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Abstract

Background: Whole cell patch clamp recording and intracellular Ca2* imaging were carried out
on rat cultured dorsal root ganglion (DRG) neurones to characterize the actions of crude extracts
and purified samples from Red Sea soft corals. The aim of the project was to identify compounds
that would alter the excitability of DRG neurones.

Results: Crude extracts of Sarcophyton glaucum and Lobophyton crassum attenuated spike frequency
adaptation causing DRG neurones to switch from firing single action potentials to multiple firing.
The increase in excitability was associated with enhanced KCl-evoked Ca2* influx. The mechanism
of action of the natural products in the samples from the soft corals involved inhibition of voltage-
activated K* currents. An active component of the crude marine samples was identified as 3-
carboxy- | -methyl pyridinium (trigonelline). Application of synthetic 3-carboxy- |-methyl pyridinium
at high concentration (0. mM) also induced multiple firing and reduced voltage-activated K*
current. The changes in excitability of DRG neurones induced by 3-carboxy-I-methyl pyridinium
suggest that this compound contributes to the bioactivity produced by the crude extracts from two
soft corals.

Conclusion: Sarcophyton glaucum and Lobophyton crassum contain natural products including 3-
carboxy- | -methyl pyridinium that increase the excitability of DRG neurones. We speculate that in
addition to developmental control and osmoregulation these compounds may contribute to
chemical defenses.

Background lated from bacteria, algae and benthic invertebrates
The potential benefits of marine pharmacology remain to  including soft corals, sponges and anemones from distinct
be fully realised. Diverse and novel natural products iso-  marine environments have been chemically identified
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and some of their biological activities characterised [1].
Marine organisms may contain many potential novel
drugs because of the unique environmental conditions
(high ionic strengths, low light level, cold or warm tem-
peratures, and pressure) found in their habitats. These
conditions have led to the biosynthesis of unique com-
pounds [2]. However, such studies are associated with
clear difficulties that include the taxonomy of organisms,
identification of the origins of bioactive materials, repro-
ducibility of material collection and complex chemistry

[3].

The Red Sea has two major distinctive features. It has one
highest levels of marine bio-diversity and it has great sea-
sonal fluctuations of air and water temperatures. Con-
ducting research on Red Sea organisms offers unique
advantages, in view of the diversity and high endemism of
its biota. For example, of the 180 known species of the
soft corals, about 40 % are unique to the Red Sea [4].

Several groups of marine organisms including soft-bodied
sessile invertebrates, such as tunicates, soft corals, and cer-
tain sponges appear defenceless yet they have few preda-
tors and are not substrates for fouling micro-organisms.
These organisms are rich in nutritionally important sub-
stances and use an arsenal of chemical defences and
chemical repellents to protect themselves and when com-
peting for space. The incidence of predation is low
because of the production of toxic compounds and the
possession of some form of calcareous sclerites [5].

In this study we have used the electrophysiological prop-
erties of cultured sensory neurones from rat dorsal root
ganglia (DRG) as an assay system to identify and charac-
terize the biological activities on ion channel currents of
crude extracts and an active purified common compound
present in two soft coral samples. The activities of some
soft coral toxins are consistent with pore-formation as a
mechanism of action and the natural products responsi-
ble may be similar to polymeric alkylpyridinium salts
from marine sponges [6-9].

Previously, a number of interesting biologically active
compounds from soft corals have been studied and these
genera are sources of hundreds of different compounds
[2]. A few examples include: 1. Sarcophytolide (lactone
cembrane diterpene) from Sarcophyton glaucum, which, is
antimicrobial and suppresses glutamate-evoked Ca2+
responses and neurone death [10]. 2. Brominated oxyli-
pins from Dendronephthya spp and Tubipora musica, which
are toxic to shrimps, sea urchin eggs and crown gall
tumors [11]. 3. Singardin a heptacyclic norcembranoid
dimer, which shows cytotoxicity against murine leukemia,
human melanoma cells, human lung and colon carcino-
mas [12]. 4. Lophotoxins from a variety of soft corals that
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are nicotinic acetylchoine receptors antagonists [13,14].
5. Palytoxin, from the genus Palythoa, which is highly poi-
sonous and increases membrane permeability to cations
and potently inhibits Na+/K+* ATPase [15]. 6. A C-29 ster-
oid from Lobophytum crassum the biological activity of
which is yet to be reported [16]. Ethyl acetate extraction of
a single species of soft coral (Lobophytum catalai Tixier-
Durivault) has yielded a number of distinct novel com-
pounds (two cembranoids, nephthenol, furanosesquiter-
pene, four polyhydroxysterols and mixtures of
sesquiterpenes and monohydroxysterols) [17]. The many
diverse compounds are produced, some within nemato-
cyst venoms that have hemolytic, dermonecrotic and
vasopermeabilising factors [18], others are confined to
protective mucus [19], eggs and larvae (pukalide and 11
B-acetoxypukalide), or are released into the water column
during mass spawning [20].

Although we have failed to find a pore forming com-
pound, our research has identified a natural product that
can dramatically increase the excitability of cultured sen-
sory neurones and therefore may act as a pronociceptive
agent against predators.

Results and discussion

Chemical characterization of the soft coral samples and
identification of the active compound

Figure 1 shows pictures of the three species of Red Sea soft
corals (Sarcophyton glaucum, Lobophyton crassum & Sinu-
laria leptoclados), which were the sources of the natural
product materials used in this study.

The similarity of the 'H NMR spectra of crude extracts,
especially in the region 7-10 ppm, from Sarcophyton glau-
cum and Lobophyton crassum provided the starting point for
comparison of bioactivity. The specimens of Sarcophyton
glaucum and Lobophyton crassum were not heavily
armoured but were free from fouling organisms indicating
that they had efficient chemical defenses. In contrast,
Sinularia leptoclados is heavily armoured but does not con-
tain material with a similar 'H NMR spectrum as seen for
the other two species. Table 1 shows the NMR data for 3-
carboxy-1-methyl pyridinium (Fig. 2) obtained in
CD;OD. The low-resolution electron impact mass spec-
trometry (LREIMS) of 3-carboxy-1-methyl pyridinium
showed a pseudomolecular ion [M + H]*at m/z 138. The
high-resolution electron impact mass spectrometry
(HREIMS) provided the exact value of m/z 138.0549 (A
0.1 mmu) for [M + HJ*, which corresponded well with the
formula C,H,NO,. The formula suggested five degrees of
unsaturation. The 'H NMR spectrum of 3-carboxy-1-
methyl pyridinium exhibited signals at 8,; 9.33 (1H, s),
8.96 (1H,s), 8.95 (1H, s), and 8.11 (1H, bt), whose chem-
ical shifts were reminiscent of those of some pyridine
mesomeric betaine alkaloids e.g. pyridinebetaine A [21],
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Figure |
Underwater photographs of the species soft corals used in
this study.
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and homarine [22]. These values were assigned to H-2, H-
6, H-4 and H-5 protons respectively and their connectivi-
ties to their respective carbons (8; 147.0, CH; 145.2, CH;
147.0, CH and 127.7, CH) were determined from a heter-
onuclear single quantum correlated spectroscopy (HSQC)
experiment. The 'H NMR spectrum also exhibited a pro-
ton singlet at §;; 4.43 (3H), which showed heteronuclear
multiple bond correlated spectroscopy (HMBC) correla-
tions with C-2 (8. 147.0, CH) and C-6 (5 145.2, CH).
This evidence indicated the presence of a methyl group on
N-1.

Further database searches led to the identification of the
structure as the long-known alkaloid, 3-carboxy-1-methyl
pyridinium (trigonelline). Confirmation of the structure
was carried out by comparison of our NMR data with
spectra from an authentic sample of 3-carboxy-1-methyl
pyridinium (trigonelline hydrochloride) as well as with
data from a previous study [23].

Actions of crude samples from soft corals on cultured DRG
neurone action potential properties

All the experiments conducted in this study were carried
out in the continual presence of extracellular recording
solution that contained 0.1% DMSO. This concentration
of DMSO was required to keep the crude extracts from Red
Sea soft corals in solution. Under these recording condi-
tions the mean resting membrane potential and input
resistance (derived from electrotonic potentials produced
by -100 pA step commands) were -61 + 2 mV (n =35) and
338 + 45 MQ (n = 16) respectively. These values are simi-
lar to the mean values (-60 mV and 356 MQ; n = 12), we
have previously reported from studies carried out on cul-
tured DRG neurones in the absence of DMSO [6]. DRG
neurones are a heterogeneous population of neurones,
which show a variety of distinct structural, biochemical
and electrophysiological characteristics. To standardize
the electrophysiological recordings made from DRG neu-
rones the cells were held at a potential of -70 mV and
depolarized with 100-800 ms current step commands to
activate action potentials. Most of our cultured DRG neu-
rones (~90%; n = 31 of 34) show spike frequency adapta-
tion (accommodation) and fire only a single action
potential in response to a prolonged supra-maximal
depolarizing current command. In the absence of DMSO
we have reported multiple action potential firing in less
than 20% of DRG neurones [24].

The recording method, animal species and culture condi-
tions may influence multiple firing levels in sensory neu-
rones and the incidence is higher in some other studies.
For example previous work on whole nodose ganglia and
ganglia slices showed that 38.5% of C-fibre neurones and
66.7% of A-fibre neurones show multiple firing properties
[25].
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Table I: ID and 2D NMR spectral data for 3-carboxy-I-methyl pyridinium obtained in CD;OD (3 in ppm).

No. dc 8y (#H, m, JIHz) IH-'H COSY HMBC (5¢ to 5,,)
2 147.0 CH 933 (IH, s) H-6, H-8 H-4, H-6, H-8
3 162.0 qC
4 147.0 CH 8.95 (IH, s) H-5 H-2, H-5, H6
5 127.7 CH 8.11 (IH, bt) H-4, H-6 H-4, H-6
6 145.2 CH 8.96 (IH, s) H-2, H-5, H-8 H-2, H-4, H-8
7 166.0 qC
8 476 CH, 443 (3H, s) H-2, H-6 H-6

Increasing the duration or amplitude of the stimulus does
not increase the firing frequency in neurones that show
spike frequency adaptation (Fig. 3A &3B). However, some
cultured DRG neurones do not show spike frequency
adaptation and fire increasing numbers of action poten-
tials at higher frequencies as the amplitudes of current
step commands are increased (Fig. 3B &3C).

Application of a crude sample from Sarcophyton glaucum
(c.Sg 100 pg/mL) for 3-5 minutes induced a dramatic
increase in action potential firing. In six neurones that
showed spike frequency adaptation, c.Sg increased the
number of action potentials evoked during 100 ms supra-
maximal current commands from 1 action potential to a
mean of 4 + 1 (n = 6; P < 0.05). The number of action
potentials was dependent on the amplitude and duration
of the stimulus (Fig. 4A). Similarly, application of a crude
sample from Lobophyton crassum (c.Lobo; 100 ng/mL) for
3-5 minutes also induced increases in action potential fir-
ing (Fig. 4B). In five neurones that showed spike fre-
quency adaptation under control conditions, c.Lobo
increased the number of action potentials evoked during
100 ms supra-maximal current commands from 1 action
potential to a mean of 3 + 1 (n = 5; P < 0.03). Further-
more, both ¢.Sg and c.Lobo samples reduced the ampli-
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Figure 2

Structure of 3-carboxy- |-methyl pyridinium (CMP; trigonell-
ine).

tudes of the current stimuli required for the thresholds of
action potential firing to be reached (Figure 4A &4B).

These responses developed gradually and in some cases
continued to develop over 20 minutes after perfusion of
the crude sample was stopped. However, recovery from
these effects was seen after 45 minutes and reapplication
of either of the crude soft coral extracts could produce
repeatable responses. Figure 4C illustrates some example
records of action potential firing patterns evoked by +60
PA and +120 pA step commands, which show the features
of the crude samples actions. These actions included an
increased sensitivity to depolarizing current and a reversi-
ble lose of spike frequency adaptation. These effects were
produced without any significant change in the resting
membrane potential.

Increasing the duration of the stimulus to 500 ms revealed
further characteristics of the excitatory actions of the crude
soft coral samples. Figure 5A shows the diversity of the
maximum levels of excitation achieved following three
minutes application of 100 pg/mL c.Lobo that continued
to develop during 5 minutes recovery. In these cases 400~
600 pA depolarizing currents activated between 7 and 15
action potentials in 500 ms. However, the features of the
multiple firing induced by c.Lobo were characterized by a
gradual decline in action potential amplitude, a progres-
sive failure in membrane potential repolarization and a
gradual upward drift in the depolarizing electrotonic
potential (Fig. 5B). In some cases, the drift in the depolar-
izing electrotonic potential was not dependent on action
potentials but could also be seen to produce unusual
irregular firing patterns where action potentials were
observed only at the beginning and end of the stimulus.
The striking effects on action potential firing of ¢.Sg and
c.Lobo, which had similar 'H NMR spectra (region 7-10
ppm), were not seen when 100 pg/mL of crude sample
from Sinularia leptoclados (c.S1) was applied to DRG neu-
rones. The same neurones that were unaffected by the
sample from Sinularia leptoclados were sensitive to
repeated application of c.Lobo (Fig. 5C). These data sug-
gest that chemical entities common to both c¢.Sg and
c.Lobo and possibly detected by NMR may be responsible
for their actions on DRG action potentials.
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Comparison of electrophysiological activity between a single firing DRG neurone and a multiple firing DRG neurone. A) Traces
showing the single action potential firing of a DRG, stimulated with 200, 400 and 600 pA depolarizing step commands and a
prolonged 500 ms stimulus. B) Line graph illustrating the effect of increasing current commands on both single (blue line) and
multiple action potential firing (red line) DRG neurones. C) Traces showing the effects of increasing stimulus amplitude (100-
400 pA) on a multiple action potential firing DRG neurone. An increase in stimulus amplitude leads to an increase in the
number of action potentials. In all cases the DRG neurones were held at -70 mV before stimulation.

The multiple action potential firing patterns induced by
¢.Sg and c.Lobo were distinct from the control multiple
firing observed in a small proportion of DRG neurones.
Figure 6 shows example records of the actions of ¢.Sg (100
pg/mL) on a DRG neurone, which under control condi-
tions showed multiple firing. Three minutes application
of c.Sg did not attenuate action potential firing but
resulted in a gradual decline in action potential ampli-
tude, an increase in action potential duration and a pro-
gressive failure in complete action potential re-
polarization.

The electrotonic responses to depolarizing current com-
mands indicated that c.Sg and c.Lobo may influence recti-
fication in DRG neurones. This was investigated by
generating current-voltage relationships in the presence
and absence of 100 pg/mL c.Sg (Fig. 7A) or 100 pg/mL
c.Lobo. Three to five minutes application of ¢.Sg (n =4) or
c.Lobo (n = 4) had no significant effect on the mean elec-
trotonic potential produced by -60 pA (combined control
-15 + 3 mV; crude sample -17 + 3 mV (n = §; NS)). In con-
trast the mean depolarizing electrotonic potential pro-
duced by +60 pA step commands increased, an indication
of a reduction in the rectification (Fig. 7B). Under control
conditions the mean electrotonic potential was 8 + 1 mV
and in the presence of ¢.Sg or c.Lobo the combined value
increased to 11 + 2 mV (n = 8; P < 0.005).

The changes in action potential firing properties induced
by soft coral extracts could have resulted from modulation
of voltage-activated Na+* channels. To investigate this we

studied the properties of single action potentials evoked
by 5 ms depolarizing currents. Action potential firing
threshold and amplitude were not significantly altered by
the soft coral extracts (100 pg/ml). Under control condi-
tions and in the presence of soft coral extracts the thresh-
old for firing (-34 + 1 mV & -35 + 1 mV) and peak action
potential amplitude (31 +2mV &34 + 2 mV; n=12) were
unchanged. However, the mean action potential duration
at 50% of peak amplitude was increased from 2 + 0.1 ms
to 2.8 + 0.1 ms (n = 12; P < 0.005) by the soft coral
extracts.

Given the effects of two crude extracts on action potential
duration and firing we decided to investigate whether the
increases in excitatory properties of DRG neurones were
accompanied by increases in intracellular Ca2+ concentra-
tion evoked by depolarization.

Actions of crude extracts from soft corals on intracellular
calcium in DRG neurones

The crude soft coral extracts also modulated increases in
intracellular Ca2+ evoked by KCI (30 mM) stimulation. In
particular, both ¢.Sg and c.Lobo increased KCl-evoked
Ca?+* transients and in a subpopulation of DRG neurones
the extracts reduced the threshold for activating a Ca2*
transient (Fig. 8). Detailed analysis of the Ca2+* transients
evoked by KCI showed that total Ca2+ flux was increased
significantly (n = 10) by 100 ug/mL c.Sg (Fig. 8A). Despite
this, the nature of the enhancement in individual neu-
rones varied such that there was no significant increase in
the mean peak amplitude (Fig. 8B) or width of the
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Application of c.Sg or c.Lobo evoked a switch from single action potential firing to multiple firing in DRG neurones. A) Line
graph showing that prior to application of c¢.Sg (100 pug/mL) only one action potential is evoked over a range of supramaximal
stimuli (blue line). Application of c.Sg caused a reduction in threshold stimulus for action potential firing as well as a switch
from single to multiple firing (red line). B) Similarly, c.Lobo (100 pg/mL) reduced the threshold for firing and converted a single
firing DRG neurone (blue line) to a multiple firing neurone (red line). C) Current clamp traces illustrate the multiple firing
behaviour of neurones that have been exposed to c.Sg. Also seen is the ability of c.Sg to reduce the threshold for firing. Fur-
thermore, recovery is shown 45 minutes after the pressure ejecting c.Sg. In all cases the DRG neurones were held at -70 mV

before stimulation.

response at 50% of peak amplitude (W5, Fig. 8C). In
some cases the peak Ca2* transient amplitudes were
clearly increased by c.Sg (Fig. 8D) but in other neurones
the amplitudes were not increased but the durations of
the responses were increased and in some instances
appeared to show multiple peaks (Fig. 8E). The actions of
c.Sg on Ca?+ transients appeared to be reversible (Fig. 8D
&8E). However, some caution is necessary in the interpre-
tation of the results as the decline in the third response to
KCI may result from Ca2*-induced inactivation of voltage-
activated Ca2+ channels brought about by the increased
intracellular Ca2+ loads. Figure 8F shows an example
record from a DRG neurone that did not respond to 30

mM KCl stimulation initially but subsequently responded
to KCl when applied in the presence of c.Sg. This phenom-
ena occurred in 14 out of 24 DRG neurones and interest-
ingly these neurones responded to a third KCl pulse
applied alone after priming with c.Sg. This data is of par-
ticular concern as it suggests that stimulation with 30 mM
KCl may not be sufficient to activate Ca2+ transients in all
cultured DRG neurones. Previously, we found that 30 mM
KCl depolarizes DRG neurones by 25 to 30 mV. Stimula-
tion with 30 mM KCl allows consistent Ca2+ transients to
be activated though it may bias analysis towards DRG
neurones with low thresholds for excitation.
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Figure 5

The effect of c.Lobo and c.Sl on cultured DRG neurones. A) Time course showing the action of c.Lobo (100 pg/mL) in three
separate DRG neurones stimulated with 500 ms current step commands. Extracellular application of c.Lobo leads to an
increase in the number of action potentials evoked relative to the control. After removal of the drug pipette, an increase in
action potential number is followed by a steady decrease to basal levels. B) Voltage traces illustrating the effects that c.Lobo has
on both action potential number and action potential shape. C) Voltage traces showing the inability of c.SI to evoke a switch to
multiple firing, followed by application of c.Lobo, which initiates multiple firing. For all records the DRG neurone was stimu-
lated with depolarizing 600 pA step commands. Recovery is seen after removal of c.Lobo and upon further application multiple
firing is once again evoked. In all cases the DRG neurones were held at -70 mV before stimulation. with 500 ms.
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Some DRG neurones under control conditions do not show
spike frequency adaptation but fire multiple action potentials
during depolarization by 500 ms current commands. This
was a different firing pattern to that seen when c.Sg induced
multiple fire. A) Voltage trace of control multiple action
potential firing neurone. B) Voltage trace of c.Sg-induced
multiple firing in the same neurone. C) Over-plot of voltage
traces from A and B. In all cases the DRG neurones were
held at -70 mV before stimulation.
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The cultured DRG neurones investigated in this study had
a mean cell body area of 256 um?2 (n = 10; range 124 to
410 pm?2). Responses to c.Sg. were obtained from neu-
rones with different sizes of cell body and different sensi-
tivities to the natural product preparation did not appear
to relate to size of cell body.

Similar results were obtained with c.Lobo (100 pg/mL; n
= 4). Figure 8G shows a striking example of enhancement
of a KCl-evoked Ca2+ transient in the presence of c.Lobo,
but a more complete analysis of this sample was not pos-
sible because of the limited amount of material available.

Actions of crude extracts from soft corals on voltage-
activated potassium currents in DRG neurones

The effects of the crude soft coral extracts suggested their
action, at least part, involved the inhibition of voltage-
activated K+ conductances. Specifically, the soft coral sam-
ples from Sarcophyton glaucum and Lobophyton crassum pro-
longed action potentials, attenuated spike frequency
adaptation, reduced rectification and enhanced KCI-
evoked Ca?+ transients, all of which could be associated
with inhibition of K+ currents. DRG neurones express
diverse K+ channels and in small DRG neurones five types
have been identified (A, DRy, DR;, DR, & DR;). All these
channels play roles in the control of action potential repo-
larisation and DR,_; influence action potential firing
threshold and after-hyperpolarisation and thus can influ-
ence firing patterns [26]. To investigate the actions of the
soft coral extracts further, from a holding potential of -70
mV, outward currents were activated by 100 ms voltage
step commands to potentials positive to -50 mV. Three to
five minutes application of 100 pg/mL c.Sg significantly
inhibited the voltage-activated K+ current at all voltages
between -40 mV and +60 mV (Fig. 9A &9B).

Control currents were activated fully within 15 ms and
were sustained during 100 ms depolarizations, but in the
presence of c¢.Sg the currents shape was changed. After 1
minute application of c.Sg the outward currents were
reduced and became transient in nature. Partial recovery
of the outward current was observed 15 minutes after
removal of the perfusion pipette containing c.Sg. Addi-
tionally, partial recovery was also associated with a pro-
gressive slowing in the current decay during the voltage
step command (Fig. 9B).

The actions of c.Lobo on voltage-activated K+ currents fol-
lowed a similar pattern to that seen with c.Sg. Application
of 100 pg/mL c.Lobo significantly inhibited the voltage-
activated outward current and resulted in a decline in the
current during the 100 ms voltage step command (Fig. 9C
&9D). c.Lobo significantly reduced the outward current at
all potentials between -20 mV and +90 mV. At a clamp
potential of +60 mV, under control conditions the mean
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Figure 7

Rectification in DRG neurones is attenuated by c.Sg in DRG
neurones. A) Line graph showing voltage-current relation-
ships before (Control blue line) and after the application of
c.Sg (100 pg/mL; red line) in the same neurone. B) Traces of
current commands +60 pA and -60 pA and voltage responses
in cultured DRG neurone before and after the application of
c.Sg. In all cases the DRG neurones were held at -70 mV
before stimulation.

peak outward current was 3.8 + 0.8 nA and the mean cur-
rent was significantly reduced to 0.7 + 0.12 nA (n=6; P<
0.005) by c.Lobo.

The crude extracts from soft corals did not significantly
alter linear leak currents activated between -80 and -140
mV. At-120 mV the mean leak currents were -0.026 + 0.01
nA and -0.032 + 0.01 nA (n = 9, NS) under control condi-
tions and in the presence of soft coral extract respectively.

The changes in shape of the voltage-activated K+ currents
that were particularly apparent during the development of
inhibition produced by both soft coral samples may be
indicative of an open channel block mechanism of the
active natural product common to both crude extracts.

To investigate the mechanism of inhibition we looked for
any effect of the soft coral extracts on steady state inactiva-
tion and for evidence of use-dependence during the onset
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of inhibition by crude soft coral extracts (Figure 10).
Steady-state inactivation plots allowed the proportion of
voltage-gated channels available to open at any given volt-
age to be determined. Drug interactions with channels or
differential effects of a drug to alter the population of
active channels can shift steady-state inactivation plots.
Under voltage-clamp conditions neurones were held
between -100 and -10 mV. From these holding potentials,
neurones were stimulated with voltage step commands to
+30 mV in the absence (control) and presence of 100 pg/
mL c. Sg (n = 6). As can be seen from the raw current data
(Fig. 10A) and the normalized plot (Fig. 10B) c. Sg had no
significant effects on K* current steady-state inactivation.
The mean voltages at which 50 % of the channels were
available to open (V; 5(inac)) Were -50 + 2 mV in the con-
trol and -53 + 3 mV (n = 6; NS) in the presence of c. Sg.

Preliminary results indicate that the delay between com-
mand steps has a critical effect on the size of the second
response when two pulses are given in succession in the
presence of c. Sg. A series of experiments were conducted
whereby the delays between pulses were varied (1, 5 and
10 seconds). A 10 second delays between step commands
resulted in recovery of the K+ current. In contrast a delay
of 1 s resulted in further decline in the current (Fig. 10C).
These data suggest there is a component of use-dependent
inhibition but recovery can occur in 5-10 s. We conclude
that the slowly developing main component of K+ current
inhibition produced by the soft coral extracts involves
another mechanism.

Actions of purified active compound from Sarcophyton
glaucum

Directed by chemical analysis and biological testing of
crude extracts, the common active compound was identi-
fied as 3-carboxy-1-methyl pyridinium (trigonelline
hydrochloride). This was purified from the crude extracts
from Sarcophyton glaucum (p.Sg) and tested using electro-
physiological protocols described above. DRG neurones
were held at -70 mV and bathed in extracellular recording
medium containing 0.1% DMSO. Similar to the crude
extracts the purified preparation p.Sg (estimated at 30 pg/
mL; ~200 uM) attenuated spike frequency adaptation and
three minutes application of pure compound (p.Sg)
resulted in multiple action potential firing in response to
depolarizing current. This response was reversible but
recovery was slow and as seen with the crude samples the
effect of the natural product deepened after removal of the
drug perfusion pipette (Fig. 11A). Similarly, p.Sg also
attenuated the mean peak voltage-active K+ currents at +60
mV by 15% (n = 4; P < 0.01). However, these responses
were modest and further inhibition could be obtained
with ¢.Sg (Fig. 11B &11C). This was in part due to differ-
ences in concentrations tested and the small amounts of
purified compound available. However, other compo-
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Figure 8

Application of c.Sg increases K*-evoked calcium flux into cultured DRG neurones. A) Bar chart showing a significant enhance-
ment of the K*-evoked Ca?* flux induced by c.Sg compared to the control (Con.). B) Bar chart showing mean peak Ca?* tran-
sient amplitudes evoked by K* under control conditions (Con.) and in the presence of c.Sg. C) Bar chart showing mean values
for the width 50% of the Ca2* transient evoked under control conditions (Con.) and in the presence of c.Sg. For A, B and C
mean values + SEM are shown from |7 neurones (***P < 0.005). D) Example trace of Ca2* transients showing the increase in
amplitude in a single neurone exposed to c.Sg. E) Example trace showing enhancement in Ca2* transient duration in a single
neurone exposed to c.Sg. F) Trace demonstrating that application of c.Sg can cause K*-evoked Ca?* flux in a neurone that pre-
viously showed no K*-evoked Ca?* flux. G) Example trace showing that c.Lobo has a similar effect to c.Sg. In all traces (D to G)
the period of stimulation with KCI (30 mM) is shown by thick bars and the period of application of crude samples from soft

corals is shown with thin bars.
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Whole cell voltage-activated K* currents in cultured DRG neurones are significantly reduced by c.Sg or c.Lobo (100 pg/mL). A)
Line graph showing mean (£ sem) current-voltage relationships under control conditions (blue line) and after the application of
c.Sg (red and green lines). The current amplitudes measured at the peak (red) and at the end of the voltage step command
(green) are illustrated. B) Net K* current traces showing the onset of the inhibitory effects of c.Sg and the time course of par-
tial recovery. The neurone was voltage clamped at -70 mV and currents were evoked by voltage step commands to +60 mV.
C) Bar chart illustrating mean current amplitudes (n = 6; *P < 0.02) at +60 mV, under control conditions (blue bar), the peak
current in the presence of c.Lobo (red bar) and the current recorded at the end of a 100 ms voltage step command in the
presence of c.Lobo (yellow bar). D) Net K* current traces showing the development of current inhibition by c.Lobo. The neu-
rone was voltage clamped at -70 mV and currents were evoked by voltage step commands to +60 mV.

nents within the crude extract may enhance the activity of
the major active component from Sarcophyton glaucum.

An investigation of the possible roles of intracellular
signalling in the bioactivity of crude extracts from
Sarcophyton glaucum

Slow onset of the responses to the crude extracts from Sar-
cophyton glaucum and Lobophyton crassum, the continued
development of their effects after it was no longer being
applied, and the slow recovery phase all raised the possi-
bility that modulation of neuronal excitability might
involve the activation of intracellular signals rather than a
direct interaction with K* channels. To investigate this

possibility, three approaches were taken to disrupt certain
intracellular signalling which might modulate K+ chan-
nels. Firstly, the cyclooxygenase 1 and 2 inhibitor
indomethacine (10 uM) was applied to the bath and to
the intracellular environment via the patch pipette solu-
tion. The activities of cyclooxygenases have been impli-
cated in modulating K+ conductances to increase neuronal
excitability [27,28]. Secondly, pertussis toxin sensitive G-
proteins were inhibited by incubating the DRG neurones
for 18 hours with 500 ng/mL pertussis toxin. Thirdly, the
protein kinase C inhibitor chelerythrine (3 uM; [29]) was
applied to the intracellular environment via the patch
pipette solution. At a concentration of 100 pg/mL, c.Sg
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Extract from Sarcophyton glaucum (100 pg/mL) did not cause a change in steady state inactivation but does show some activity
dependence. A) Line graph showing mean control steady state currents (+ s.e.m) activated from holding potentials between -
100 and -10 mV by voltage step commands to +30 mV (blue) and the steady state inactivation relationship after application of
c.Sg (n = 6). B) Line graph showing the normalised mean steady state inactivation plots under control conditions (blue) and

after the application of c.Sg (n = 6). For each plot the current values were normalized with respect to the maximum outward
current. C) The effect ofa | s, 5 s and 10 s delays between concurrent voltage step commands on the net K* outward current

(at + 30 mV) during application of c. Sg (100 pg/mL).

persisted in enhancing DRG neurone excitability in the
presence of indomethacine, after pertussis toxin pre-treat-
ment and in the presence of chelerythrine. Spike fre-
quency adaptation was attenuated and multiple firing was
observed under all three conditions (Fig. 12A,B, &12C).
Additionally, as previously observed in the absence of
blockers c.Sg inhibited voltage-activated K* currents in the
presence of indomethacin (n = 2; Fig. 12D), after pertussis
toxin treatment (n = 3; Fig. 12E) and in the presence of
chelerythrine (n = 3; Fig. 12F). Although not an exhaustive
list of potential target sites, our data clearly indicates that
the soft coral natural product does not enhance excitabil-
ity through cyclooxygenases, activation of a pertussis
toxin G-protein or via protein kinase C.

Actions of 3-carboxy-1-methyl pyridinium on cultured
DRG neurones

The identification of 3-carboxyl-1-methyl pyridinium
(CPM) as an active component in samples from Sarcophy-
ton glaucum and Lobophyton crassum but not Sinularia lepto-
clados resulted in testing a synthetic sample of this
compound. In our initial studies, we applied CPM in the
presence of 0.1% DMSO to keep the recording conditions
the same as with the soft coral extracts. Tests were also
conducted in the absence of DMSO and it was found that
the presence or absence of DMSO had no bearing on the
results. Although 100 uM CPM attenuated spike fre-
quency adaptation and induced multiple firing (Fig. 13A
&13B), some features of the biological activity seen with
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A purified sample from Sarcophyton glaucum (p.Sg) increased
excitability and attenuated voltage-activated K* currents in
cultured DRG neurones. A) Example of voltage traces show-
ing reversible inhibition of spike frequency adaptation and the
development of multiple action potential firing by p.Sg (~10
1tM). B) Voltage-clamp current traces showing the inhibitory
effects of c.Sg (100 pg/mL) and p.Sg (30 pg/mL; ~200 uM) on
DRG neurones held at -70 mV and depolarized to +60 mV by
voltage step commands. Partial recovery of the net K* cur-
rent was seen after 10 mins. C) Line graph showing the cur-
rent-voltage relationships under control conditions (blue
line), after application of p.Sg (30 pug/mL; ~200 uM; green
line) and then c.Sg (100 pig/mL; red line) recorded from a sin-
gle DRG neurone.
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the natural product samples were not seen with the syn-
thetic compound. These included action potential prolon-
gation and depolarizing drift in the electrotonic potential.
This may be explained by the lower level of K+ current
inhibition seen with 100 uM CPM compared with 100 pg/
mL crude sample. In the presence and absence of 0.1%
DMSO, CMP inhibited the K+ current at +60 mV by 51 + 9
% (n=6) and 42 + 13 % (n = 5; Fig. 13C &13D). These
data suggest that DMSO is not a factor in determining the
actions of CPM. Raising the concentration of CPM to 1
mM resulted in greater inhibition of the K* current at +60
mV to 82 %. This compares with the level of inhibition of
90 % produced by 100 pg/mL of crude sample. From this
we conclude that enhanced excitability of DRG neurones
was caused by CPM, which is a major component in the
crude samples from Sarcophyton glaucum and Lobophyton
crassum. We estimate that the soft coral extract contained
~7% CPM, which would give approximately 50 uM CPM
in the test dose of 100 pg/mL. Clearly there is an apparent
anomaly between the time courses of the currents and
amplitude of the responses observed when the actions of
the soft coral samples and CPM from a synthetic source
are compared. This discrepancy is not due to the presence
of DMSO and would appear to result from an additional
as yet unidentified natural product or products present in
the samples. These other substances may enhance delivery
and/or action of CPM.

Conclusion

The crude samples from Sarcophyton glaucum and Lobophy-
ton crassum but not Sinularia leptoclados gave NMR spectra
that had common peaks in the region 7-9 ppm. The pres-
ence of a common natural product in two species of soft
coral but not a third may result from biosynthesis in soft
coral tissues but could also be the result of metabolism in
symbiotic organisms common to Sarcophyton glaucum and
Lobophyton crassum. However, all three species studied
have symbiotic Zooxanthellae and the biosynthesis of
CPM may reflect common ancestry. The optimum defense
theory predicts that organisms with any sort of mechani-
cal defense will not be vulnerable to predators and conse-
quently lack chemical defenses. Thus, we suggest that
Sinularia that is heavily encrusted and is highly packed
with dense spicules does not produce CPM: while the
fleshy flourishing Lobophyton and Sarcophyton samples
produce defences that might include CPM for protection.
Phylum Cnidaria, that include soft corals, may gain a level
of defence from potential vertebrate predators by increas-
ing excitability and producing abnormal firing patterns in
sensory neurones. In certain Hydrozoa, relatively low con-
centrations of trigonelline (0.1-10 uM; 20 hours) antago-
nised larval metamorphosis induced by Cs* enriched
seawater [30]. It is not clear if there is any relationship
between the chemical control of development and chem-
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Figure 12

Actions of c.Sg are not inhibited by indomethacin, pertussis
toxin pre-treatment or chelerythrine. A, B & C) Voltage
records showing action potential firing properties in the
presence of the three test treatments (indomethacin, pertus-
sis toxin pre-treatment or chelerythrine) and multiple action
potential firing evoked by 100 pg/mL c.Sg. Indomethacin (A)
pertussis toxin pretreatment (B) and chelerythrine (C) all
failed to prevent the switch to multiple firing after application
of c.Sg to DRG neurones that previously fired single action
potentials. At rest all neurones were held at -70 mV. D, E &
F) Current traces illustrating voltage-activated K* current
activated at +60 mV by 100 ms voltage step commands from
a holding potential of -70 mV. In the presence of the three
test treatments (indomethacin, pertussis toxin pre-treatment
or chelerythrine) c.Sg still induced multiple action potential
firing and attenuated the voltage-activated K* currents.

ical defence potentially provided (albeit at significantly
higher concentrations) by the same compound.

Pyridinium compounds represent a biosynthetic starting
point for pore forming alkylpyridinium chemical
defences found in marine sponges [6-9,31]. They may also
provide interesting evolutionary links or offer evidence for
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common symbiotic relationships between distinct organ-
isms that have different chemical defences based around
pyridinium salts.

The alkaloid CPM is not a novel compound and has a
fairly wide distribution in the plant and animal king-
doms. It has been identified in a number of higher plant
species [32] and in marine shellfish [33]. CPM acts as an
osmoregulator in plants when they are exposed to excess
salts, a function it may also have in some marine inverte-
brates. It also acts as a cell cycle regulator during the early
growth of many legume root meristems [34]. In 1999,
Tohda and colleagues [35] reported that CPM induced
neurite outgrowth in human neuroblastoma cells, an
activity that may be associated with electrophysiological
changes and increased excitability.

Potassium channels are a highly diverse group of channels
and are targets for a wide range of natural toxins from
both marine and terrestrial organisms. Examples of toxins
from marine invertebrates that inhibit voltage-activated
K+ conductances include sea anemone peptides (blood
depressing substance BDS-1 & II) [36,37], the coneshell
toxin k-conotoxin PVIIA [38] and latrunculin A from
sponges and nudibranchs [39]. We have not assessed the
selectivity of CPM for voltage-activated K+ channel sub-
types in DRG neurones for two reasons. Firstly, unlike
many of the peptide toxins, CPM is not very potent. Sec-
ondly, DRG neurones are a heterogeneous population of
neurones that express at least six different types of K+
channels in distinct manners [40] and therefore would
not provide a suitable assay preparation. Application of
CPM increases electrophysiological excitability of DRG
neurones. We predict from our study that it is a major
component of the soft coral extracts that is responsible for
changes in current kinetics and the inhibition of delayed
rectifier K+ channels. Additionally, CPM increases KCI-
evoked Ca?+ flux an action consistent with an increase in
action potential firing. However, the intracellular Ca2+ sig-
nals in part result from Ca2+-induced Ca?* release from
intracellular stores and Ca?+ release channels may also be
modulated by CPM. Furthermore, altering the patterns of
action potential firing in sensory neurones may provide
mechanisms for chemical defence. The actions of the nat-
ural products and CPM was not restricted to a subpopula-
tion of small diameter (C-fibre) neurones so a variety of
sensory neurones may be effected.

Methods

Marine sample collection

Samples were collected from North of Sharm El-Sheikh,
Egypt with the following coordinates (28° 07' 34" N and
34° 26' 28" E). Field observations were carried out by
scuba diving. Underwater ecological observations of the
reef profile where collections were recorded [41]. The per-
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The presence or absence of DMSO has no effect on the actions of synthetic 3-carboxy-|-methyl pyridinium (CMP) on DRG
neurones. A) Records of action potentials showing single action potential firing under control conditions and multiple firing
induced by CMP (100 uM) in the presence of 0.1% DMSO. B) Records of action potentials showing single action potential firing
under control conditions and multiple firing induced by CMP (100 M) in the absence of DMSO. At rest both neurones were
held at -70 mV C) Bar chart showing the significant decrease in the mean voltage-activated K* current (holding potential -70
mV, clamp potential for current activation +60 mV) evoked by CMP (100 uM) in the presence of 0.1% DMSO. D) Bar chart
showing the significant decrease in the mean voltage-activated K* current (holding potential -70 mV, clamp potential for cur-
rent activation +60 mV) evoked by CMP (100 uM) in the absence of DMSO. E & F) Current traces under voltage clamp show-

ing the decrease in K* current produced by CMP.
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centage cover of the different substrates in the study area
were estimated using line intercept transects and the per-
centage cover of each taxon was calculated. Substrate com-
ponents were classified as hard corals, soft corals, dead
corals (recognized by over growing algae), and others
including plants (filamentous algae, calcareous algae,
fleshly algae), associated fauna (molluscs, echinoderms
and sponges), in addition to the 'dead substrate' compo-
nent (sand and rock).

Directly after collection, the samples (60-70 g) were
rinsed thoroughly in seawater and placed on ice for trans-
fer to the laboratory and kept at -20°C until extraction.
Each sample was split into two parts, one part (50 g) was
used for the extraction and a second longitudinal section
was used for the species identification.

Multiple extraction was done over three days using a mix-
ture of 1:1 (v:v) methanol and dichloromethane. Follow-
ing extraction at room temperature, under dark
conditions the extracts were concentrated under reduced
pressure to yield 459 mg of Sarcophyton extract.

Soft coral identification was accomplished by bleaching
the tissue to remove debris and isolate the spicules. Mor-
phological measurements and spicule examination were
the key factors in identification [42].

Three species of soft corals were collected namely (Sarco-
phyton glaucum, Sinularia leptoclados and Lobophyton
crassum). Voucher specimens are kept at the museum of
the Marine Science Department at SuezCanal University
and their index numbers are:

MSD OCT 10422 for Sarcophyton sample
MSD OCT 10442for Sinularia sample
MSD OCT 10452 for Lobophyton sample

Chemical identification

UV spectra were measured on a Perkin-Elmer Lambda 15
UV/Vis spectrometer. 'H, 13C and all 2D NMR experi-
ments were recorded on a Varian Unity INOVA 400 MHz
spectrometer, in CD;OD (!H at 400 MHz and 13C at 100
MHz). A low-resolution electron ionisation mass spec-
trum was obtained using a Micromass Quattro II, and
high-resolution mass data were obtained on a Finnigan
MAT 95 XP. HPLC separations were carried out on a Phe-
nomenex® column (10 x 250 mm, RP-C18, 5 um particle
size) connected to an Agilent 1100 series binary pump
and monitored using an Agilent photodiode array detec-
tor. Detection was carried out at 226, 264 and 320 nm. An
authentic sample of 3-carboxy-1-methyl pyridinium (trig-
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onelline hydrochloride) was purchased from Sigma
Chemical Company (Dorset, UK).

Crude organic extracts of Sarcophyton glaucum and Lobo-
phyton crassum were shipped to our laboratory at the Uni-
versity of Aberdeen for biological and chemical
investigation and stored at -20°C until used. The close
similarity of the 'TH NMR spectra of both extracts espe-
cially in the region of 8;; 7-10 indicated the presence of at
least one common constituent. Electrophysiological
experiments showed that both extracts had the same
effects on the electrophysiological actions on the cultured
DRG sensory neurones from neonatal rats. This indicated
that their common constituent(s) might be the responsi-
ble for such biological activity. NMR-, TLC- and biologi-
cally-guided fractionation of the crude extract of
Sarcophyton glaucum was conducted to isolate such biolog-
ically active component(s). The crude extract was fraction-
ated by reversed phase HPLC using a mixture of MeOH,
water and TFA (80:20:0.05) as eluent. Fractions that
showed the characteristic 'TH NMR peaks of the common
constituent in the region of 3,; 7-10 were pooled together,
concentrated under reduced pressure and subjected to an
HPLC using a linear gradient of MeOH (40-80 % in 20
min) in water at a flow rate of 2 mL/min. Further purifica-
tion was carried out on the same HPLC column using two
solvents: water (A) and methanol (B); starting with 0%
MeOH and increasing to 10% B at 10 min and 15% B at
15 min with a flow rate of 2 mL/min. More purification
was carried out using the same HPLC column with 100%
water as eluent and a flow rate of 1 mL/min. Final purifi-
cation was carried out using 0.1% TFA in water as eluent
with a flow rate of 1 mL/min to afford 32 mg of 3-carboxy-
1-methyl pyridinium.

The structure of 3-carboxy-1-methyl pyridinium was elu-
cidated by a combination of NMR techniques, exact mass
spectral determination, and comparison with the NMR
data of related compounds in the literature.

DRG neuron culture

Two-day old rats were decapitated and dorsal root ganglia
were removed. DRG neurones were dissociated enzymati-
cally (0.125% collagenase for 13 minutes and 0.25%
trypsin for 6 minutes) and mechanically (trituration). Pri-
mary cultures of DRG neurones were plated on laminin-
polyornithine coated coverslips and bathed in Ham's F-14
culture medium (Imperial Laboratories) containing horse
serum (10%; Gibco), NGF (20 ng/mL; Sigma), NaHCO,
(14 mM), streptomycin (5000 pg/mL) and penicillin
(5000 TU/mL). The cultures were maintained for up to
two weeks at 37°C in humidified air with 5% CO,. Cul-
tures were re-fed with fresh media after 5 days.
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In one set of experiments, the DRG neurone cultures were
pre-treated with pertussis toxin (500 ng/mL; for 18 hours)
to ADP-ribosylate the a-subunits of certain G-proteins.
This prevents pertussis toxin-sensitive G-protein being
activated through a range of G-protein coupled receptors
and potential effectors involved in increasing neuronal
excitability [43].

Patch clamp electrophysiology

The whole cell patch clamp recording method was used to
investigate the actions of soft coral preparations on action
potential firing and K+ voltage-activated curents. DRG
neurone cultures were studied using a patch pipette filling
solution containing in mM: KCl, 140; EGTA, 5; CaCl,, 0.1;
MgCl,, 2.0; HEPES, 10.0; ATP, 2.0. The pH and osmolarity
of the patch pipette solutions were corrected to 7.2 and
310-320 mOsm.L ! with Tris and sucrose respectively. The
NaCl-based extracellular solution containing in mM:
NacCl, 130; KCl, 3.0; CaCl, 2.0; MgCl,, 0.6; NaHCO, 1.0,
HEPES 10.0 glucose 5.0 and 0.1% DMSO. The pH and
osmolarity of this extracellular bathing solution was cor-
rected to 7.4 and 320 mOsmL! with NaOH and sucrose
respectively. The soft coral extracts were dissolved in
DMSO (equivalent to 100 mg/mL). From these stock
solutions, the test solutions were made up by dilution
with extracellular solution so that they contained 0.1%
DMSO. This concentration of DMSO vehicle will influ-
ence the electrophysiological properties of DRG neurones
[44]. All experiments were conducted in the presence of
0.1% DMSO so that the actions of soft coral preparations
could be assessed independently of the vehicle. Samples
were applied to the extracellular environment by low-
pressure ejection from a blunt pipette positioned about
50-100 pm away from the cell being recorded. This
method allows a stable concentration of drug around a
neurone to be achieved within ~10 s. For a series of exper-
iments indomethacine (10 uM; 0.01% ethanol) or cheler-
ythrine (3 uM) was applied extracellularly in the bathing
solution and intracellularly via the patch pipette solution.
After measurement of membrane potential, neurones
were held at -70 mV with constant current injection and
electrotonic potentials and action potentials were acti-
vated from this voltage.

All voltage-activated K+ currents had scaled linear leakage
and capacitance currents subtracted to obtain values for
the net outward K+ current. Data are given as mean *
standard error of the mean (SEM) values and statistical
significance was determined using a paired or independ-
ent Student's ¢ test as appropriate.

Fura-2 Ca?* imaging

For Ca?* imaging, cultures were incubated for 1 hour in
NaCl-based extracellular solution containing 0.01 mM
fura-2AM (Sigma, 1 mM stock in dimethylformamide).

http://www.biomedcentral.com/1471-2210/6/10

The cells were then washed for 10-20 minutes with NaCl-
based extracellular solution to remove the extracellular
fura-2AM, this period allowed cytoplasmic de-esterifica-
tion of the Ca?* sensitive fluorescent dye. The cells were
constantly perfused with NaCl-based extracellular solu-
tion (1-2 ml/min) and viewed under an inverted Olym-
pus BX50WI microscope. The fluorescence ratiometric
images were taken with a KAI-1001 S/N 5B7890-4201
Olympus camera and the data obtained at excitation
wavelengths of 340 nm and 380 nm. Images were viewed
and analysed using OraCal pro, Merlin morphometry
temporal mode (Life Sciences resources, version 1.20).
The DRG neurones were stimulated with NaCl-based
extracellular solution containing high K+ (30 mM), which
produced depolarization, activation of voltage-gated Ca2+
channels and large transient increases in intracellular
Ca2+. Three consistent transient increases in intracellular
Ca2* could be obtained in a single experiment on cultured
DRG neurones [45] and no more than 8.5 % variability
was seen in any three-control responses from a single neu-
rone [24]. The actions of soft coral samples (100 pg/mL)
were investigated on the response to the second stimulus
in DRG neurones and their actions on Ca2+* transient
amplitude, duration at 1/2 peak amplitude (Ws;) and
total Ca?+ flux were measured. The W5, value in seconds
was determined by measuring the durations of the KCI-
evoked CaZ?+ transients at the point of half their maximum
amplitudes. This gives a standardized measurement of
response duration. Total Ca2* flux is the change in fluores-
cence ratio x duration of response, the values are given
with respect to Ca2+* flux of 0.2 ratio units x 100 s. By cut-
ting out and weighing records we obtained values for the
areas under the curves for Ca2+ transients. All experiments
were conducted at room temperature and data are
expressed as means + SEM.

Abbreviations
c.Lobo, crude sample from Lobophyton crassum

CPM, 3-carboxyl-1-methyl pyridinium (hydrochloride
salt synthetic)

¢.Sg, crude sample from Sarcophyton glaucum
c.Sl, crude sample from Sinularia leptoclados
DRG, Dorsal root ganglion.

NGF, Nerve growth factor

PKC, Protein kinase C

p-Sg, purified sample from Sarcophyton glaucum
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