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ABSTRACT
Introduction  The availability of easily accessible 
continuous glucose monitoring (CGM) metrics can 
improve glycemic control in diabetes, and they may even 
become a viable alternative to hemoglobin A1c (HbA1c) 
laboratory tests in the next years. The REALISM-T1D study 
(REAl-Life glucoSe Monitoring in Type 1 Diabetes) was 
aimed at contributing, with real-world data, to a deeper 
understanding of these metrics, including the time in range 
(TIR)–HbA1c relationship, to facilitate their adoption by 
diabetologists in everyday practice.
Research design and methods  70 adults affected by 
type 1 diabetes were monitored for 1 year by means of 
either flash (FGM) or real-time (rtCGM) glucose monitoring 
devices. Follow-up visits were performed after 90, 180 and 
365 days from baseline and percentage TIR70–180 evaluated 
for the 90-day time period preceding each visit. HbA1c 
tests were also carried out in the same occasions and 
measured values paired with the corresponding TIR data.
Results  A monovariate linear regression analysis confirms 
a strong correlation between TIR and HbA1c as found 
in previous studies, but leveraging more homogeneous 
data (n=146) collected in real-life conditions. Differences 
were determined between FGM and rtCGM devices 
in Pearson’s correlation (rFGM=0.703, rrtCGM=0.739), 
slope (β1,FGM=−11.77, β1,rtCGM=−10.74) and intercept 
(β0,FGM=141.19, β0,rtCGM=140.77) coefficients. Normality of 
residuals and homoscedasticity were successfully verified 
in both cases.
Conclusions  Regression lines for two patient groups 
monitored through FGM and rtCGM devices, respectively, 
while confirming a linear relationship between TIR and 
A1c hemoglobin (A1C) in good accordance with previous 
studies, also show a statistically significant difference 
in the regression intercept, thus suggesting the need for 
different models tailored to device characteristics. The 
predictive power of A1C as a TIR estimator also deserves 
further investigations.

INTRODUCTION
Continuous glucose monitoring (CGM) has 
opened new horizons in diabetes care,1–3 
enabling frequent measurements of blood 
glucose through minimally invasive tech-
niques and wearable devices.4 5 Moreover, 

CGM makes available to diabetologists 
parameters and metrics,6 7 such as time in 
range (TIR), time above range, time below 
range and coefficient of variation, which can 
be leveraged in effective glucose control and 
might prevail over, although not replace, 
A1c hemoglobin (A1C) laboratory tests in 
the years to come.8–10 On the one hand, the 

Significance of this study

What is already known about this subject?
►► Continuous glucose monitor (CGM)-derived metrics, 
like TIR70–180, are easily accessible, but users need 
to become more familiar with their interpretation in 
order to optimize clinical outcomes.

►► A good understanding of the relation between time 
in range (TIR) and the biomarker hemoglobin A1c 
(HbA1c), which is still the gold standard for clinical 
judgment on glycemic control, is crucial if TIR is to 
complement HbA1c or become a viable alternative to 
it in the next years.

What are the new findings?
►► Results confirm a strong linear correlation between 
HbA1c and TIR based on 90-day CGM data in real-
life conditions, whereas quadratic contributions re-
ported in other studies were found to be negligible.

►► The work revealed a statistically significant differ-
ence in the regression intercept of flash (FGM) and 
real-time (rtCGM) sensor data and highlighted that 
tailored models are likely to be required for differ-
ent monitoring systems; statistical significance tests 
performed on the regression slope difference were 
instead inconclusive.

How might these results change the focus of 
research or clinical practice?

►► CGM-related metrics might provide valuable and ac-
tionable information not just for instant overview but 
also for long-term disease management.

►► Clinical judgment based on CGM metrics should also 
take into account differences in devices and relevant 
TIR–HbA1c relationships.
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adoption of the A1C biomarker has been well assessed 
in the usual clinical practice for quite a long time and 
is currently the gold standard for follow-up in metabolic 
control or diabetes outcomes assessment. A1C reflects 
hyperglycemia and its association with chronic disease 
complications, but unfortunately has also proven to be 
unsuitable for assessing daily glycemic variations11 12 and 
in particular determining short-term glycemic changes 
accurately.13 Thus, further tailored evaluations are 
needed when dealing with individual care and in the 
attempt to realize precision medicine.14 On the other 
hand, CGM systems are both gaining popularity and 
being increasingly adopted thanks to fast advances in 
sensor and device technology.5 15 16

TIR is a recognized key metric readily available for 
targeting insulin therapy day by day. Thus, it is more 
flexible and provides more actionable information than 
A1C alone. However, evidence regarding correlation 
with long-term glycemic control and diabetes complica-
tions is limited and will probably require years to collect. 
Thus, clinicians could feel more confident in targeting 
patients’ glucose management according to the new indi-
cator if a strong correlation with the gold standard (A1C) 
was confirmed. Percentages of desirable ‘time in range’ 
might also be refined, depending on observed relation-
ship with A1C values, until a reliable prediction of A1C 
levels is possible.

Some recent retrospective and cohort studies17–19 have 
focused on the existing relationships between CGM 
metrics and A1C to assess their correspondences and 
differences. Moreover, real-world observational studies 
are gaining regard as an additional source of information 
that can help in better understanding findings of clinical 
trials.20 21

A real-world observational study, called ‘REAl-Life 
glucoSe Monitoring in Type 1 Diabetes’ (REALISM-T1D), 
was conducted in Torino, Italy, to gain more insight on 
emerging CGM-enabled metrics in diabetes care and in 
particular the relationship between percentual time-in-
range 70–180 mg/dL and A1C. The study was carried 
out jointly by two Italian institutions: the Department of 
Medical Science, University of Turin, and the Institute of 
Electronics, Computer and Telecommunications Engi-
neering (IEIIT) of the National Research Council of Italy 
(CNR).

RESEARCH DESIGN AND METHODS
Study design and participants
REALISM-T1D was based on real-world observations of 
adult patients with type 1 diabetes who did not have any 
previous experience with CGM; they were monitored for 
a full 12-month period in their daily life through commer-
cial CGM devices. The study involved a single diabetes 
care center at ‘Le Molinette’ hospital in Torino, which 
is not devoted to the treatment of young (under 18) 
patients with diabetes as they are addressed to different 
facilities. Every year about 100 real-time (rtCGM) and 

flash (FGM) sensors are prescribed for the first time to 
adults with type 1 and type 2 diabetes who refer to the 
center, while about 4000 patients are currently receiving 
follow-up visits and treatment.

A total of 70 adult patients of Caucasian race with 
type 1 diabetes participated in the study. In particular, 
94 individuals aged 20–60 were screened, who turned to 
the center for the first time in a 12-month time period 
(between April 1, 2017 and March 31, 2018) and did 
not have previous experience with CGM. Eleven did not 
qualify, while 13 did not consent to participate. Even-
tually, 70 patients were enrolled depending on their 
voluntary informed consensus to be included in the 
investigation, with a mean age of 40.4±12.9 years (range 
20–60), disease duration of 21.6±14.0 years (range 1–54), 
body mass index (BMI) of 24.8±3.5 kg/m2 and A1C of 
7.6%±1.0% (60±10 mmol/mol). To grant personal data 
protection, pseudonymization was used and transcoding 
tables were stored in a single protected server of the care 
center. In the selection, no constraint was imposed on the 
metabolic compensation in terms of A1C at the baseline 
and stable complications. Instead, the only reasons for 
exclusion were the presence of severe complications at 
an advanced stage, uncompensated psychiatric disorders, 
and dangerous societal problems sometimes encountered 
in a negligible minority of the center patients. Differently 
from randomized controlled trials, there was no need 
for a control group equipped with blinded devices, while 
inclusion/exclusion criteria, such as patients already at 
the target with A1C under 7% (53 mmol/mol), could be 
avoided.

Patients were first given instructions about the use of 
the prescribed devices and the procedures to calibrate 
their sensors and upload CGM data (in the case they 
were requested to do so themselves, in particular with 
rtCGM sensors) during a preliminary visit and a subse-
quent 2-week training, and then CGM was started and 
data seamlessly collected for a full 1-year time period. As 
the study was purely observational by design, participa-
tion had no influence on the behavior and decision of 
the care team and patients were let free to manage their 
devices in their everyday glucose monitoring. Insulin 
therapies, however, resulted evenly distributed between 
multiple daily injections and insulin pumps.

Three follow-up visits were planned at 90, 180, and 365 
days from the beginning of the monitoring activity, and on 
those occasions A1C laboratory tests were also performed 
based on the high-performance liquid chromatography 
(HPLC) ion-exchange chromatography method. Sensor 
data were uploaded to the relevant websites by either 
the patients themselves at home or the center physicians 
during the follow-up visits. Observations were success-
fully completed at the end of March 2019 for 59 patients 
out of the 70 belonging to the initial pool. The group at 
the end of the study consisted of patients with a mean 
age of 41.4±13.1 years (range 21–61), disease duration 
of 22.6±14.3 years (range 2–55), BMI of 24.2±3.8 kg/
m2 and A1C of 7.2%±0.9% (55±10 mmol/mol). The 11 
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dropouts were caused by patients not reporting sensor 
faults promptly (two cases), incorrect sensor manage-
ment for more than 30% of the monitoring timeframe 
(seven cases) and patients moving to a different region 
and care center (two cases).

Only commercial monitoring devices whose cost is 
repayable by the Italian National Health System were 
considered in the study; they belong to two rough 
different sets characterized by either a 300 s (rtCGM) or 
900 s (FGM) sampling period. The FGM set consists of 
Abbott Freestyle Libre sensors, while the rtCGM group 
includes Dexcom G4 Platinum, Dexcom G5 Mobile and 
Medtronic Guardian devices. Each set was assigned to half 
of the study group according to the center physicians’ 
customary recommendations. Current Italian Standards 
of Care for Diabetes Management strongly recommend 
rtCGM for patients with type 1 diabetes and poor glycemic 
control, especially if hypoglycemia unawareness as well as 
severe or nocturnal hypoglycemic episodes are present. 
The latest update also includes specific recommenda-
tions of FGM for people with type 1 diabetes whose meta-
bolic control is already adequate but are struggling with 
frequent glucose testing. When REALISM-T1D started, 
we did not have specific indications for prescribing FGM 
with respect to rtCGM. Several elements were then taken 
into account, including the estimate of individuals’ reli-
ability to perform calibrations, their tolerance toward 
alarms, the interest for future integrated functions of 
those wearing insulin pumps, and finally patients’ own 
preferences.

Data collection and statistical analysis
At the end of the observation period all (heterogeneous) 
raw sensor data were collected from the relevant online 
repositories (Abbott Libreview, Dexcom Clarity and 
Glooko-Diasend) and preprocessed to exclude those 
timeframes where the actual use of the CGM sensor 
was less than 70%,22 harmonize the data formats, and 
normalize timestamps with respect to the starting time 
of monitoring,23 so as to make subsequent computer-
aided analyses easier. This means that the computation 
of any time point took, respectively, 6000 (FGM) and 
18 000 (rtCGM) raw sensor data at least. Overall, roughly 
6.5 million glucose values were analyzed and processed.

Only continuously stored values were used for FGM 
sensors, that is, intermittently scanned data were not 
considered in the study.24 Moreover, individuals were 
constantly reminded and monitored to perform calibra-
tions as specified in the device manufacturer’s instruc-
tions. Data processing and statistical computation were 
performed at CNR-IEIIT by means of the GNU Octave 
scientific programming tool. Although 14 days of CGM 
data are often considered a good estimation of metrics in 
a 3-month period,6 22 the TIR percentage was computed 
using the full 90-day timeframe data to improve both the 
accuracy and robustness of measurements and reduce 
noise sensitivity in data acquisition.

In order to quantify the relationship between A1C and 
TIR, a linear monovariate regression was conducted on 
the experimental data set (n=146 data points) by means 
of the ordinary least squares (OLS) method, using A1C as 
predictor and TIR as response variable. On average, each 
individual contributed 2.5 data points, as 31 measure-
ments out of 177 were discarded because they did not 
satisfy the ‘70% CGM use’ requirement. The choice of 
adopting A1C as predictor and TIR as response variable 
was made because, for general relationship assessment, 
A1C values were considered to be reference data, whereas 
TIR values were subject to measurement noise, which 
should contribute to the residual OLS variance. This 
also facilitates the comparison with the results presented 
in Vigersky and McMahon,17 although variables may 
be swapped, as was done in Bergenstal et al25 where the 
specific aim is to predict A1C given TIR. For the purpose 
of the study, TIR percentage calculations were based on 
an in-range glycemic interval of 70–180 mg/dL, according 
to recent international consensus of Advanced Technol-
ogies & Treatments of Diabetes (ATTD) experts.6 The 
normality of the residuals and the homogeneity of their 
variance (homoscedasticity) assumptions were also tested 
in two alternative ways each. Furthermore, the possible 
presence of a quadratic component in the regression was 
assessed by means of a second-degree polynomial OLS. 
Finally, regression analyses were performed separately for 
the patient subgroups monitored through either FGM or 
rtCGM devices, respectively, to assess whether there are 
statistically significant differences between the two device 
groups. Statistical significance was evaluated by means of 
a multivariate OLS analysis with categorical/interaction 
variables.

RESULTS
Figure 1 depicts the sample data (‘°’ markers) and the 
best-fit regression line. The solid line refers to the inter-
polation interval from the minimum A1C=5.6% (38 
mmol/mol) to the maximum A1C=9.2% (77 mmol/

Figure 1  OLS linear regression with 95% confidence and 
prediction intervals on the whole data set (n=146), compared 
with Vigersky and McMahon.17 β1=−12.06±1.86, p<0.001; 
β0=146.54±13.83, p<0.001; r2=0.53. HbA1c, hemoglobin 
A1c; OLS, ordinary least squares; TIR, time in range.
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mol) observed values. The dot-dashed lines represent 
the 95% CI of the best fit, while the dashed lines delimit 
the 95% prediction interval. These two intervals are both 
important because of their two distinct meanings:

►► The CI demarcates the region in which the true 
regression line resides, with a given degree of confi-
dence, and therefore conveys information about the 
accuracy of the adopted model.

►► The prediction interval is the region around an esti-
mated value that contains the corresponding true 
value with a given degree of confidence. Hence, it 
expresses the predictive power of the model.

Moreover, the prediction interval considers the residual 
variance by definition, whereas the CI does not. As a 
consequence, the prediction interval width also depends, 
for instance, on the noise introduced by the way the 
predictor and response variable are measured. This noise 
may be considered an inherent property of the measure-
ment method, which is therefore independent of the 
model itself.

The regression coefficients are shown in the figure, 
while online supplemental appendix tables 1 and 2 list 
the data sets used in the analysis and the TIR values 
predicted with the regression separately for the FGM 
and rtCGM subgroups, besides the experimental obser-
vations. The regression points out a strong correlation 
(r=0.73, r2=0.53) between the predictor and the response 
variable.

To validate the linear regression model from the math-
ematical point of view, further tests were conducted to 
confirm two crucial assumptions, namely the normality 
of the residuals and the homogeneity of their variance 
(homoscedasticity). The normality of the residual was 
successfully confirmed with two distinct methods:

►► The quartile-quartile (Q-Q) plot of the distribution 
of the residuals, normalized with respect to their 
estimated variance based on the sample data, versus 
a normal distribution with zero mean and unity vari-
ance, is shown in figure 2A. It reveals an extremely 
good agreement between the two distributions with 
only a small number (<5) of outliers at the extremes.

►► The Anderson-Darling normality test.26 The result 
of this test, A2=0.19, is well below the critical value, 
even at a significance level of 10% (A2

0.1=0.63). In 
addition, the p value corresponding to the obtained 
A2 is 0.900,27 thus giving no reasons to reject the null 
hypothesis of normality. The Anderson-Darling test 
was preferred to other, more traditional tests (like 
the Kolmogorov-Smirnov test) because it is specific 
to the normal distribution, is independent from the 
distribution variance, and was found to be very effec-
tive in detecting deviations from normality,28 and also 
because it is sensitive to the tails of the distribution 
under test.

Similarly, the homogeneity of the variances of the resid-
uals was also verified in two distinct ways, one graphical 
and one analytical:

►► The scatter plot of the residuals in figure 2B shows 
that the residuals are contained in the horizontal 
band ±25, except for three outliers, and there is no 
visible dependency on the A1C value in abscissa.

►► A standard Goldfeld-Quandt test29 was performed by 
sorting the sample points by increasing values of the 
predictor and dividing them into three bands. The 
central band comprising one-third of the samples 
was then discarded, and two distinct, auxiliary linear 
regressions were conducted on the remaining two 
bands. The two sample variances of the residuals 
s2

L=104.400 (lower band, 49 samples) and s2
H=104.488 

(higher band, 49 samples) were then compared with 
an F-test of equality of variances with (47, 47) df, 
obtaining F=0.999. The corresponding two-tailed p 

Figure 2  Q-Q plot of normalized residuals versus a normal 
distribution (µ=0, σ2=1) (A), scatter plot of the residuals 
(B), and comparison between a linear and a quadratic 
OLS regression (C). HbA1c, hemoglobin A1c; LR, linear 
regression; OLS, ordinary least squares; Q-Q, quartile-
quartile; TIR, time in range.

https://dx.doi.org/10.1136/bmjdrc-2019-001045
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value, p=0.997, strongly suggests accepting the null 
hypothesis that the two variances of the residuals are 
equal.

Another implicit, but equally important hypothesis of 
linear regression is that the underlying relationship being 
investigated is indeed linear. In our case, this hypothesis 
is corroborated by two factors:

►► The empirical observation of the scatter plot of the 
sample data set (figure 1).

►► The uniformity of variances (figure 2B and Goldfeld-
Quandt test) at the extremes of the predictor range, 
which is in general unlikely to occur when a non-
linear phenomenon is subject to a linear fit.

However, although in the literature some authors advo-
cate a linear relationship,17 18 a recent work suggests the 
presence of a quadratic component.19 Therefore, as a 
further check, we performed an OLS quadratic regres-
sion on our sample data. As depicted in figure 2C, which 
contrasts the two regressions, we noted that in the quad-
ratic regression the magnitude of the quadratic coeffi-
cient β2=–0.31 is negligible because it is more than one 
order of magnitude smaller than the linear coefficient 
β1=–7.56. Moreover, the introduction of the quadratic 
term did not improve r2 in any significant way, and just 
brought it from r2=0.5303 to r2=0.5307. We can then 
conclude that, at least for the study data set, the unex-
plained variance does not depend on the use of a linear 
model instead of a quadratic one.

As discussed in the previous section, the TIR of the 
data set under analysis was computed from measure-
ments taken by two kinds of devices (FGM and rtCGM), 
which sample the patient’s glucose level every 900 s (and 
contributed n=78 data points) and 300 s (n=68 data 
points), respectively. To get insights on possible differ-
ences between them, two separate linear regressions were 
performed on the two subsets. The results are presented 
in figure 3A,B, while sample data are available for refer-
ence in online supplemental appendix tables 1 and 2.

The two most important observations concerning this 
last part of the analysis are the following:

►► The r2 obtained when considering the first subset 
of devices (rtCGM with 300 s sampling interval) is 
marginally better than the one obtained from the 
data set as a whole, 0.55 vs 0.53, and the regression 
line exhibits a better agreement with the results of 
Vigersky and McMahon.17

►► Restricting the analysis to data collected from devices 
with a 900 s sampling interval (FGM devices) results 
instead in a deterioration of r2, from 0.53 to 0.49, as 
well as a departure from the results of Vigersky and 
McMahon.17

The statistical significance of the observed difference 
was tested by means of a multivariate OLS on all samples 
(from both rtCGM and FGM devices) in which, besides 
A1C, a dichotomous categorical variable c (0 for rtCGM 
and 1 for FGM samples) and an interaction variable 
d=A1C·c were introduced.30 The coefficients of c and d 
quantify the intercept and slope difference, respectively, 

while their two-tailed p values indicate whether the differ-
ence is significant or not. The results (p<0.001 for c and 
p=0.57 for d) show that there is a statistically significant 
difference between the intercepts, given by c’s coeffi-
cient βc=–7.19, but not between the slopes. Furthermore, 
the introduction of c increased r2 from 0.53 to 0.59 and 
decreased the sample variance of the residuals from 
s2

NC=102.335 to s2
C=89.921. An F-test of equality of these 

variances with (144, 143) df gave F=1.135 and a two-tailed 
p=0.22. Figure  4 illustrates graphically how the intro-
duction of c (on the y axis) affected the regression and 
improved the fit of TIR (z axis) as a function of A1C (x 
axis).

CONCLUSIONS
The careful assessment of the TIR–A1C relationship 
in real-life conditions is important for diabetologists to 
gain confidence and rely on this and other CGM-derived 
metrics in their usual practice. Differently from other 
works based on randomized studies, such as Vigersky 
and McMahon,17 Beck et al,18 and Petersson et al,19 our 
investigations were based on pure 1-year observations 
of 70 patients with type 1 diabetes adopting CGM in 

Figure 3  Linear regressions performed separately on 
patient groups monitored with different device types (FGM 
or rtCGM) and different sampling periods (900 s or 300 s) 
compared with Vigersky and McMahon.17 (A) FGM group: 
β1=−11.77±2.73, p<0.001; β0=141.19±20.6, p<0.001; r2=0.49. 
(B) rtCGM group: β1=−10.74±2.4, p<0.001; β0=140.77±17.35, 
p<0.001; r2=0.55. CGM, continuous glucose monitoring; 
FGM, flash CGM; HbA1c, hemoglobin A1c; rtCGM, real-time 
CGM; TIR, time in range.

https://dx.doi.org/10.1136/bmjdrc-2019-001045
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their everyday routine. TIR percentages were evalu-
ated directly from the raw sensor data over long (90 
days) periods of at least 70% CGM use, as opposite to 
average values derived from larger populations but in 
more heterogeneous conditions, including for instance 
both type 1 and type 2 diabetes, juvenile and/or adult 
patients, blood glucose monitoring, and different and 
shorter CGM durations (eg, from 7 to 84 days in Vigersky 
and McMahon,17 6 months in Beck et al,18 and 60 days in 
Petersson et al19) and registration times. Results obtained 
in this way confirm a linear relationship between TIR 
and A1C as quadratic contributions, unlike in Petersson 
et al,19 were found to be negligible. Values of the regres-
sion slope and intercept obtained for the whole data 
set are similar to results from Vigersky and McMahon,17 
with a slightly weaker correlation in our case. This can 
be partially justified considering that Vigersky and 
McMahon17 sourced selected paired (hemoglobin A1c, 
TIR) metrics from multiple articles. Hence, the aver-
aging process used in those articles to calculate the 
paired metrics may have had a damping effect on the 
residual variance of the subsequent linear regression 
analysis, with respect to the direct use of the original, 
more dispersed data points. As each REALISM-T1D indi-
vidual contributed to the study with 2.5 data points, on 
average, distinct linear regressions were also computed 
separately using points collected at t=90, t=180 and t=365, 
respectively (where each individual contributed a single 
point), to investigate possible correlation effects in the 
pooled analysis. Results reported in figure  5 show that 
differences in the 6%–9% A1C range are quite limited 
for the three time-instants considered and compatible 
with typical individual glucose variations over a 90-day 
time interval, while r always remains greater than 0.72. 

Consequently, the pooled analysis does not seem to be 
affected by correlation problems due to multiple point 
contributions by the same individual.

More evident differences exist between patients who 
were prescribed either an FGM or rtCGM sensor. In the 
first case, the computed regression coefficients are still 
close to those presented in Vigersky and McMahon,17 
although r is lower. When rtCGM devices are considered, 
instead, the distance of β1 and β0 with respect to Vigersky 
and McMahon17 increases, but r improves. This differ-
ence in behavior also becomes evident by comparing 
figure  3A,B. In our opinion this may be due to the 
heterogeneity of conditions and devices in Vigersky and 
McMahon17 and partly in figure 3A, which tends to mask 
diversities in the overall regression computation. Differ-
ences become clearer when homogeneous groups are 
considered, such as in figure 3A,B. This also stresses the 
need for the availability of more data and investigations if 
TIR and other CGM-related metrics have to be massively 
adopted in routine practice, since a set of ‘good for all’ 
parameters values, such as for the joint FGM and rtCGM 
group, can hardly meet individual patient conditions.

In fact, a 0.5% decrease in A1C, from 7.5% (58 mmol/
mol) to 7.0% (53 mmol/mol), means an improvement of 
the predicted TIR percentage from 52.9% to 58.8% for 
the FGM group and from 60.2% to 65.6% for the rtCGM 
group. Although the absolute variation is similar (5.9% vs 
5.4%), the impact is significantly different in the two situ-
ations because of the role played by the corresponding 
values of β1 and β0, which match the same A1C value with 
higher TIR percentages for the rtCGM group than for 
FGM. The unavailability of CGM (TIR) data at baseline 
cannot exclude for sure that this discrepancy might be 
caused by some bias effect in the study, despite no appre-
ciable differences existing in the two groups concerning 
anthropometry and therapy. An additional check carried 
out in the regression analysis by dropping two sensor-
sampled data out of three in the rtCGM case (thus simu-
lating a lower sampling rate equal to the FGM sensors) 
resulted in no appreciable changes in the computed TIR 

Figure 4  Monovariate versus multivariate regression using 
a categorical variable c to indicate FGM or rtCGM devices. 
Categorical coefficient βc=−7.19±3.20, p<0.001. CGM, 
continuous glucose monitoring; FGM, flash CGM; HbA1c, 
hemoglobin A1c; OLS, ordinary least squares; rtCGM, real-
time CGM; TIR, time in range.

Figure 5  Linear regressions performed separately at time 
points t=90 days, t=180 days and t=365 days using both 
FGM and rtCGM sensor data. CGM, continuous glucose 
monitoring; FGM, flash CGM; HbA1c, hemoglobin A1c; 
rtCGM, real-time CGM; TIR, time in range.
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values and consequently in the regression coefficients. 
Other reasons, possibly deserving more investigations, 
are differences in sensor technology and patient-induced 
behavior. Actually, the FGM sensors used in the study are 
unable to generate alerts and alarms for hypoglycemia 
and hyperglycemia, likely requiring more attention and 
intervention by patients, thus justifying slower reaction 
times, which ultimately can result in a reduction in the 
overall time spent in the 70–180 mg/dL range.

The power of A1C as a predictor of TIR is another 
aspect of utmost interest and, to some extent, concern. 
The rather large prediction interval boundaries depicted 
in figure 3A show that even in the central zone around 
A1C=7.5% (58 mmol/mol), where the uncertainty of the 
predicted TIR=56% is the smallest, the true TIR value 
can actually vary from 34% to 78%. It is worth noting that 
these figures are in good accordance with those reported 
in Beck et al,18 where a CI of 38 to 79 was established for 
a TIR predicted value equal to 59%. When FGM and 
rtCGM groups are considered, the predicted values for 
A1C=7.5% (58 mmol/mol) are TIR=54% and TIR=60%, 
respectively, while the prediction interval is 33–73 in 
the former case and 42–78 in the latter, which imply a 
maximum relative difference between true and estimated 
values of about 37% for FGM and 30% for rtCGM. In turn, 
this highlights possible limitations of A1C in predicting 
the TIR percentage accurately and confirms the oppor-
tunity of having different models for different patient 
groups as suggested by some authors,31 as well as for FGM 
versus rtCGM devices, due to the statistically significant 
difference between their OLS regression models.
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