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Abstract

Motivation: Genome-wide datasets produced for association studies have dramatically increased

in size over the past few years, with modern datasets commonly including millions of variants

measured in dozens of thousands of individuals. This increase in data size is a major challenge

severely slowing down genomic analyses, leading to some software becoming obsolete and

researchers having limited access to diverse analysis tools.

Results: Here we present two R packages, bigstatsr and bigsnpr, allowing for the analysis of large

scale genomic data to be performed within R. To address large data size, the packages use

memory-mapping for accessing data matrices stored on disk instead of in RAM. To perform data

pre-processing and data analysis, the packages integrate most of the tools that are commonly

used, either through transparent system calls to existing software, or through updated or improved

implementation of existing methods. In particular, the packages implement fast and accurate com-

putations of principal component analysis and association studies, functions to remove single

nucleotide polymorphisms in linkage disequilibrium and algorithms to learn polygenic risk scores

on millions of single nucleotide polymorphisms. We illustrate applications of the two R packages

by analyzing a case–control genomic dataset for celiac disease, performing an association study

and computing polygenic risk scores. Finally, we demonstrate the scalability of the R packages by

analyzing a simulated genome-wide dataset including 500 000 individuals and 1 million markers on

a single desktop computer.

Availability and implementation: https://privefl.github.io/bigstatsr/ and https://privefl.github.io/

bigsnpr/.

Contact: florian.prive@univ-grenoble-alpes.fr or michael.blum@univ-grenoble-alpes.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide datasets produced for association studies have dra-

matically increased in size over the past few years, with modern

datasets commonly including millions of variants measured in doz-

ens of thousands of individuals. As a consequence, most existing

software and algorithms have to be continuously optimized in order

to avoid obsolescence. For computing principal component analysis

(PCA), commonly performed to account for population stratifica-

tion in association, a fast mode named FastPCA has been added to

the software EIGENSOFT, and FlashPCA has been replaced by

FlashPCA2 (Abraham and Inouye, 2014; Abraham et al., 2016;

Galinsky et al., 2016; Price et al., 2006). PLINK 1.07, which has
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been a central tool in the analysis of genotype data, has been

replaced by PLINK 1.9 to speed-up computations, and there is also

an alpha version of PLINK 2.0 that will handle more data types

(Chang et al., 2015; Purcell et al., 2007).

Increasing size of genetic datasets is a source of major computa-

tional challenges and many analytical tools would be restricted by the

amount of memory (RAM) available on computers. This is particu-

larly a burden for commonly used analysis languages such as R. For

analyzing genotype datasets in R, a range of software are available,

including for example the popular R packages GenABEL, SNPRelate

and GWASTools (Aulchenko et al., 2007; Gogarten et al., 2012;

Zheng et al., 2012b). Solving memory issues for languages such as R

would give access to a broad range of already implemented tools for

data analysis. Fortunately, strategies have been developed to avoid

loading large datasets in RAM. For storing and accessing matrices,

memory-mapping is very attractive because it is seamless and usually

much faster to use than direct read or write operations. Storing large

matrices on disk and accessing them via memory-mapping has been

available for several years in R through ‘big.matrix’ objects imple-

mented in the R package bigmemory (Kane et al., 2013).

2 Approach

In order to perform analyses of large-scale genomic data in R, we

developed two R packages, bigstatsr and bigsnpr, that provide a wide-

range of building blocks which are parts of standard analyses. R is a

programming language that makes it easy to tie together existing or

new functions to be used as part of large, interactive and reproducible

analyses (R Core Team, 2017). We provide a similar format as file-

backed ‘big.matrix’ objects that we called ‘Filebacked Big Matrices

(FBMs)’. Thanks to this matrix-like format, algorithms in R/Cþþ can

be developed or adapted for large genotype data. This data format is a

particularly good trade-off between easiness of use and computation

efficiency, making our code both simple and fast. Package bigstatsr

implements many statistical tools for several types of FBMs (unsigned

char, unsigned short, integer and double). This includes implementa-

tion of multivariate sparse linear models, PCA, association tests, matrix

operations and numerical summaries. The statistical tools developed in

bigstatsr can be used for other types of data as long as they can be rep-

resented as matrices. Package bigsnpr depends on bigstatsr, using a spe-

cial type of filebacked big matrix (FBM) object to store the genotypes,

called ‘FBM.code256’. Package bigsnpr implements algorithms which

are specific to the analysis of single nucleotide polymorphism (SNP)

arrays, such as calls to external software for processing steps, Input/

Output (I/O) operations from binary PLINK files and data analysis

operations on SNP data (thinning, testing, predicting and plotting). We

use both a real case–control genomic dataset for celiac disease and

large-scale simulated data to illustrate application of the two R pack-

ages, including two association studies and the computation of

polygenic risk scores (PRS). We compare results from bigstatsr and

bigsnpr with those obtained by using command-line software PLINK,

EIGENSOFT and PRSice, and R packages SNPRelate and

GWASTools. We report execution times along with the code to per-

form major computational tasks. For a comprehensive comparison

between R packages bigstatsr and bigmemory, see Supplementary

notebook ‘bigstatsr-and-bigmemory’.

3 Materials and methods

3.1 Memory-mapped files
The two R packages do not use standard read operations on a file

nor load the genotype matrix entirely in memory. They use a hybrid

solution: memory-mapping. Memory-mapping is used to access

data, possibly stored on disk, as if it were in memory. This solution

is made available within R through the BH package, providing

access to Boost CþþHeader Files (http://www.boost.org/).

We are aware of the software library SNPFile that uses memory-

mapped files to store and efficiently access genotype data, coded in

Cþþ (Nielsen and Mailund, 2008) and of the R package

BEDMatrix (https://github.com/QuantGen/BEDMatrix) which pro-

vides memory-mapping directly for binary PLINK files. With the

two packages we developed, we made this solution available in R

and in Cþþ via package Rcpp (Eddelbuettel and François, 2011).

The major advantage of manipulating genotype data within R,

almost as if it were a standard matrix in memory, is the possibility

of using most of the other tools that have been developed in R

(R Core Team, 2017). For example, we provide sparse multivariate

linear models and an efficient algorithm for PCA based on adapta-

tions from R packages biglasso and RSpectra (Qiu and Mei, 2016;

Zeng and Breheny, 2017).

Memory-mapping provides transparent and faster access than

standard read/write operations. When an element is needed, a small

chunk of the genotype matrix, containing this element, is accessed in

memory. When the system needs more memory, some chunks of the

matrix are freed from the memory in order to make space for others.

All this is managed by the operating system so that it is seamless and

efficient. It means that if the same chunks of data are used repeat-

edly, it will be very fast the second time they are accessed, the third

time and so on. Of course, if the memory size of the computer is

larger than the size of the dataset, the file could fit entirely in mem-

ory and every second access would be fast.

3.2 Data management, pre-processing and imputation
We developed a special FBM object, called ‘FBM.code256’, that can

be used to seamlessly store up to 256 arbitrary different values,

while having a relatively efficient storage. Indeed, each element is

stored in one byte which requires eight times less disk storage than

double-precision numbers but four times more space than the binary

PLINK format ‘.bed’ which can store only genotype calls. With these

256 values, the matrix can store genotype calls and missing values

(four values), best guess genotypes (three values) and genotype dos-

ages (likelihoods) rounded to two decimal places (201 values). So,

we use a single data format that can store both genotype calls and

dosages.

For pre-processing steps, PLINK is a widely-used software. For

the sake of reproducibility, one could use PLINK directly from R via

systems calls. We therefore provide wrappers as R functions that use

system calls to PLINK for conversion and quality control and a vari-

ety of formats can be used as input (e.g. vcf, bed/bim/fam, ped/map)

and bed/bim/fam files as output (Supplementary Fig. S1). Package

bigsnpr provides fast conversions between bed/bim/fam PLINK files

and the ‘bigSNP’ object, which contains the genotype FBM

(FBM.code256), a data frame with information on samples and

another data frame with information on SNPs. We also provide

another function which could be used to read from tabular-like text

files in order to create a genotype in the format ‘FBM’. Finally, we

provide two methods for converting dosage data to the format

‘bigSNP’ (Supplementary notebook ‘dosage’).

Most modern SNP chips provide genotype data with large call-

rates. For example, the celiac data we use in this paper presents only

0.04% of missing values after quality control. Yet, most of the func-

tions in bigstatsr and bigsnpr do not handle missing values. So, we

provide two functions for imputing missing values of genotyped
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SNPs. Note that we do not impute completely missing SNPs which

would require the use of reference panels and could be performed

via e.g. imputation servers for human data (McCarthy et al., 2016).

The first function is a wrapper to PLINK and Beagle (Browning and

Browning, 2007) which takes bed files as input and return bed files

without missing values, and should therefore be used before reading

the data in R (Supplementary Fig. S2). The second function is a new

algorithm we developed in order to have a fast imputation method

without losing much of imputation accuracy. This function also pro-

vides an estimator of the imputation error rate by SNP for post-qual-

ity control. This algorithm is based on machine learning approaches

for genetic imputation (Wang et al., 2012) and does not use phasing,

thus allowing for a dramatic decrease in computation time. It only

relies on some local XGBoost models (Chen and Guestrin, 2016).

XGBoost, which is available in R, builds decision trees that can

detect non-linear interactions, partially reconstructing phase, mak-

ing it well suited for imputing genotype matrices. Our algorithm is

the following: for each SNP, we divide the individuals in the ones

which have a missing genotype (test set) and the ones which have a

non-missing genotype for this particular SNP. Those latter individu-

als are further separated in a training set and a validation set (e.g.

80% training and 20% validation). The training set is used to build

the XGBoost model for predicting missing data. The prediction

model is then evaluated on the validation set for which we know the

true genotype values, providing an estimator of the number of geno-

types that have been wrongly imputed for that particular SNP. The

prediction model is also projected on the test set (missing values) in

order to impute them.

3.3 Population structure and SNP thinning based on

linkage disequilibrium
For computing principal components (PCs) of a large-scale genotype

matrix, we provide several functions related to SNP thinning and

two functions for computing a partial singular value decomposition

(SVD), one based on eigenvalue decomposition and the other one

based on randomized projections, respectively named big_SVD and

big_randomSVD (Fig. 1). While the function based on eigenvalue

decomposition is at least quadratic in the smallest dimension, the

function based on randomized projections runs in linear time in all

dimensions (Lehoucq and Sorensen, 1996). Package bigstatsr uses

the same PCA algorithm as FlashPCA2 called implicitly restarted

Arnoldi method (IRAM), which is implemented in R package

RSpectra. The main difference between the two implementations is

that FlashPCA2 computes vector-matrix multiplications with the

genotype matrix based on the binary PLINK file whereas bigstatsr

computes these multiplications based on the FBM format, which

enables parallel computations and easier subsetting.

SNP thinning improves ascertainment of population structure

with PCA (Abdellaoui et al., 2013). There are at least three different

approaches to thin SNPs based on linkage disequilibrium. Two of

them, named pruning and clumping, address SNPs in LD close to

each other’s because of recombination events, while the third one

address long-range regions with a complex LD pattern due to other

biological events such as inversions (Price et al., 2008). First, prun-

ing is an algorithm that sequentially scan the genome for nearby

SNPs in LD, performing pairwise thinning based on a given thresh-

old of correlation. Clumping is useful if a statistic is available for

sorting the SNPs by importance. Clumping is usually used to post-

process results of genome-wide association studies (GWAS) in order

to keep only the most significant SNP per region of the genome. For

PCA, the thinning procedure should remain unsupervised (no

phenotype must be used) and we therefore propose to use the minor

allele frequency (MAF) as the statistic of importance. This choice is

consistent with the pruning algorithm of PLINK; when two nearby

SNPs are correlated, PLINK keeps only the one with the highest

MAF. Yet, in some worst-case scenario, the pruning algorithm can

leave regions of the genome without any representative SNP at all

(Supplementary notebook ‘pruning-vs-clumping’). So, we suggest to

use clumping instead of pruning, using the MAF as the statistic of

importance, which is the default in function snp_clumping of pack-

age bigsnpr. In practice, for the three datasets we considered, the

clumping algorithm with the MAF provides similar sets of SNPs as

when using the pruning algorithm (results not shown).

The third approach, which is generally combined with pruning,

consists of removing SNPs in long-range LD regions (Price et al.,

2008). Long-range LD regions for the human genome are available

as an online table (https://goo.gl/8TngVE) that package bigsnpr can

use to discard SNPs in these regions before computing PCs.

However, the pattern of LD might be population specific, so we

developed an iterative algorithm that automatically detects these

long-range LD regions and removes them. This algorithm consists in

the following steps: first, PCA is performed using a subset of SNP

remaining after clumping (with MAFs), then outliers SNPs are

detected using the robust Mahalanobis distance as implemented in

method pcadapt (Luu et al., 2017). Finally, the algorithm considers

that consecutive outlier SNPs are in long-range LD regions. Indeed,

a long-range LD region would cause SNPs in this region to have

strong consecutive weights (loadings) in the PCA. This algorithm is

implemented in function snp_autoSVD of package bigsnpr and will

be referred by this name in the rest of the paper.

3.4 Association tests and polygenic risk scores
Any test statistic that is based on counts could be easily implemented

because we provide fast counting summaries. Among these tests, the

Armitage trend test and the MAX3 test statistic are already provided

for binary outcomes in bigsnpr (Zheng et al., 2012a). Package big-

statsr implements statistical tests based on linear and logistic

bigSNP object
(no missing values)

Very stringent 
pruning

vector of SNP 
indices to keep

snp_clumping(thr.r2 = 0.05)
snp_pruning(thr.r2 = 0.05)

Get SNPs in 
long-range 
LD regions

vector of SNP indices to 
exclude, corresponding to 

long-range LD regions

big_randomSVD(ind.col = ind.keep)
big_SVD(ind.col = ind.keep)

snp_indLRLDR()

Pruning after excluding 
some regions

snp_clumping(thr.r2 = 0.2,
    exclude = ind.excl)

snp_pruning(thr.r2 = 0.2,
   exclude = ind.excl)

Partial Singular Value 
Decomposition

Computation 
of partial SVD

Get SNPs in 
long-range
LD regions

Pruning after excluding 
some regions

Computa
of partial S

snp_autoSVD()

Algorithm that clumps 
and automatically 
detects long-range 
Linkage Disequilibrium 
regions while 
computing SVD

ind.excl

ind.keep

Fig. 1. Functions available in packages bigstatsr and bigsnpr for the computa-

tion of a partial singular value decomposition of a genotype array, with three

different methods for thinning SNPs
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regressions. For linear regression, a t-test is performed for each SNP

j on b(j) where

by ¼ aðjÞ þ bðjÞSNPðjÞ þ cðjÞ1 PC1 þ � � � þ cðjÞK PCK

þdðjÞ1 COV1 þ � � � þ dðjÞL COVL;
(1)

and K is the number of PCs and L is the number of other covariates

(such as age and gender). Similarly, for logistic regression, a Z-test is

performed for each SNP j on b(j) where

log
bp

1� bp
� �

¼ aðjÞ þ bðjÞSNPðjÞ þ cðjÞ1 PC1 þ � � � þ cðjÞK PCK

þdðjÞ1 COV1 þ � � � þ dðjÞL COVL;

(2)

and bp ¼ PðY ¼ 1Þ and Y denotes the binary phenotype. These tests

can be used to perform GWAS and are very fast due to the use of

optimized implementations, partly based on previous work by

Sikorska et al. (2013).

The R packages also implement functions for computing PRS

using two methods. The first method is the widely-used

‘ClumpingþThresholding’ (CþT, also called ‘Pruningþ
Thresholding’ in the literature) model based on univariate GWAS

summary statistics as described in previous equations. Under the

CþT model, a coefficient of regression is learned independently for

each SNP along with a corresponding P-value (the GWAS part). The

SNPs are first clumped (C) so that there remains only SNPs that are

weakly correlated with each other. Thresholding (T) consists in

removing SNPs that are under a certain level of significance (P-value

threshold to be determined). A PRS is defined as the sum of allele

counts of the remaining SNPs weighted by the corresponding regres-

sion coefficients (Chatterjee et al., 2013; Dudbridge, 2013; Euesden

et al., 2015). On the contrary, the second approach does not use uni-

variate summary statistics but instead train a multivariate model on

all the SNPs and covariables at once, optimally accounting for corre-

lation between predictors (Abraham et al., 2012). The currently

available models are very fast sparse linear and logistic regressions.

These models include lasso and elastic-net regularizations, which

reduce the number of predictors (SNPs) included in the predictive

models (Friedman et al., 2010; Tibshirani, 1996; Zou and Hastie,

2005). Package bigstatsr provides a fast implementation of these

models by using efficient rules to discard most of the predictors

(Tibshirani et al., 2012). The implementation of these algorithms is

based on modified versions of functions available in the R package

biglasso (Zeng and Breheny, 2017). These modifications allow to

include covariates in the models, to use these algorithms on the spe-

cial type of FBM called ‘FBM.code256’ used in bigsnpr and to

remove the need of choosing the regularization parameter.

3.5 Data analyzed
In this paper, two datasets are analyzed: the celiac disease cohort

and POPRES (Dubois et al., 2010; Nelson et al., 2008). The celiac

dataset is composed of 15 283 individuals of European ancestry gen-

otyped on 295 453 SNPs. The POPRES dataset is composed of 1385

individuals of European ancestry genotyped on 447 245 SNPs. For

computation time comparisons, we replicated individuals in the

celiac dataset 5 and 10 times in order to increase sample size while

keeping the same eigen decomposition (up to a constant) and pair-

wise SNP correlations as the original dataset. To assess scalability of

the packages for a biobank-scale genotype dataset, we formed

another dataset of 500 000 individuals and 1 million SNPs, also

through replication of the celiac dataset.

3.6 Reproducibility
All the code used in this paper along with results, such as execution

times and figures, are available as HTML R notebooks in the

Supplementary materials. In Supplementary notebook ‘public-data’,

we provide some open-access data of domestic dogs so that users

can test our code and functions on a moderate size dataset with

4342 samples and 145 596 SNPs (Hayward et al., 2016).

4 Results

4.1 Overview
We present the results of four different analyses. First, we illustrate

the application of R packages bigstatsr and bigsnpr. Second, by per-

forming two GWAS, we compare the performance of bigstatsr and

bigsnpr to the performance obtained with FastPCA (EIGENSOFT

6.1.4) and PLINK 1.9, and also two R packages SNPRelate and

GWASTools (Chang et al., 2015; Galinsky et al., 2016; Gogarten

et al., 2012; Zheng et al., 2012b). PCA is a computationally inten-

sive step of the GWAS, so that we further compare PCA methods on

larger datasets. Third, by performing a PRS analysis with summary

statistics, we compare the performance of bigstatsr and bigsnpr to

the performance obtained with PRSice-2 (Euesden et al., 2015).

Finally, we present results of the two new methods implemented in

bigsnpr, one method for the automatic detection and removal of

long-range LD regions in PCA and another for the in-sample impu-

tation of missing genotypes (i.e. for genotyped SNPs only). We com-

pare performance on two computers, a desktop computer with

64 GB of RAM and 12 cores (six physical cores), and a laptop with

only 8 GB of RAM and 4 cores (two physical cores). For the func-

tions that enable parallelism, we use half of the cores available on

the corresponding computer. We present a table summarizing the

features of different software in Supplementary Table S5.

4.2 Application
The data were pre-processed following steps from Supplementary

Figure S1, removing individuals and SNPs with more than 5% of

missing values, non-autosomal SNPs, SNPs with a MAF lower than

0.05 or a P-value for the Hardy–Weinberg exact test lower than

10�10, and finally, removing the first individual in each pair of indi-

viduals with a proportion of alleles shared IBD >0.08 (Purcell et al.,

2007). For the POPRES dataset, this resulted in 1382 individuals

and 344 614 SNPs with no missing value. For the celiac dataset, this

resulted in 15 155 individuals and 281 122 SNPs with an overall

genotyping rate of 99.96%. The 0.04% missing genotype values

were imputed with the XGBoost method. If we would have used a

standard R matrix to store the genotypes, this data would have

required 32 GB of memory. On the disk, the ‘.bed’ file requires 1 GB

and the ‘.bk’ file (storing the FBM) requires 4 GB.

We used bigstatsr and bigsnpr R functions to compute the first

PCs of the celiac genotype matrix and to visualize them (Fig. 2). We

then performed a GWAS investigating how SNPs are associated

with celiac disease, while adjusting for PCs, and plotted the results

as a Manhattan plot (Fig. 3). As illustrated in the Supplementary

data, the whole pipeline is user-friendly, requires only 20 lines of R

code and there is no need to write temporary files or objects because

functions of packages bigstatsr and bigsnpr have parameters which

enable subsetting of the genotype matrix without having to copy it.

To illustrate the scalability of the two R packages, we performed

a GWAS analysis on 500 K individuals and 1 M SNPs. The GWAS

analysis completed in �11 h using the aforementioned desktop

computer. The GWAS analysis was composed of four main steps.
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First we converted binary PLINK files in the format ‘bigSNP’ in 1 h.

Then, we removed SNPs in long-range LD regions and used SNP

clumping, leaving 93 083 SNPs in 5.4 h. Then, the 10 first PCs were

computed on the 500 K individuals and these remaining SNPs in

1.8 h. Finally, we performed a linear association test on the complete

500 K dataset for each of the 1 M SNPs, using the 10 first PCs as

covariables in 2.9 h.

4.3 Performance and precision comparisons
First, we compared the GWAS computations obtained with bigstatsr

and bigsnpr to the ones obtained with PLINK 1.9 and EIGENSOFT

6.1.4, and also two R packages SNPRelate and GWASTools. For

most functions, multithreading is not available yet in PLINK, never-

theless, PLINK-specific algorithms that use bitwise parallelism (e.g.

pruning) are still faster than the parallel algorithms reimplemented

in package bigsnpr (Table 1). Overall, performing a GWAS on a

binary outcome with bigstatsr and bigsnpr is as fast as when using

EIGENSOFT and PLINK, and 19–45 times faster than when using

R packages SNPRelate and GWASTools. For performing an associa-

tion study on a continuous outcome, we report a dramatic increase

in performance by using bigstatsr and bigsnpr, making it possible to

perform such analysis in <2 min for a relatively large dataset such as

the celiac dataset. This analysis was 7–19 times faster as compared

to PLINK 1.9 and 28–74 times faster as compared to SNPRelate and

GWASTools (Table 1). Note that the PC scores obtained are more

accurate as compared to PLINK (see the last paragraph of this

subsection), which is also the case for the P-values computed for the

two GWAS (see Supplementary notebook ‘GWAS-comparison’).

Second, we compared the PRS analysis performed with the R

packages to the one using PRSice-2. There are five main steps in

such an analysis (Table 2), including four steps handled with func-

tions of packages bigstatsr and bigsnpr. The remaining step is the

reading of summary statistics which can be performed with the

widely used function fread of R package data.table. Using bigstatsr

and bigsnpr results in an analysis as fast as with PRSice-2 when

using our desktop computer, and three times slower when using our

laptop (Table 2).

Finally, on our desktop computer, we compared the computation

times of FastPCA (fast mode of EIGENSOFT), FlashPCA2 and

PLINK 2.0 (approx mode) to the similar function big_randomSVD

implemented in bigstatsr. For each comparison, we used the 93 083

SNPs which were remaining after pruning and we computed 10 PCs.

We used the datasets of growing size simulated from the celiac data-

set (from 15 155 to 151 550 individuals). Overall, function

big_randomSVD is almost twice as fast as FastPCA and FlashPCA2

and eight times as fast as when using parallelism with six cores, an

option not currently available in either FastPCA or FlashPCA2

(Fig. 4). PLINK 2.0 is faster than bigstatsr with a decrease in time of

20–40%. We also compared results in terms of precision by compar-

ing squared correlation between approximated PCs and ‘true’ PCs

provided by an exact eigen decomposition obtained with PLINK 2.0

(exact mode). Package bigstatsr and FlashPCA2 (that use the same

algorithm) infer all PCs with a squared correlation of more than

Fig. 2. Principal components of the celiac cohort genotype matrix produced

by package bigstatsr

Fig. 3. Manhattan plot of the celiac disease cohort produced by package

bigsnpr. Some SNPs in chromosome 6 have P-values smaller than the 10�30

threshold used for visualization purposes

Table 1. Execution times with bigstatsr and bigsnpr compared to

PLINK 1.9 and FastPCA (EIGENSOFT) and also to R packages

SNPRelate and GWASTools for making a GWAS for the celiac data-

set (15 155 individuals and 281 122 SNPs). The first execution time

is with a desktop computer (6 cores used and 64 GB of RAM) and

the second one is with a laptop (2 cores used and 8 GB of RAM)

Operation\software Execution times (in seconds)

FastPCA bigstatsr SNPRelate

PLINK 1.9 bigsnpr GWASTools

Converting PLINK files n/a 6/20 13/33

Pruning 4/4 14/52 33/32

Computing 10 PCs 305/314 58/183 323/535

GWAS (binary phenotype) 337/284 291/682 16 220/17 425

GWAS (continuous phenotype) 1348/1633 10/23 6115/7101

Total (binary) 646/602 369/937 16 589/18 025

Total (continuous) 1657/1951 88/278 6484/7701

Table 2. Execution times with bigstatsr and bigsnpr compared to

PRSice for making a PRS on the celiac dataset based on summary

statistics for height. The first execution time is with a desktop com-

puter (6 cores used and 64 GB of RAM) and the second one is with

a laptop (2 cores used and 8 GB of RAM)

Operation\software Execution times (in seconds)

PRSice bigstatsr and bigsnpr

Converting PLINK files — 6/20

Reading summary stats — 4/6

Clumping — 9/31

PRS — 2/33

Compute P-values — 1/1

Total 22/29 22/91
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0.999 between true PCs and approximated ones (Fig. 5). Yet,

FastPCA (fast mode of EIGENSOFT) and PLINK 2.0 (that use the

same algorithm) infer the true first six PCs but the squared correla-

tion between true PCs and approximated ones decreases for further

PCs (Fig. 5).

4.4 Automatic detection of long-range LD regions
For detecting long-range LD regions during the computation of

PCA, we tested the function snp_autoSVD on both the celiac and

POPRES datasets. For the POPRES dataset, the algorithm converged

in two iterations. The first iterations found three long-range LD

regions in chromosomes 2, 6 and 8 (Supplementary Table S1).

We compared the PCs of genotypes obtained after applying

snp_autoSVD with the PCs obtained after removing pre-determined

long-range LD regions (https://goo.gl/8TngVE) and found a mean

correlation of 89.6% between PCs, mainly due to a rotation of PC7

and PC8 (Supplementary Table S2). For the celiac dataset, we found

five long-range LD regions (Supplementary Table S3) and a mean

correlation of 98.6% between PCs obtained with snp_autoSVD and

the ones obtained by clumping and removing pre-determined long-

range LD regions (Supplementary Table S4).

For the celiac dataset, we further compared results of PCA

obtained when using snp_autoSVD and when computing PCA with-

out removing any long range LD region (only clumping at R2>0.2).

When not removing any long range LD region, we show that PC4

and PC5 do not capture population structure and correspond to a

long-range LD region in chromosome 8 (Supplementary Figs S3 and

S4). When automatically removing some long-range LD regions

with snp_autoSVD, we show that PC4 and PC5 reflect population

structure (Supplementary Fig. S3). Moreover, loadings are more

equally distributed among SNPs after removal of long-range LD

regions (Supplementary Fig. S4). This is confirmed by Gini coeffi-

cients (measure of dispersion) of each squared loadings that are sig-

nificantly smaller when computing PCA with snp_autoSVD than

when no long-range LD region is removed (Supplementary Fig. S5).

4.5 Imputation of missing values for genotyped SNPs
For the imputation method based on XGBoost, we compared the

imputation accuracy and computation times with Beagle on the

POPRES dataset (with no missing value). The histogram of the

MAFs of this dataset is provided in Supplementary Figure S6. We

used a beta-binomial distribution to simulate the number of missing

values by SNP and then randomly introduced missing values accord-

ing to these numbers, resulting in �3% of missing values overall

(Supplementary Fig. S7). Imputation was compared between func-

tion snp_fastImpute of package bigsnpr and Beagle 4.1 (version of

January 21, 2017) by counting the percentage of imputation errors

(when the imputed genotype is different from the true genotype).

Overall, in three runs, snp_fastImpute made only 4.7% of imputa-

tion errors and Beagle made only 3.1% of errors. Yet, it took Beagle

14.6 h to complete while snp_fastImpute only took 42 min (20 times

less). We also note that snp_fastImpute made less 0/2 switching

errors, i.e. imputing with a homozygous referent where the true gen-

otype is a homozygous variant, or the contrary (Supplementary

notebook ‘imputation’). We also show that the estimation of the

number of imputation errors provided by function snp_fastImpute is

accurate (Supplementary Fig. S8), which can be useful for post-

processing the imputation by removing SNPs with too many errors

(Supplementary Fig. S9). For the celiac dataset in which there were

already missing values, in order to further compare computation

times, we report that snp_fastImpute took <10 h to complete for the

whole genome whereas Beagle did not finish imputing chromosome

1 in 48 h.

5 Discussion

We have developed two R packages, bigstatsr and bigsnpr, which

enable multiple analyses of large-scale genotype datasets in R thanks

to memory-mapping. Linkage disequilibrium pruning, PCA, associa-

tion tests and computation of PRS are made available in these soft-

ware. Implemented algorithms are both fast and memory-efficient,

allowing the use of laptops or desktop computers to make genome-

wide analyses. Technically, bigstatsr and bigsnpr could handle any

size of datasets. However, if the OS has to often swap between the

file and the memory for accessing the data, this would slow down

data analysis. For example, the PCA algorithm in bigstatsr is itera-

tive so that the matrix has to be sequentially accessed over a hun-

dred times. If the number of samples times the number of SNPs

remaining after pruning is larger than the available memory, this

slowdown would happen. For instance, a 32 GB computer would be

Fig. 4. Benchmark comparisons between randomized partial singular value

decomposition available in FlashPCA2, FastPCA (fast mode of SmartPCA/

EIGENSOFT), PLINK 2.0 (approx mode) and package bigstatsr. It shows the

computation time in minutes as a function of the number of samples. The first

10 principal components have been computed based on the 93 083 SNPs

which remained after thinning

Fig. 5. Precision comparisons between randomized partial singular value

decomposition available in FlashPCA2, FastPCA (fast mode of SmartPCA/

EIGENSOFT), PLINK 2.0 (approx mode) and package bigstatsr. It shows the

squared correlation between approximated PCs and ‘true’ PCs (produced by

the exact mode of PLINK 2.0) of the celiac dataset (whose individuals have

been repeated 1, 5 and 10 times)
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slow when computing PCs on more than 100K samples and 300K

SNPs remaining after LD thinning.

The two R packages use a matrix-like format, which makes it

easy to develop new functions in order to experiment and develop

new ideas. Integration in R makes it possible to take advantage of

the vast and diverse R libraries. For example, we developed a fast

and accurate imputation algorithm for genotyped SNPs using the

widely-used machine learning algorithm XGBoost available in the R

package xgboost. Other functions, not presented here, are also avail-

able and all the functions available within the package bigstatsr are

not specific to SNP arrays, so that they could be used for other omic

data or in other fields of research.

We think that the two R packages and the corresponding data

format could help researchers to develop new ideas and algorithms

to analyze genome-wide data. For example, we wish to use these

packages to train much more accurate predictive models than the

standard CþT model currently in use for computing PRS. As a sec-

ond example, multiple imputation has been shown to be a very

promising method for increasing statistical power of a GWAS

(Palmer and Pe’er, 2016), and it could be implemented with the data

format ‘FBM.code256’ without having to write multiple files.
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