
(13). Interestingly, preclinical and clinical studies show that
nanotechnology can also lead to cardioprotection in cancer
treatment (14).

The basic concept of nanomedicine is to alter both
pharmacokinetics and biodistribution of nanoencapsulated
drugs, increasing their accumulation in the tumor site and
decreasing their delivery to non-target organs, such as the heart.
Passive and active targeting mechanisms can enable nanocarriers
to reach the tumor site efficiently. The passive mechanism is
based on the Enhanced Permeability and Retention (EPR) effect,
which leads to the accumulation of nanostructures in the tumor
site due to the characteristic leaky vasculature and absence of
lymphatic drainage in the tumor microenvironment (Figure 1A)

(15). In turn, active targeting involves the attachment of high-
affinity ligands to tumor cells on the surface of the nanocarriers.
The idea is to use ligands for which cancer cells express a high
number of specific receptors, whereas normal cells express very
few. A wide variety of ligands have been used for this purpose,
including folic acid, hyaluronic acid, transferrin, among others
(Figure 1B) (15, 16). Another interesting approach to evoke
cardioprotection through nanotechnology is the co-delivery
of antineoplastic drugs and cardioprotective agents (17). For
example, the co-encapsulation of DOXwith curcumin, quercetin,
or docosahexaenoic acid within the same nanocarrier has been
proposed in several nanoscale systems (18–20).

In 1995, Doxil R© (pegylated liposomal DOX) was the first
nanocarrier approved for clinical use (21, 22). This formulation
was designed to reduce DOX toxicity while preserving its
antitumor efficacy by altering its tissue distribution and
pharmacokinetics (23). Several randomized controlled trials have
demonstrated a reduction in the risk of clinical cardiotoxicity for
liposomal DOX-based chemotherapy compared to free DOX (24,
25). At present, various commercial formulations of nanocarriers
have been approved or are under clinical trial for cancer therapy.
These nanocarriers deliver classic chemotherapeutics, such as
isolated paclitaxel, irinotecan, the synergistic combination of
daunorubicin and cytarabine, and recent innovative treatments
for T-cell cancer immunotherapy (26, 27).

CONSIDERATIONS ABOUT PRECLINICAL
STUDIES OF NANOCARRIERS

The evaluation of the cardiotoxicity of nanostructures can be
performed both in vitro and in vivo. Human pluripotent stem
cell-derived cardiomyocytes (hiPSC-CM) emerge as a practical
approach for the early in vitro screening of cardiotoxicity of new
drugs (28–30). However, investigations on animal models are still
required to develop their use in clinical practice despite some
limitations. Nonetheless, some characteristics of these models,
such as age, gender, drug doses, and tumor models, are often not
correctly considered (Figure 2A). We will discuss these aspects
in the following sections.

Age and Gender
Most cancer patients are more than 60 years old, with aging being
a critical predisposition factor for cancer and CVD (5). Despite
these predictions, many preclinical cancer studies usemice whose
age correlates with that of adolescents (Figure 2A), a period of
life when cancer and cardiovascular events are fortunately rare.
The physiological differences between young and old animals
are significant, and one example is related to the EPR effect.
Tumor-bearing young animals may exhibit a more pronounced
EPR effect than older animals since older subjects present a lower
tumor angiogenesis rate (31). This issue makes less probable the
formation of blood vessels with fenestrations allowing the higher
permeation of nanocarriers by tumor tissues in young animals
compared to older subjects (32). Cardiovascular adverse effects of
therapeutics can also be underestimated in young animals since
the hearts of these animals have a higher regenerative potential
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FIGURE 1 | (A) Representation of the EPR effect with the nanocarriers accumulating within the solid tumor and not within the cardiomyocytes; (B) Nanocarriers with

active targeting, favoring the specificity for cancer cells instead of cardiomyocytes. EPR effect, enhanced permeability and retention effect.

than the hearts of old animals (33, 34). Therefore, the widespread
use of very young animals is a serious flaw that impairs the
translation of the results from preclinical to clinical studies.

Regarding gender, men are the most affected by almost
all types of cancer, with a few exceptions, such as anorectal,
gallbladder, thyroid, and breast cancer. However, we expect
the number of women affected by neoplasms to increase.
Therefore, it is essential to evaluate some risk factors affecting
women when they are gender-specific or affect women more
intensely, such as menopause, smoking, diabetes, and pregnancy
(35). Additionally, drug treatments for CVD may not be the
same due to physiological differences between the sexes (36).
As an example, anthracyclines-induced cardiotoxicity can be
less pronounced in women due to some benefits provided by
estrogens (37). Despite all this, most studies use only male
animals (Figure 2A), which does not reveal whether a particular
cancer treatment works in the same way in women or whether
its side effects are the same. Overall, preclinical cancer research
should include sex as a biological variable in all investigations
(35) (Figure 2B).

Tumor Models
Regarding the formation of tumors in animal models, there
are issues such as their location and size. The orthotopic
localization provides the appropriate microenvironment to
mimic metastases caused by a specific tumor (38). However,
the establishment of orthotopic tumors is an exception, and
most studies involve subcutaneous inoculation of tumor cells in
the flank of the animals. In addition, the sizes of the tumors
implanted subcutaneously are generally substantial to allow their
measurements through calipers. Consequently, the relationship
between tumor weight/animal weight becomes much higher than
that observed in humans, leading to errors when interpreting the
results. Human tumors treated with nanomedicine are usually in
the order of a few grams, so the tumor/body weight relationship
is insignificant. In mice, on the other hand, tumors can reach
up to 10% of the animal’s weight. Large size is one factor that
causes the EPR effect of nanomedicines to be overestimated in
animals, as larger tumors can promote higher colloidal buildup
(39). Ideally, the tumors should not exceed few millimeters to
respect better the relationship between tumor and body weight
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FIGURE 2 | (A) Representation of how anticancer animal studies are generally conducted up to now, with cardiotoxicity evaluation being conducted only after

euthanasia of the animals, with high doses administered of the nanocarriers and the use of only male and very young animals; (B) Suggestion of how to conduct

animal studies with nanocarriers using both female and male older mice; evaluation of cardiotoxicity during and after the treatment administered with lower doses of

the nanocarriers. The ultrasound-based techniques allow the simultaneous evaluation of antitumor activity and cardiotoxicity.

observed in humans. Additionally, small tumors allow more
prolonged treatment and animal monitoring periods, as animals
must be euthanized when the tumors reach high volumes.

Administered Doses of Nanomedicines
It is essential to administer, to the animals, doses related to the
plasma blood concentrations found in the clinics (40). However,
the choice of dosage in efficacy and toxicity preclinical studies
is often neglected, compromising the success of these therapies
in humans. First, very high doses are often utilized in animal
studies to reduce large volume tumors. Therefore, the use of
lower doses relies on the inoculation of smaller volume tumors
in the animals. In addition, the maximum tolerated doses in mice
are generally higher than in humans (40). Thus, the doses used in
animal models can sometimes not be applied to human studies,
making the clinical translation of these formulations limited. In
the specific case of nanocarriers, their reduced systemic toxicity
allows the administration of even higher doses to the animals
(41). Nonetheless, one should stress that reduced acute toxicity
does not always mean reduced chronic toxicity (42, 43).

Evaluation of Chronic Cardiotoxic Events
An important concept to apply in preclinical studies with
nanocarriers is the follow-up of animals after anticancer
treatment. Many significant cardiac side effects often occur
later, even years after antineoplastic therapy (44). However,
animals are often euthanized rapidly after the treatment is
completed (39). Additionally, most preclinical studies using
nanotechnology for the treatment of cancer only perform post-
mortem cardiovascular assessments. These analyses are based
mainly on the biochemical quantification of certain enzymes and
the histology of the heart. Although the information obtained by
these methods is valid, this does not reflect an oncocardiology
approach, as they do not monitor cardiovascular health during
cancer treatment, as practiced in human patients. Moreover,
studies that focus on cardiovascular toxicity are usually done in
healthy animals rather than in animals with tumors, with some
drawbacks because the toxic effects may differ in non-tumor
subjects and tumor carriers (45).

The following of laboratory animals through more extensive
periods, although desirable, can be costly and laborious for
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the researchers. One exciting option is the use of domestic
animals such as dogs and cats. These species spontaneously
develop tumors, and the owners maintain their pets through
the years after the diagnosis. These animals can participate
in experimental therapies, close to clinical trials, evaluating
tumor regression and cardiovascular health in partnership with
veterinaries (46, 47).

Simultaneous Evaluation of Antitumor and
Cardiotoxic Effects
Anticancer activity and cardiotoxicity should, when possible,
be considered simultaneously (Figure 2B). A holistic approach
could help in the exploitation of divergent results. For example,
the combination of DOX, trastuzumab, and taxanes is very
effective in treating breast cancer, but it produces severe
synergistic cardiotoxic events in female patients (48, 49).
Additionally, premature aging induced by cancer treatment
may contribute to chronic health problems in cancer survivors
(7). Moreover, the nanocarriers can evoke cardiotoxicity per
se. One example is the immune reactions to polyethylene
glycol molecules attached to the surface of nanocarriers, known
as complement activation-related pseudoallergy, which can
even lead to a patient’s death due to arrhythmias, ventricular
fibrillation, and cardiac arrest (50). Moreover, oncolytic viruses,
an increasingly used drug delivery vehicle, can replicate
themselves in non-targeted tissues, evoking inflammation of the
heart, leading to myocarditis (51).

Few preclinical studies have monitored both antitumor
activity and cardiac function, in the same animal model,
during and after the treatment with nanocarriers. To the
best of our knowledge, the three studies presented below are
the only ones to have evaluated both simultaneously, all of
them using DOX-loaded nanocarriers. DOX loaded in folate-
coated liposomes, injected intravenously in breast tumor-bearing
mice, showed higher antitumor activity than free DOX and
reduced cardiotoxicity (52). Similar findings were found after
administering a liposomal formulation loading DOX to colon
tumor-bearing mice (53). In addition, polymeric magnetic
nanoparticles co-encapsulating DOX and verapamil (a calcium
channel blocker) with active targeting of RGD (arginyl glycyl
aspartic acid) peptide improved antitumor activity and decreased
cardiotoxicity compared to free DOX (54). All these studies
evaluated cardiotoxicity during treatment by analysis of the ECG
and the QT interval. Imaging techniques have not been used,
although they can provide essential data. To monitor smaller
and orthotopic tumors and cardiotoxicity more precisely, during
and after treatment, the use of non-invasive imaging techniques
should be encouraged (Figure 2B).

Ultrasound Techniques to Assess the
Antitumor Activity and Cardiotoxicity of
Nanomedicines
Different imaging techniques such as magnetic resonance
imaging (MRI), positron emission tomography (PET),
SPECT (single photon emission tomography), and computed
tomography (X - computer tomography) can simultaneously

assess antitumor activity and cardiotoxicity evoked by anticancer
treatments (55–57). These imaging techniques allow the early
detection and monitoring of a wide range of cardiotoxic events,
including systolic and diastolic dysfunction, morphological
changes, coronary artery, valve, and pericardial diseases resulting
from cancer treatment (56). However, the significant problems
with these techniques are their high cost, long scanning time
(30–60 min/animal), and radiation exposure (PET, SPECT, and
CT) (58).

Real-time image acquisition, ease of data interpretation,
and low cost make ultrasound imaging a promising and
suitable approach, compared to other techniques, to monitor
cardiotoxic events in preclinical studies (59–63). Ultrasound
allows rapid longitudinal monitoring (<10 min/animal for each
control) of tumor and cardiac function before, during, and after
anticancer treatment. This opportunity is of particular interest
for monitoring tumor growth, as it is possible to monitor the
animals for more extended periods (64, 65) and to assess the
volume of implanted orthotopic tumors (66). This approach
also makes it possible, on a practical level, to homogenize
the different study groups as a function of a reference tumor
volume. This possibility reduces the number of animals used
while minimizing the variability in the distribution within each
experimental group.

Finally, photoacoustic imaging (PAI) is another promising
ultrasound-based technique. It is a relatively new hybridmodality
that combines optical imaging contrast with the spatial resolution
of ultrasound (67, 68). PAI provides high-resolution images
of optical absorption in deep tissues, allowing visualization
of angiogenesis, tissue oxygen saturation, and metabolic or
inflammatory parameters (69–71). In addition, PAI has shown
promise in detecting, diagnosing, and guiding cancer treatment
due to its ability to detect or activate specific nanostructures to
enhance contrast (72, 73).

CONCLUDING REMARKS

Clinics have widely demonstrated the concept that
nanomedicines improve the therapeutic index of anticancer
drugs (15, 74). The advances in nanoscale delivery systems
offer great hope to increase the efficacy of drugs in a targeted
manner and overcome the toxicity limitations associated with
conventional free drug delivery. Translating the results from
preclinical studies to more clinically relevant models is an
urgent demand and a significant challenge to alleviate the
burden of the undesirable cardiotoxic effects of anticancer
drugs (41, 75). Considering the advantages and limitations
of animal models and the peculiarities of nanoformulations,
appropriate techniques for monitoring antitumor efficacy and
cardiovascular health will be essential to practice the best
oncocardiology approach.
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