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Objectives: The mechanism and immunoregulatory role of human natural killer (NK)

cells in acute graft-vs.-host-disease (aGVHD) remains unclear. This study quantitatively

analyzed the cytotoxicity of donor NK cells toward allo-reactive T cells, and investigated

their relationship with acute GVHD (aGVHD).

Methods: We evaluated NK dose, subgroup, and receptor expression in allografts

from 98 patients who underwent allogeneic hematopoietic stem cell transplantation

(allo-HSCT). A CD107a degranulating assay was used as a quantitative detectionmethod

for the cytotoxic function of donor NK cells to allo-reactive T cells. In antibody-blocking

assay, NK cells were pre-treated with anti-DNAM-1(CD226), anti-NKG2D, anti-NKP46,

or anti-NKG-2A monoclonal antibodies (mAbs) before the degranulating assay.

Results: NK cells in allografts effectively inhibited auto-T cell proliferation following

alloantigen stimulation, selectively killing alloantigen activated T cells. NKG2A− NK cell

subgroups showed higher levels of CD107a degranulation toward activated T cells,

when compared with NKG2A− subgroups. Blocking NKG2D or CD226 (DNAM-1) led

to significant reductions in degranulation, whereas NKG2A block resulted in increased

NK degranulation. Donor NK cells in the aGVHD group expressed lower levels of NKG2D

and CD226, higher levels of NKG2A, and showed higher CD107a degranulation levels

when compared with NK cells in the non-aGVHD group. Using univariate analysis, higher

NK degranulation activities in allografts (CD107ahigh) were correlated with a decreased

risk in grade I–IV aGVHD (hazard risk [HR] = 0.294; P < 0.0001), grade III–IV aGVHD

(HR = 0.102; P < 0.0001), and relapse (HR = 0.157; P = 0.015), and improved

overall survival (HR = 0.355; P = 0.028) after allo-HSCT. Multivariate analyses showed

that higher NK degranulation activities (CD107ahigh) in allografts were independent risk

factors for grades, I–IV aGVHD (HR = 0.357; P = 0.002), and grades III–IV aGVHD

(HR = 0.13; P = 0.009).
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Conclusions: These findings reveal that the degranulation activity of NK in allografts

toward allo-activated T cells was associated with the occurrence and the severity of

aGVHD, after allogeneic stem cell transplantation. This suggested that cytotoxicity of

donor NK cells to allo-reactive T cells have important roles in aGVHD regulation.

Keywords: natural killer cells, cytotoxicity, CD107a, graft vs. host disease, allogeneic hematopoietic stem cell

transplantation

INTRODUCTION

Natural killer (NK) cells are the first donor-derived subset
of lymphocytes that are reconstructed following allogeneic

hematopoietic stem cell transplantation (allo-HSCT). Although
the roles of NK cells in preventing relapse and infection after allo-

HSCT for hematologicmalignancies has beenwell established (1–

4), the function of human NK cells in acute graft-vs.-host-disease

(aGVHD), which is a common complication of allo-HSCT, is

still equivocal.
Some studies have demonstrated that killer immunoglobulin-

like receptor (KIR)-ligand mismatches trigger donor vs. recipient
NK cell allo-reactivity, suppressing the development of aGVHD

by ablating host antigen-presenting cells (APCs), which are

essential for the activation of donor T cell in aGVHD (5–7).
However, many studies have failed to prove the beneficial effect

of allo-reactive NK cells on aGVHD (8–12). Similarly, conflicting

results from clinical studies also hint at other mechanisms for the

regulation of aGVHD by NK cells (13).
The function that NK cells can distinguish target cells

from healthy cells is controlled by integrating signals from
inhibitory and activating receptors (14–18). Donor NK allo-
reactivity, which is based on the lack of ligands for donor
KIR in the recipient, can lead to NK cell activation though
“missing-self ” recognition (19–21).When target cells are exposed
to stress, such as viral infection, the ligands for activating
NK cell receptors are upregulated, binding to NK activating
receptors and activate NK cells via “induced-self ” recognition
(22–24). Studies have demonstrated that activated T cells
up-regulate the expression of ligands for activating NK cell
receptors, making them vulnerable to NK cell killing though
the “induced-self ” model (25, 26). As donor NK and T cells
share similar trafficking routes after allo-HSCT (27), and recent
studies have shown that NK cells exert cytotoxicity toward
activated T cells (28, 29), the NK cell–mediated direct lysis
of allo-reactive T cells through the “induced-self ” model may
present an important mechanism for aGVHD regulation by
NK cells. Olson et al. proved this hypothesis in a major
histocompatibility complex (MHC)-mismatched mouse bone
marrow transplantation (BMT) model (30). However, we know
little about the role of NK cell cytotoxicity toward allo-reactive T
cells in human aGVHD.

In this study, we investigated the role of NK cells in the
regulation of T cell allo-reactivity in human allo-HSCT, and
demonstrated that cytotoxicity of donor NK cells toward allo-
reactive T cells was associated with the occurrence of overall and
grade III–IV aGVHD.

MATERIALS AND METHODS

Patients and Samples
Ninety-eight consecutive patients with acute lymphoid leukemia
(ALL), acute myeloid leukemia (AML), myelodysplastic
syndrome (MDS), non-Hodgkin’s lymphoma (NHL), or chronic
myeloid leukemia (CML) underwent allo-HSCT and were
included in this study. Among these, 37 patients underwent
human leukocyte antigen (HLA)-matched related HSCT,
13 patients underwent HLA-matched unrelated HSCT, and
48 patients underwent HLA-haplo-identical related HSCT.
Stem cell sources were peripheral blood stem cells without
T-cell depletion. The prophylaxis regimens for GVHD were
cyclosporine A, short-term methotrexate, and mycophenolate
mofetil. In addition, ATG was added to HLA-matched unrelated
and HLA-haplo-identical related HSCT. The high risk disease
status at the time of HSCT was defined as > second remission, or
acute leukemia without remission after two cycles of induction
chemotherapy, refractory anemia with excess blasts, and
blast crisis of chronic myelomonocytic leukemia. KIR-ligand
mismatch was evaluated based on donor and recipient HLA gene
typing. The characteristics of the 98 patients and corresponding
donors are summarized in Table 1. All samples in this study
were collected from donor granulocyte-colony stimulating factor
(G-CSF) mobilized peripheral blood stem cell (PBSC) harvests
before transplantation. All patients and donors provided written
informed consent. The study was approved by the Clinical Ethics
Review Committee at Ningbo First Hospital and was performed
in accordance with the Declaration of Helsinki.

mAbs and Flow Cytometry Analyses
NK cells were characterized by FITC-conjugated anti-human
CD56, PE-conjugated anti-human CD16, and APC-conjugated
anti-human CD3 mAbs (Becton Dickinson, San Diego, CA,
USA). To analyze the expression of receptors on NK cells,
the following mAbs were used: APC-conjugated anti-NKG2D
(BAT221 clone), PE-conjugated anti-human NKp46 (BAB281
clone), and FITC-conjugated anti- human DNAM-1 (F22 clone)
(all Becton Dickinson). PE conjugated anti-human NKG2A was
purchased from Beckman Coulter (Fullerton, CA, USA). A
Beckman Coulter flow cytometer, FC5000 (Fullerton, CA, USA),
was used to analyze samples.

CD56+ NK Cell and CD3+T Cell Isolation
and Proliferation Assays
Mononuclear cells (MNCs) were isolated from each G-CSF
mobilized PBSC harvest by Ficoll-Hypaque (MultiSciences
Biotech, Hangzhou, China) density centrifugation. CD56+ NK
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TABLE 1 | Patient, donor, disease, and transplantation characteristics.

Non-aGVHD aGVHD P value

N 47 51 –

Patient age 38 (15-63) 40 (14-65) 0.177

Patent sex (M:F) 25:22 26:25 0.827

Diagnosis 0.156

ALL 5 14

AML 16 14

MDS 15 17

NHL 8 3

CML 3 3

High risk, no. (%) 12 21 0.102

Donor source 0.051

MRD 22 15

Haplo-identical 17 31

MUD 8 5

Donor/patient sex 0.199

M–>M 15 8

M–>F 12 18

F–>M 10 12

F–>F 10 13

Conditioning 0.439

MA 45 51

RIC 2 0

GVHD prophylaxis 0.076

MTX + CSA + MMF + ATG 25 36

MTX + CSA + MMF 22 15

KIR-L GVH mismatch 18 21 0.77

Cell composition in allografts, median (range)

CD34+ cells, ×106/kg 6.1 (2.05∼16.73) 5.3 (1.58∼12.40) 0.197

CD3+ cells, ×108/kg 1.88 (0.43∼4.07) 1.78 (0.35∼4.78) 0.347

CD56+ cells, ×107/kg 3.38 (0.29∼6.45) 2.68 (0.27∼7.10) 0.059

NK:T ratio 0.225 (0.051∼0.498)0.172 (0.049∼0.698) 0.117

GVHD, graft-vs.-host disease; F, female; M, male; AML, acute myeloid leukemia; ALL,

acute lymphoblastic leukemia; MDS, myelodysplastic syndrome; NHL, non-Hodgkin’s

lymphoma; CML, Chronic Myelogenous Leukemia; MRD, matched related donor; MUD,

matched unrelated donor; KIR-L, killer Ig-like receptor ligand; NK, natural killer cell; T, T cell.

cells and CD3+T cells were isolated from MNCs by positive
selection, using FACS (Fluorescence activated cell sorting), and
used for the following experiments.

For proliferation assays, carboxyfluorescein diacetate
succinimidyl ester (CFSE, Invitrogen, Carlsbad, CA, USA)
-labeled CD3+T cells (2 × 105 cells/well) were stimulated with
phytohemagglutinin (PHA), anti-CD3/anti-CD28, or allogeneic
dendritic cells (allo-DCs) separately in 200 µl RPMI 1640
medium containing 10% fetal bovine serum (FBS), in a 96-well
micro-plate (day 0). NK cells from the same donor were added
to the culture at different NK/T ratios (0:10 to 1:5). At day
four, cells were stained with a PECY7-conjugated anti-CD3
mAb (Becton Dickinson), and the proliferation of CD3+ T
cells was analyzed by detecting diluted CFSE signals with
flow cytometry.

Functional Assessments of NK Cells
For degranulation assays, NK cells and anti-CD3/anti-CD28
mAbs activated T cells from the same donor were co-cultured
at an NK to T cell ratio of 1:1, for 4 h at 37◦C, in the presence
of APC-conjugated anti-human CD107a [lysosomal-associated
membrane protein (LAMP)-1] mAb (H4A3, BD Biosciences,
San Jose, CA) and GolgiStopTM containing monensin (BD
Biosciences). In blocking assays, NK cells were incubated with
blocking antibodies for 20min before being co-cultured with
target cells. The following anti-human mAbs were added at
10 µg/mL: NKG2D (clone 149810; R&D Systems, Minneapolis,
MN, USA), NKG2A (clone NNC0141-0100, R&D Systems),
DNAM-1 (clone DX11, BioLegend, San Diego, CA, USA), and
NKP46 (BioLegend). Mouse IgG1 mAbs (R&D Systems) served
as isotype-matched control mAbs. The expression of CD107a in
NK cells was measured by flow cytometry.

For intracellular cytokine staining, NK cells were co-
cultured with the unstimulated T cells or activated T cells
for 4 h, and GolgiStopTM was added to trap protein in the
cytoplasm. Monoclonal antibodies APC-conjugated anti-human
CD56 mAb, FITC-conjugated anti-human IFN-γ, PE-conjugated
anti-human TNF-α, FITC-conjugated anti-human TGF-β, and
PE-conjugated anti-human IL-10 (BD Bioscience) were used
for cell surface marker and in-tracellular cytokine staining.
The intracellular cytokine level of NK cells was detected by
flow cytometry. The granzyme B were quantified by ELISA in
supernatants after co-culture of NK cells with the unstimulated
T cells or activated T cells for 4 h.

For in vitro cytotoxicity assays, a CFSE-7AAD (7-
Aminoactinomycin D, BD Pharmingen, San Diego, CA,
USA) based flow cytometric cytotoxicity assay was performed
using CFSE-labeled T cells stimulated for 4 d with allo-DCs as
targets, and autogeneic NK cells as effectors. In brief, effector and
target cells were co-cultured at E:T ratios of 50:1, 25:1, 10:1, 5:1,
for 4 h at 37◦C. Cells were then washed and labeled with PECY7
conjugated anti-CD3 mAb, and 7AAD (5µg/mL) for 20min and
analyzed by flow cytometry.

Statistical Analysis
Patient characteristics in aGVHD and non-aGVHD groups were
compared by the χ2-test for categorical variables or the Mann–
Whitney U-test for continuous variables. Student’s t-tests or
a two-way ANOVA analyses were used to compare receptor
expression, and degranulation activities of NK cells among
groups. The optimal cut-off point of CD107a expression in
donor NK cells was identified using the receiver operating
characteristic (ROC) curve. Overall survival (OS) was estimated
by the Kaplan–Meier method. The Gray’s test was applied for
comparisons of cumulative incidences of acute GVHD and
relapse. Death, without aGVHD, was defined as the competing
event for aGVHD, while relapse-freemortality was the competing
event for relapse. The Cox regression model was employed for
univariate and multivariate analyses. Risk factors for univariate
analysis included the age of recipient and donor, the gender of
recipient and donor, diagnosis, KIR-L mismatch/match between
donor and recipients, donor source, high risk disease before
transplantation, the dose of CD56+ NK cells, CD34+cells, and
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CD3+T cells, the NK/T cell ratio; the CD56dim/CD56bright ratio,
NKG2A+ proportion, levels of CD226, NKG2D and NKP46
expression of NK cells, and NK CD107a degranulation activity in
allografts. All covariates with P < 0.10 during univariate analysis
were further included in a multivariate Cox regression model. All
tests were bilateral, and a difference was considered significant
when P < 0.05. Statistical analyses were performed on SPSS
25 statistical software (IBM, Armonk, NY, USA), and R 3.6.2
statistical software (https://www.r-project.org/) was employed
to calculate the cumulative incidences, when considering the
presence of competing risks. All calculated averages were defined
as the parametric mean± SD. ∗∗P < 0.01.

RESULTS

Patient Characteristics
Ninety-eight donor PBSC samples from 98 patients receiving
allo-HSCT were analyzed in this study. Patient characteristics
are shown in Table 1. No significant differences were
observed in patient age, patient sex, gender matching
between donors and recipients, underlying disease, donor
source, conditioning regimen, serotherapy, KIR-L mismatch,
and dose of CD34+, CD3+, or CD56+ cells in allografts
between the GVHD group and the non-aGVHD group. The
median duration follow-up was 412 d (range; 71–1,320 d)
after transplantation. All 98 patients achieved engraftment
and complete donor chimerism after transplantation. The
chimerism dynamics of donor NK and T cells were shown
(Figure S1). Grades I, II, III, and IV aGVHD occurred in
16, 16, 14, and 5 cases, respectively. Of 24 patients that
died, nine died from severe infection, two died from severe
gastrointestinal aGVHD with pulmonary infection, and
13 relapsed.

NK Cells in Allografts Inhibited T Cell
Proliferation and Exhibited Cytotoxicity
Against Allo-Reactive T Cells
Olson et al. demonstrated that donor NK cells could inhibit
and kill alloantigen activated T cells during the development of
acute GVHD in their mouse model, indicating that donor NK
cell mediated inhibition and lysing of activated donor T cells
may represent an important mechanism for NK cell–mediated
aGVHD reduction (30). However, the direct modulation of
donor allo-reactive T cell responses by autogeneic NK cells in
human GVHD has not been fully investigated. For donor T-cell
proliferation, activation is the core immunopathophysiology of
aGVHD; therefore, we investigated the effects of donor NK
cells on the proliferation of autogeneic CD3+T cells, following
activation by PHA, anti-CD3/anti-CD28 mAbs, or allo-DCs
derived from recipients. CFSE-labeled resting CD3+T cells were
stimulated by PHA, anti-CD3/anti-CD28 mAbs, or allo-DCs
(T/DC = 5:1), and co-cultured with autologous CD56+ NK
cells at NK/T ratios of 0:10, 1:10, or 1:5. Ninety-six hours
later, the percentage of proliferating CD3+T cells was detected
by flow cytometry (Figures 1A,B). As shown in Figures 1C,D,
the proliferation of T cells, as defined by CFSE dilution, was

significantly inhibited by donor NK cells, in a NK cell dose
dependent pattern.

To further validate that NK cell-mediated cytotoxicity against
T cells led to the suppression of alloantigen-activated T cell
proliferation by autologous NK cells, CFSE-labeled resting
CD3+T cells were stimulated with allogeneic dendritic cells (allo-
DCs) for 96 h, and then used as target cells for an NK killing
assay. Our results revealed allo-reactive T cells were distinguished
by lower CFSE intensity (CFSElow) in CD3+T cells (Figure 1E).
Flow cytometric analysis using 7AAD to identify dead cells
revealed that donor NK cells mainly killed proliferating T cells
(CFSElow), but not non-proliferating T cells (CFSEhigh), in a cell
dose-dependent manner at effector:target (E:T) ratios of 50:1,
25:1, 10:1, or 5:1 (Figures 1E,F).

In the process of NK degranulation, lysosomal associated
membrane protein-1 (LAMP-1, CD107a) on the surface of
lysosomal granules is transported to the cell surface and can be
used for antibody binding studies. This allows for the recognition
of activated NK cells, making them attractive biomarkers for
assessing granulocytic exocytosis and cytotoxic activity of NK
cells (26, 27). As shown (Figures 1G,H), donor NK cells
displayed degranulation activity to activated but not resting
T cells, which was consistent with NK cells killing activated
proliferating T cells instead of resting T cells, in the killing
assay. In addition to CD107a degranulation, the Granzyme
B concentration in NK and activated T cell co-cultures was
significantly higher (1422.25 ± 256.77 pg/ml) than that in NK
and unstimulated T cell co-cultures (782.75 ± 161.77 pg/ml)
(P = 0.014). However, there was no difference in cytokines
IFN-γ, TNF-α, IL-10, and TGF-β secreted by NK cells after
co cultured with activated or unstimulated T cells (Figure S2).
Therefore, NK cells selectively killed activated T cells and
played an inhibitory role on T cell proliferation induced by
alloantigen stimulation.

The Effects of NKG2A+/NKG2A− Subsets
and Receptor Expression on NK Cell
Cytotoxicity Against T Cells Are
Associated With aGVHD After Allo-HSCT
As the CD107a degranulation assay is more feasible than the
killing assay, we performed a CD107a degranulation assay to
identify the cytotoxic effects of NK cells to activated T cells, for
all PBSC donors.

We further investigated differences in NK degranulation
against autologous activated T cells between CD56dim and
CD56bright, and NKG2A+ and NKG2A− subsets. As shown
(Figures 2A–C), the degranulation of CD56dim NK cells
toward autologous activated T cells was stronger than the
CD56bright subset, and NKG2A− NK cells were degranulated
more potently than the NKG2A+ subgroup, suggesting that
subgroup distribution patterns of donor NK cells influenced NK
cytotoxicity against activated T cells.

The cytotoxicity of NK cells is regulated by signal integration
from a complex repertoire of activating and inhibiting receptors
(14, 17, 18). According to the NK education and tolerance
hypothesis (31–33), it is impossible for NK cells to kill
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FIGURE 1 | NK cells inhibit T cell proliferation by selectively killing alloantigen activated T cells. (A) Representative gating strategy for NK and T cell sorting;

(B) Representative gating strategy for T cell proliferation assay. (C,D) CFSE-labeled CD3+T cells were stimulated with PHA, anti-CD3/anti-CD28 mAbs or allo-DCs,

and autologous CD56+ NK cells were added at NK/T ratios of 0:10, 1:10, or 1:5. Four days later, CD3+T cell proliferation was analyzed by flow cytometry. The

percentage of proliferating T cells was defined by CFSE intensities (n = 4). (E,F) CFSE-labeled CD3+T cells were first stimulated with allo-DCs for 96 h and then used

as target cells for NK killing assays at effector:target (E:T) ratios of 50:1, 25:1, 10:1, 5:1, or 1:1. Allo-reactive T cells were distinguished by lower CFSE intensity

(CFSElow) in CD3+T cells. 7AAD was labeled to identify dead cell and analyzed by flow cytometry (n = 4). (G,H) Naïve T cells or T cells activated by

anti-CD3/anti-CD28 mAbs were co-cultured with NK cells at an effector:target (E:T) ratio of 1:1 for CD107a degranulating assay. NK cells cultured alone were used as

controls. The percentage of CD107a+ in CD56+NK cells represented the level of NK degranulation toward T cells (n = 4). All calculated averages were defined as the

parametric mean ± SD. Student’s t-tests, or two-way ANOVA analyses, were used to compare the mean among groups. ns: not significant. **P < 0.01.

auto-T cells by KIR-L mismatching. Therefore, we further
analyzed the potential roles of NK activating receptors by
blocking interactions between NK activating receptors and
corresponding ligands with neutralizing antibodies, before

the degranulation assay. We observed that blocking NKG2D,
DNAM-1 (CD226), or NKP46 led to significant decreased
degranulation (CD107a expression) of NK cells toward activated
auto-T cells. Accordingly, we also found that the expression of
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FIGURE 2 | Subgroup and receptor expression of donor NK cells affected NK degranulation toward activated T cells associated with aGVHD. (A) Representative

gating strategy. CD56dim and CD56bright NK cells were gated and subsets were defined based on the expression of NKG2A, the percentage of CD107a positive cells

was analyzed on each subset of NK cells. (B) CD107a expression in CD56dim and CD56bright NK cells (n = 4), (C) CD107a expression in NKG2A− and NKG2A+

subgroups (n = 4), (D) NK cells were pretreated with neutralizing antibodies (or relevant isotype-matched Ig controls) before degranulation assay (n = 4). (E) Levels of

donor NK degranulation toward activated T cells were significantly lower in the aGVHD group than in the non-aGVHD group (P = 0.001, n = 98). Percentage of

CD56dim and CD56bright NK cells (F), NKG2A+ NK cells (G) in allografts from the aGVHD and non-aGVHD groups (n = 98). MFI of CD226 (H); NKG2D (I) and NKP46

(J) of NK cells in allografts from aGVHD and non-aGVHD groups (n = 98). All calculated averages were defined as the parametric mean ± SD. Student’s t-tests or

two-way ANOVA analyses were used to compare the mean among groups.

NKG2D ligands (MICA/MICB, ULBP-1, ULBP-3) and DNAM-
1 ligands (PVR) on T cell surface was up-regulated after
activation (Figure S3). On the contrary, blocking the HLA-
E–NKG2A interaction with an anti-NKG2A mAb resulted in
increased degranulation (Figure 2D). These results suggested
that activated receptors NKG2D, DNAM-1 (CD226), and
NKP46 played important roles in triggering NK cell cytoxicity,

while NKG2A, an inhibitory receptor of NK cells, played
a negative role in NK cell cytotoxicity toward allo-reactive
auto-T cells.

NK cells may kill target cells by means other than perforin-
mediated cytotoxicity. As T cells could upregulated expression
of Fas/FasL after activation and Fas/FasL pathway has been
proved to participate NK cell-mediated cytotoxicity against
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tumor cells (34, 35), we addressed whether FAS/FAS-L pathway
was implicated in NK cell killing of allo-reactive T cells.
However, blocking FasL did not affect the degranulation and
killing of NK cells to allo-antigen activated T cells (Figure 2D).
NK degranulation varied between donors, with an average
17.26 ± 4.69% donor NK cells of the aGVHD group showing
degranulation activity toward autologous activated T cells, when
compared to 21.78 ± 5.26% NK cells in the non–aGVHD group
(P = 0.001) (Figure 2E).

Furthermore, we evaluated NKG2A+ andNKG2A−, CD56dim

and CD56bright subsets and receptor expression on CD56+ NK
cells in patient allografts in aGVHD and non-aGVHD groups.
When analyzing NKG2A expression, we observed that 23.8 ±

9.47% donor NK cells for aGVHD patients were positive for
NKG2A, when compared with 20.42 ± 6.2% NK cells in the
non-aGVHD group (Figure 2G, P = 0.041). The differences
in CD56dim and CD56bright subset proportions between groups
were not statistically significant (Figure 2F). After this, we
analyzed the differences in NK activating receptors, CD226,
NKG2D, and NKP46, which have been shown to enhance NK
killing activity to activated T cells in vitro (29, 36), in allografts
between aGVHD and non-aGVHD groups.We observed that the
expression of DNAM-1 (CD226) and NKG2D in donor NK cells
of the aGVHD group was higher than that of the non aGVHD
group, while differences inNKP46 expression between the groups
were not statistically significant (Figures 2H–J).

CD107a Expression (>20.5%) in Donor NK
Cells Is an Independent Predictor of
aGVHD
Using the receiver operating characteristic (ROC) curve, we
selected a cut-off of 20.5% for CD107a expression in donor NK
cells in the degranulation assay, which provided a sensitivity of
75% and a specificity of 64% for the prediction of aGVHD. Based
on CD107a expression in donor NK cells to activated T cells,
patients were divided into the CD107ahigh group (n= 54) and the
CD107alow group (n= 44). When compared with the CD107alow

group, patients in the CD107ahigh group showed lower incidences
of overall aGVHD (29.6 vs. 70.42%, P = 0.0003, Figure 3A),
grade II–IV aGVHD (18.2 vs. 59.3%, P = 0.0001, Figure 3B) and
grade III–IV aGVHD (13.6 vs. 53.7%, P = 0.0007, Figure 3C).

Considering the potential influence of the donor source and
ATG use on the development of aGVHD, subgroup analysis was
carried out. In relation to the donor source, the CD107ahigh group
demonstrated a lower cumulative incidence of overall aGVHD
than the CD107alow group when the donor was HLA-matched
related (MRD) (5.6 vs. 73.7%; P = 0.0005; Figure 4A), but this
effect was not seen in HLA-matched unrelated donors (MUD)
(16.1 vs. 57.1%; P = 0.187; Figure 4B), and haplo-identical
donors (55 vs. 71.4%; P = 0.207 Figure 4C). In 61 patients
who received HLA-matched unrelated and HLA-haplo-identical
related HSCT, additional ATG was used. The predictive value of
CD107a expression in donor NK cells for overall aGVHDwas not
statistically significant when ATG was added(46.2% vs. 68.6%; P
= 0.085 Figure 4D). Considering ATG was only used in HLA-
matched unrelated andHLA-haplo-identical relatedHSCT in our

study, we speculated that the main reasons why the predictive
value of the donor NK CD107a degranulation towards activated
T cells for overall aGVHDwas not significant inMDR and haplo-
identical HSCT might be that ATG weakened NK cell function
(37) and that each subgroup had relatively small cases.

In univariate analyses, besides CD107a, other factors also
predicted a reduced grade I–IV aGVHD risk, the dose of infused
NK cells > 2.19 × 107/kg (HR = 0.551; P = 0.037), and median
fluorescent intensity (MFI) of NKG2D on NK cells > 2491
in allografts (HR = 0.471; P = 0.015) (Table 2). Other
factors predicting decreased grade III–IV aGVHD included,
matched related donors vs. haplo-identical donors (HR = 0.504;
P = 0.033), and the percentage of NKG2A+NK ≤ 25.5% in
allografts (HR = 0.297; P = 0.008). In univariate analysis,
the non-statistically significant factors for predicting aGVHD
included the age and gender of recipients and donors, diagnosis,
high risk disease before transplantation, the KIR-L mismatch
between donors and recipients, additional usage of ATG for
GVHD prophylaxis, the dose of CD34+ cells, CD3+T cells,
the NK/T cell ratio, the CD56dim/CD56bright NK cell ratio, and
DNAM-1 and NKP46 expression levels of NK cells in allografts.

Multivariate Cox regression models were applied to evaluate
the prognostic value of CD107a expression in donor NK cells in
allografts. All variables used for the Cox model had a univariate
p-value < 0.1. As shown (Table 2), CD107a expression in donor
NK cells > 20.5%, was an independent predictor for the grade
I–IV aGVHD (HR= 0.357; P= 0.002), and grade III–IV aGVHD
(HR= 0.13; P = 0.009).

In univariate analysis, the CD107ahigh group demonstrated
a lower cumulative incidence of cGVHD than the CD107alow
group (13.6 vs. 33.3%; P = 0.034; Figure 3D). The cumulative
incidence of relapse in the CD107ahigh group was lower than
the CD107alow group (4.5 vs. 24.1%; P = 0.007; Figure 3E).
There was no difference in the cumulative incidence of non-
relapse mortality (NRM) between the CD107ahigh group and the
CD107alow group (P = 0.46). The 2-year overall survival was
84.2% in the CD107ahigh group, while that of the CD107alow

group was 50.2% (P = 0.022; Figure 3F). However, multivariate
analyses showed that the predictive value of CD107a expression
in donor NK cells for chronic GVHD, relapse and overall survival
was not statistically significant (Table 2).

DISCUSSION

There is growing evidence that NK cells have
immunomodulatory functions and can inhibit the immune
responses of T cells (34, 35, 38–43). Donor T cell activation is the
core immunopathophysiology mechanism in acute graft vs. host
disease. Studies have demonstrated that donor NK cells inhibit
the proliferation of T cells and show cytotoxicity to activated T
cells in a mouse aGVHD model (30, 44). However, the direct
regulation of donor allo-reactive T cell responses by autogeneic
NK cells in human GVHD has not been fully investigated. In
this study, we demonstrated that NK cells negatively regulate
T cells response to allo-DCs in humans, which was consistent
with a previous report in a murine model (30). NK cytotoxicity
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FIGURE 3 | Donor NK CD107a degranulation toward activated T cells was predictive for risk of aGVHD, chronic GVHD, relapse, and overall survival. The Gray’s test

was applied for comparisons of cumulative incidences of acute GVHD, chronic GVHD, and relapse. Death, without aGVHD, was defined as the competing event for

aGVHD, while relapse-free mortality was the competing event for relapse. Cumulative incidence estimates of grade I–IV aGVHD (A), gradeII–IV aGVHD (B), grade III–IV

aGVHD (C), chronic GVHD (D), and relapse (E) or Kaplan–Meier survival estimates for overall survival (F) for patients in “CD107alow” and “CD107ahigh” groups,

separated according to the optimal cutoff of 20.5% for donor NK CD107a degranulation toward activated T cells.

against alloantigen activated T cells may suggest an important
mechanism whereby NK cells regulate T cell allo-reactivity in
human aGVHD.

The observation that NK cells are capable of regulating T cell
allo-reactivity, which has been validated in in vitro studies and
animal models, should be explored in clinical transplantation
models. In this study, the relationship between the killing effects
of donor NK cells to activated T cells and the incidence of
aGVHD was explored in a group of allogeneic hematopoietic
stem cell transplantation patients. We established a method
to detect the cytotoxic functions of donor NK cells toward
activated T cells, through CD107a degranulation analysis. Our
study demonstrated that the cytotoxic effects of donor NK cells
toward activated T cells was related to the occurrence and
severity of aGVHD in human HSCT. We observed that the

degranulation activity of donor NK cells in the non-aGVHD
group was higher when compared to donor NK cells in the
aGVHD group. Furthermore, the high degranulation activity
of donor NK cells significantly decreased the rate of overall
aGVHD, and the grade III–IV of aGVHD, when assessed by Cox
multivariate regression analysis. These clinical findings help us
understand animal models (30, 44), suggesting that donor NK
cells could play a regulatory role in GVHD by inhibiting allo-
reactive T cell immune through their cytotoxic functions against
activated allo-reactive T cells.

As NK cells may serve as potentially GVHD regulatory
cells, studies have sought to determine the predictive value
of NK cells in human GVHD. NK cell concentrations in
allograft procedures are important factors influencing GVHD
incidence (45–49). Tanaka et al. reported that a high dose
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FIGURE 4 | Subgroup analysis for predictive value of the donor NK CD107a degranulation toward activated T cells for grade I–IV aGVHD. (A) HLA-matched related

HSCT(MRD), (B) HLA-matched unrelated HSCT(MUD), (C) HLA-haplo-identical related HSCT. (D) Patients with ATG for the prophylaxis of GVHD.

of infused NK cells was correlated with a lower incidence
of grade III–IV aGVHD, particularly in recipients receiving
unrelated bone marrow transplantation (49). However, in our
transplant settings, although higher NK doses in grafts showed
correlations with a lower incidence of overall aGVHD by
univariate analysis, higher NK cell doses in allografts were
not identified as independent predictors of aGVHD using
multivariate analysis. We speculated on several possible factors
that may have contributed to this inconsistency. Firstly, there
were large differences in infused NK cell doses in different
transplantation schemes, varying from 106 to 107/kg, and
NK content in PBSC harvests was usually higher than bone
marrow collections (45). Secondly, different conditioning-
regimens and GVHD prevention schemes may have exerted
different effects on NK functions (50–52). Finally, and most
importantly, the statistical significance of NK cell doses were
weakened after NK cytotoxic function was incorporated into the
multivariate model.

Zhao et al. observed that a higher dose of CD56bright NK
cells in allografts was associated with a higher incidence of grade
II–IV aGVHD, while a higher CD56dim/CD56bright ratio dose
in NK cells was correlated with a lower incidence of grade
III–IV aGVHD, after haplo-identical transplantation without
in vitro T-cell depletion (48). When analyzing the relationship
between NK cell subsets and aGVHD, we found no significant
correlations between the CD56dim/CD56bright ratio and aGVHD.
Interestingly, we observed that a higher ratio of NKG2A+ NK

in allografts was associated to a higher incidence of grade III–
IV aGVHD. Equally, we showed that NKG2A was involved in
the negative regulation of NK cell cytotoxicity against activated T
cells in vitro, which was consistent with Nielsen et al. (36, 53).
NKG2A, is an inhibitory receptor of NK cells which belongs
to the C-type lectin superfamily, and is often overexpressed on
the surface of reconstituted NK cells in the early stages after
HSCT (54–56). Contrary to our results, Hu et al. reported that
NKG2A+ subset cells were reduced in patients with aGVHD after
allo-HSCT (54, 57). We speculated that the main reason for this
inconsistency might be that Hu et al. studied the expression of
NKG2A in reconstituted NK cells after transplantation, while
we studied the expression of NKG2A on the surface of donor
NK cells, while the phenotype and function of the NKG2A+ NK
cells after allo-HSCT are different from those of healthy donors
(55, 58).

Several mechanisms have been proposed to explain the
complex crosstalk between NK cells and T cells during NK cell-
mediated negative modulation of T cell immunity, including
cytokine interactions, indirect effects by killing APCs, and the
direct lysis of activated T cells (6, 28, 42, 59). This latter
mechanism has been proposed as a direct mechanism used by
NK cells (35, 40, 60), and several receptor-ligand pairs have
been reported to manipulate NK cytotoxicity toward activated
T cells, including NKG2D/NKG2D-L (25), DNAM-1/PVR (26),
LFA/LFA-L (36), and NKP46/NKP46-L (29, 61). In accordance
with previous reports (29, 36, 62), our results showed that NK
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TABLE 2 | Univariate and multivariable analysis of risk factors for clinical outcomes of allogeneic stem cell transplantation.

Covariate Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

GRADE I–IV aGVHD

NK dose: >2.19 vs. ≤2.19 × 107/kg 0.551 0.315–0.963 0.037

With ATG vs. without ATG 0.603 0.33–1.101 0.096

NK CD107a level: >20.5 vs. ≤20.5% 0.294 0.156–0.554 0.000 0.357 0.184–0.69 0.002

NKG2A + %NK: >25.5 vs. ≤25.5% 1.648 0.927–2.931 0.089

MFI-CD226 of NK: >3,589 vs. ≤3,589 0.492 0.231–1.048 0.066

MFI-NKG2D of NK: >2,491 vs. ≤2,491 0.471 0.257–0.862 0.015 0.384 0.285–0.721 0.003

GRADE III–IV aGVHD

MRD vs. Haplo 0.504 0.268–0.946 0.033

NK dose: >2.19 vs. ≤2.19 × 107/kg 0. 428 0.173–1.055 0.094

NK CD107a level: >20.5 vs. ≤20.5% 0.102 0.024–0.445 0.002 0.13 0.029–0.595 0.009

NKG2A + %NK: >25.5 vs. ≤25.5% 3.368 1.372–8.355 0.008 3.627 1.466–0.026 0.005

MFI-NKG2D of NK: >2,491 vs. ≤2,491 0.403 0.145–1.123 0.082

CHRONIC GVHD

NK CD107a level: >20.5 vs. ≤20.5% 0.503 0.248–1.019 0.034

Non-aGVHD vs. aGVHD 2.134 1.065–4.279 0.033

RELAPSE

High risk 9.185 2.905–29.035 0.000 6.924 1.922–24.941 0.003

Donor NK CD107a level 0.157 0.035–0.696 0.015

OS

High risk 4.229 1.865–9.588 0.001 3.619 1.573–8.325 0.002

0–II aGVHD vs. III–IV aGVHD 0.124 0.038–0.405 0.002 2.934 1.253–6.870 0.013

NK CD107a level: >20.5 vs. ≤20.5% 0.355 0.14–0.895 0.028

cytolysis of allo-activated T cells depends on NKG2D, DNAM-
1, and NKP46, as blocking of NKG2D, DNAM-1(CD226), or
NKP46 led to significant reductions in degranulation of NK cells
toward activated auto-T cells.

Several studies have demonstrated regulatory roles of NK cells
in T cells responses in chronic viral infection (34), auto-immunity
(63), transplantation (38, 64), and GVHD mouse models (30).
Here, we specifically investigated NK-T cell crosstalk in a
human GVHD setting. We have provided new insight into
the role of NK cell “induced-self ” recognition in aGVHD
regulation. The triggering of NK cytotoxicity is tightly controlled
by activating and inhibiting signals from NK cell receptors,
the “missing-self ” and “induced-self ” recognition have been
proposed to interpret the manner of NK activation (22, 65–
67). The recognition of homologous HLA class I ligands by
inhibitory KIR plays an important role in the education and
self-tolerance of NK cells, which allows them to tolerate self-
healthy cells with normal levels of HLA class I expression, but
react to unhealthy cells with decreased HLA class I expression
(68). When donor NK cells encounter autogenous allo-reactive T
cells, the “missing-self ” recognition model, which is triggered by
KIR/KIR-ligand mismatch (20, 69), were prohibited as licensed
NK cells expressing inhibitory KIR to combine with self HLA
class I ligands on autogenous allo-reactive T cells (33, 70–72).
It has been reported that activated T cells up-regulate ligands
for NK cell activating receptors, and provide activating signal

for autologous NK cells (28, 29, 60). When activating signals are
strong enough to exceed the inhibitory signal from inhibitory
KIR, the “induced-self ” model of NK cell activation functions,
and triggers cytotoxicity to eliminate redundant activated T
cells, thus avoiding hyper T-cell activation and maintaining
immune responses.

Donor allo-reactive T cells are an important factor leading
to GVHD, and also a key compartment in exerting the graft-
vs-leukemia (GVL) effect. Our concern is whether the negative
regulatory effect of NK cells on allo-reactive T cells will affect
GVL effect and increase disease relapse. In our study, we found
that the cytotoxicity of NK cells on allo-reactive T cells did
not affect the GVL effect. On the contrary, patients with higher
NK degranulation activities toward allo-reactive T cells had a
lower incidence of relapse, which was consistent with the results
of previous studies that NK cells had the effect of separating
GVHD from GVL (13, 73–75). However, the specific mechanism
for donor NK cells separating GVL effect from GVHD is not
clear. It is worth mentioning that NK cells themselves possess
the powerful function of killing leukemia cells and prevent the
relapse (76).

The present study had several limitations. First, the cohort
of patients included in the study is heterogeneous as far as the
donor source and ATG usage were concerned. Although we have
conducted subgroup analysis, the limited number of cases may
lead to the deviation of results, so we need to further validate
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the prognostic value of donor NK cell cytotoxicity toward allo-
reactive T cells in a larger cohort of patients. Second, we did
not find that donor NK cell cytotoxicity toward allo-reactive T
cells was related to the severity of aGVHD, because there was
no difference between the prognostic value of NK activity on
the development of overall aGVHD and grade III–IV severe
aGVHD, which may also be due to the limited number of
cases and heterogeneous cohort. Third, other mechanisms for
NK cells to regulate allo-reactive T cells, and the potential
mechanism for NK cells to separate GVL from GVHD need to
be explored in the future to provide further explanations for
our findings.

In summary, donor NK cells inhibit and lyse allo-reactive
T cells associated with aGVHD risk and severity, suggesting
that NK cytotoxicity toward allo-activated T cells may play
important roles in human aGVHD regulation. These findings
may help us forecast aGVHD risks earlier by detecting
donor NK cytotoxicity to allo-activated T cells, thus providing
new targets for the prevention and treatment of aGVHD.
However, it has been reported that NK cells reconstructed
after allogeneic hematopoietic stem cell transplantation showed
immature phenotypes and impaired functions (50, 58, 77, 78).
Whether reconstructed donor NK can effectively regulate GVHD
through cytotoxic function after allogeneic hematopoietic stem
cell transplantation should be doubted, and more studies should
be conducted to support this thesis.
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Figure S1 | Lineage-specific analysis of chimerism in patients following allogeneic

stem cell transplantation. The peripheral blood samples of 38 patients were

collected at 2, 4, 8, and 12 weeks after transplantation, then NK and T cells were

enriched by immunomagnetic separation. The chimerism of NK and T cells was

detested by short tandem repeats-Polymerase chain reaction (STR-PCR). (A)

Chimerism dynamics of donor NK cells, (B) Chimerism dynamics of donor T cells.

Figure S2 | Cytokine and granzyme B secretion of NK cells. After co-culture of NK

cells with the unstimulated T cells or activated T cells for 4 h, the cytokine IFN-γ,

TNF-α, IL-10, and TGF-β level secreted by NK cells was detected by flow

cytometry. Representative gating strategy (A) and statistical histogram of four

independent experiments (B) were shown (n = 4). The granzyme B were

quantified by ELISA in supernatants after co-culture of NK cells with the

unstimulated T cells or activated T cells for 4 h (n = 4) (C).

Figure S3 | Representative histograms for surface expression of ligands for

NKG2D, DNAM-1, and NKG2A on activated and resting T cells.
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