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Abstract
Background Estimating life expectancy of older adults informs whether to pursue future investigation and therapy. Several 
models to predict mortality have been developed but often require data not immediately available during routine clinical 
care. The HOSPITAL score and the LACE index were previously validated to predict 30-day readmissions but may also 
help to assess mortality risk. We assessed their performance to predict 1-year and 30-day mortality in hospitalized older 
multimorbid patients with polypharmacy.
Methods We calculated the HOSPITAL score and LACE index in patients from the OPERAM (OPtimising thERapy to 
prevent Avoidable hospital admissions in the Multimorbid elderly) trial (patients aged ≥ 70 years with multimorbidity and 
polypharmacy, admitted to hospital across four European countries in 2016–2018). Our primary and secondary outcomes 
were 1-year and 30-day mortality. We assessed the overall accuracy (scaled Brier score, the lower the better), calibration 
(predicted/observed proportions), and discrimination (C-statistic) of the models.
Results Within 1 year, 375/1879 (20.0%) patients had died, including 94 deaths within 30 days. The overall accuracy was 
good and similar for both models (scaled Brier score 0.01–0.08). The C-statistics were identical for both models (0.69 for 
1-year mortality, p = 0.81; 0.66 for 30-day mortality, p = 0.94). Calibration showed well-matching predicted/observed 
proportions.
Conclusion The HOSPITAL score and LACE index showed similar performance to predict 1-year and 30-day mortality in 
older multimorbid patients with polypharmacy. Their overall accuracy was good, their discrimination low to moderate, and 
the calibration good. These simple tools may help predict older multimorbid patients’ mortality after hospitalization, which 
may inform post-hospitalization intensity of care.

Key Points 

The HOSPITAL score and LACE index showed good 
accuracy to predict mortality in older patients with mul-
tiple medications and comorbidities.

The HOSPITAL score and LACE index can help clini-
cians and patients to make decisions about investigations 
and treatment after hospitalization.

1 Introduction

Accurately predicting mortality from readily available clini-
cal data is critical to informing future diagnostic and treat-
ment choices. This is especially important in potentially 
high-risk individuals such as older patients with multimor-
bidity, which affects 60% of adults aged ≥ 65 years and is 
associated with polypharmacy, lower quality of life, higher 
healthcare resource utilization and mortality, and substan-
tial burden for patients, caregivers, and healthcare systems 
[1–5]. Increased healthcare use and polypharmacy in older 
multimorbid patients is partly related to screening proce-
dures and preventive medications, which may not be appro-
priate for patients whose survival time is likely too short 
to benefit [6–8]. In this context, the harm and burden of 
additional tests and medications may outweigh the benefits. 
Estimating life expectancy may thus be useful for patients 
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and caregivers to make informed decisions about the need 
for further screening and preventive care. We can hypoth-
esize that avoiding procedures or medications that are no 
longer appropriate might in turn improve the quality of life 
of patients with limited life expectancy as well as reduce 
overuse of care.

Several models have been developed to predict mortality 
in recent years [9–14]; however, most of them were devel-
oped in a single country or a specific population (e.g., pallia-
tive care) and have not been externally validated in different 
older person populations in different countries. Furthermore, 
none of those models has yet been widely used and imple-
mented in clinical practice, possibly due to their complexity 
beyond data available during routine clinical care. For exam-
ple, some models require assessment of functional status 
[11, 12], which is not routinely collected in electronic medi-
cal records. Simpler tools are thus needed.

The HOSPITAL score and the LACE index have been 
developed and broadly validated in different countries and 
populations to predict unavoidable hospital readmission 
(HOSPITAL score) and death or non-elective readmission 
(LACE index) within 30 days after discharge [15–24]. These 
models are less complex than most previous scores and are 
easily computed with routinely available electronic medical 
records data. Therefore, these models have the potential for 
increased large-scale implementation.

Given likely similar risk factors for death and readmis-
sion, we hypothesized that the HOSPITAL score and the 
LACE index could accurately predict mortality. The aim of 
this study was therefore to assess the performance of the 
HOSPITAL score and the LACE index to predict 1-year and 
30-day mortality following an acute care hospitalization in 
older multimorbid patients with polypharmacy.

2  Methods

2.1  Study Design and Population

We included all patients with completed follow-up from the 
OPERAM (OPtimising thERapy to prevent Avoidable hospi-
tal admissions in the Multimorbid elderly) trial. The design 
and results of this multicenter European trial, which aimed 
to reduce inappropriate prescribing as a means of prevent-
ing drug-related admissions (DRAs), have been described 
previously [25, 26]. Enrolled patients were aged ≥ 70 years, 
had multimorbidity (three or more chronic conditions), and 
polypharmacy (five or more chronic medications), and were 
admitted to a medical or surgical ward for an acute care 
hospitalization. Patients who died before discharge were 
not included in the OPERAM trial. Participating countries 
were from four hospitals in Belgium, Ireland, The Neth-
erlands, and Switzerland (patient randomization occurred 

from December 2016 to October 2018). The OPERAM 
trial’s primary outcome was any DRA following index hos-
pitalization, while 1-year post-discharge mortality was a 
secondary outcome. All variables (including those required 
to calculate the HOSPITAL score and the LACE index) were 
collected prospectively and systematically in the OPERAM 
trial according to a predefined protocol. The baseline visit 
consisted of a face-to-face interview. Follow-up visits were 
conducted by phone with the patient and/or their relatives 
and/or their general practitioner. Diagnoses were extracted 
from electronic medical records.

2.2  Predictors: HOSPITAL Score and LACE Index

The HOSPITAL score was computed according to its simpli-
fied version, in which the variable ‘procedures’ is omitted 
and ‘oncologic diagnosis’ is used instead of oncology ward 
(as oncology wards were not part of the OPERAM trial), 
resulting in a total of six items for a maximum of 12 points 
(Table 1) [17, 27]. Furthermore, we used the threshold of 
≥ 8 days for prolonged length of stay, which has been vali-
dated in Europe, instead of the 5-day cut-off employed in the 
US [15]. The LACE index was used in its original version, 
consisting of four variables for a maximum of 19 points 
(Table 1) [19]. To compute the Charlson Comorbidity Index 
included in the LACE index, we used the method devel-
oped by Quan et al., based on International Classification of 
Diseases (ICD) codes [28]. Data were missing in 6 (0.3%) 
patients for previous hospitalizations, 8 patients (0.4%) 
for previous emergency room visits, 12 patients (0.6%) for 
serum sodium, and 17 patients (0.9%) for hemoglobin. These 
missing data points were assigned a score of zero (i.e., coded 
as normal) in the application of both prediction models, as 
done in the derivation study of the HOSPITAL score [17].

2.3  Outcomes

The primary outcome of the present analysis was all-cause 
mortality within 1 year after discharge of the index hos-
pitalization, while all-cause mortality within 30 days after 
discharge was the secondary outcome. Mortality was deter-
mined based on the follow-up phone call. If no-one among 
the patients, their relatives/contact persons and their general 
practitioner could be reached by phone, we contacted their 
residential place.

2.4  Statistical Analyses

We assessed the performance of each model according to 
its overall accuracy, discrimination and calibration. First, 
to assess and compare the overall accuracy of the models, 
we computed the scaled Brier score, as described by Stey-
erberg et al. (the lower the score, the better) [29, 30]. The 
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overall accuracy refers to the probability that the score cor-
rectly classifies the individuals [31]. Second, to assess dis-
crimination (i.e., whether the score separates well lower- vs. 
higher-risk individuals; 0.5 = no discrimination, 1 = perfect 
discrimination) [29], we obtained C-statistics for each model 
and used bootstrapping with 1000 replications to compute 
95% confidence intervals (CIs). We further computed the 
discrimination slope, defined as the absolute difference in 

mean predicted risk for those with the outcome compared 
with those without the outcome [29, 32, 33]. To facilitate 
visualization, we presented boxplots of the predicted risk 
according to outcome occurrence. We compared discrim-
ination of the HOSPITAL score and the LACE index by 
assessing the equality of their C-statistics. Finally, to assess 
calibration (i.e., the agreement between predictions and 
observed outcomes) [29], we displayed predicted versus 
observed proportions of death according to (1) lower- and 
higher-risk categories, and (2) score point categories. We 
evaluated statistical significance using the Hosmer–Leme-
show goodness-of-fit test (a significant p-value would indi-
cate an overall lack of fit) [29]. We performed all analyses 
using Stata/MP 16.0 (StataCorp LLC, College Station, TX, 
USA).

3  Results

3.1  Baseline Characteristics and Mortality Rates

Among the 2008 patients included in the OPERAM trial, 
119 withdrew consent and 10 were lost to follow-up, leav-
ing 1879 patients for analysis. Among these, the mean age 
was 79.4 years (standard deviation [SD] 6.3), with 835 
(44.4%) females and a median (interquartile range) num-
ber of chronic medications of 9 (7–12). Within 1 year of 
discharge, 375 (20.0%) patients had died, among whom 
94 patients (25.1%; 5.0% overall) within 30 days. Mortal-
ity rates during the 12-month follow-up varied by country 
(Table 2). Baseline characteristics according to death within 
1 year of discharge are described in Table 2. Patients who 
died were older, had higher morbidity (Charlson Comorbid-
ity Index, cancer diagnosis), and received more medications 
than patients who survived follow-up. They also had a longer 
length of stay and were less frequently discharged home or to 
a nursing home. The HOSPITAL score ranged from 0 to 11 
points (mean 3.7 [SD 2.0], median 4) and the LACE index 
ranged from 2 to 19 points (mean 11.2 [SD 2.9], median 11).

3.2  Primary Outcome: 1‑Year Mortality

The overall accuracy for prediction of 1-year mortality was 
good, with a scaled Brier score of 0.08 for both models. Cal-
ibration assessment showed no systematic deviation from the 
reference line, with well-matching predicted and observed 
proportions overall (Fig. 1, Appendix Table 3). The Hos-
mer–Lemeshow C-statistic test indicated no overall lack of 
fit, with a p-value of 0.37 for the HOSPITAL score and 0.95 
for the LACE index. The discrimination of the two models 
was similar, with a C-statistic (95% CI) of 0.69 (0.66–0.72) 
for the HOSPITAL score and 0.69 (0.66–0.72) for the LACE 
index (p-value for comparison of the C-statistics: 0.81) 

Table 1  HOSPITAL score and LACE index

NA not applicable, ICD International Classification of Diseases
a Left out in the simplified version of the score. Scored 1 point in the 
original version [17, 19]

Variable Points if 
positive

HOSPITAL score simplified
Hemoglobin level at discharge < 120 g/L 1
Cancer diagnosis or discharge from an Oncology division 2
Sodium level at discharge < 135 mmol/L 1
Any ICD-9 or ICD-10 Procedure during hospitalizationa NA
Index Type of admission: non-elective 1
Number of hospital Admissions during the previous 12 

months
 0–1 0
 2–5 2
 ≥ 5 5

Length of stay ≥ 8 days (Europe) or ≥ 5 days (US) 2
Maximum number of points 13
LACE index
Length of stay (days)
 <1 0
 1 1
 2 2
 3 3
 4–6 4
 7–13 5
 ≥ 14 7

Acute (emergent) admission 3
Charlson Comorbidity Index
 0 0
 1 1
 2 2
 3 3
 ≥ 4 5

Emergent department visits < 6 months
 0 0
 1 1
 2 2
 3 3
 ≥ 4 4

Maximum number of points 19
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(Appendix Fig. 3). The discrimination slope was 0.08 for 
both models (Fig. 2).

3.3  Secondary Outcome: 30‑Day Mortality

The overall accuracy for the prediction of 30-day mortality 
was good, with a scaled Brier score of 0.02 for the HOSPI-
TAL score and 0.01 for the LACE index. Calibration assess-
ment showed no systematic deviation from the reference 
line, with well-matching predicted and observed propor-
tions overall (Appendix Fig. 4, Appendix Table 3). The Hos-
mer–Lemeshow goodness-of-fit C-statistic p-value was 0.02 
for the HOSPITAL score and 0.41 for the LACE index. The 
discriminatory power of the two models was similar, with a 
C-statistic (95% CI) of 0.66 (0.61–0.71) for the HOSPITAL 
score and 0.66 (0.60–0.71) for the LACE index (p-value for 
comparison of C-statistics: 0.94) (Appendix Fig. 3). The 
discrimination slope was 0.02 for the HOSPITAL score and 
0.01 for the LACE index (Appendix Fig. 5).

4  Discussion

In this multicenter trial, the HOSPITAL score and the 
LACE index showed good overall performance for predict-
ing 30-day and 1-year mortality after an acute medical or 
surgical hospitalization in older multimorbid patients. Dis-
crimination was moderate and similar for both models (0.69; 
0.5 = no discrimination, 1 = perfect discrimination). As 
mortality prediction tools, the HOSPITAL score and the 
LACE index are easy to use and may thus help to evaluate 
life expectancy in older multimorbid patients. The predicted 
risk of death according to the number of score points can 
provide useful information to both patients and caregivers 
when deciding upon further need for screening procedures 
and preventive medications, whose potential adverse effects 
may outweigh the expected benefit for patients when the 
time to benefit is too long.

Previous studies have developed various scores to predict 
mortality in hospital settings [9–14]. Some of those scores 
showed good performance but none of them has yet been 
broadly implemented to estimate life expectancy. This might 
be explained by the items included in the models, which 
may be relatively complex to collect in a standardized way 
in clinical practice. For example, the Walter Index [12] and 
the Burden of Illness Score for Elderly Persons (BISEP) [11] 
include functional status evaluation, which is partly subjec-
tive and affected by the method of inquiry about function-
ing [34]. In addition, this assessment may represent extra 
workload for healthcare professionals, or additional chart 
abstraction, which often limits implementation. In contrast, 
the HOSPITAL score and the LACE index have the advan-
tage of including only items that can be automatically and 
easily retrieved from electronic medical records, increasing 
their scalability. The HOSPITAL score has the additional 
benefit of not requiring assessment of comorbidities, except 
for active oncological disease, which is unlikely to be fre-
quently omitted in medical records, given the usually highly 
significant impact of this diagnosis. In contrast, the LACE 
index requires the calculation of the Charlson Comorbidity 
Index, whose calculation may be subject to coding quality 
and underreporting.

In this study, we found lower discrimination for the HOS-
PITAL score and the LACE index, compared with other sur-
vival prognostic tools (C-statistics 0.75–0.90) [10, 12–14]. 
However, studies developing such prognostic tools were 
conducted retrospectively, in a single country, in medical 
(i.e. non-surgical) patients only, or in selected populations, 
limiting their generalizability to other settings [9–14]. For 
example, the CARING criteria were developed by retrospec-
tive review of Veterans’ charts, so that generalizability to 
females is unknown [10]. In contrast, the OPERAM trial 
was a prospective multinational study in unselected older 

Table 2  Baseline characteristics according to death at 1 year

Data are n (%) or mean (SD)
Categorical variables are expressed as n (%) and continuous variables 
are expressed as mean with standard deviation

Characteristic Dead [n = 375] Alive [n = 1504]

Age, years 81.3 (7.0) 78.9 (6.0)
Female 162 (43.2) 673 (44.8)
Site of inclusion
 Belgium 110 (29.3) 296 (19.7)
 Ireland 48 (12.8) 290 (19.3)
 The Netherlands 64 (17.1) 266 (17.7)
 Switzerland 153 (40.8) 652 (43.4)

Morbidity
 Charlson Comorbidity Index, 

points
3.5 (2.4) 3.4 (1.9)

 Cancer diagnosis 143 (38.1) 377 (25.1)
 Chronic medications, n 11.4 (4.5) 9.9 (4.1)

Healthcare utilization history
 Hospitalizations <1 year, n 1.4 (1.6) 0.9 (1.4)
 Emergent visits <6 months, n 3.8 (5.9) 3.8 (6.8)

Index hospitalization
 Non-elective admission 314 (83.7) 1124 (74.7)
 Surgical ward 54 (14.4) 328 (21.8)
 Last available hemoglobin 

< 120 g/L
271 (72.3) 874 (58.1)

 Last available sodium < 135 
mmol/L

64 (17.1) 148 (9.8)

 Length of stay, days 17.6 (25.0) 10.6 (9.2)
 Discharge home 167 (52.7) 1044 (69.7)
 Discharge to a nursing home 49 (15.5) 97 (6.5)

HOSPITAL score, points 4.8 (2.0) 2.5 (1.9)
LACE index, points 12.2 (2.7) 11.0 (2.8)



227Scores to Predict Mortality in Multimorbid Older Patients

adults with multimorbidity, which enhances our generaliz-
ability. It is also noteworthy that the C-statistic dropped from 
0.76 in the development cohort to 0.59 only in the valida-
tion cohort for the high-risk category of the BISEP model, 
suggesting that the performance of a prediction model may 
not be similar in populations or settings that differ from the 
development cohort [11]. Further studies should compare 
the HOSPITAL score and the LACE index with other pre-
diction models in similar populations.

Cut-offs are commonly used to categorize a screening or 
diagnosis test as normal or pathological, although in reality 
they most often correspond to a continuum between health 
and illness. Similarly, categories have frequently been cre-
ated to classify patients at low, moderate, or high risk of 
death [9–13]. This approach has the disadvantage of attribut-
ing a similar prediction to patients with the lowest or those 

with the highest number of points merged in the same cat-
egory, although they may actually have a significantly dif-
ferent predicted mortality risk. Estimating a probability for 
each possible number of points, as we did in this study, and 
similar to what was done with other prediction models (e.g., 
Framingham score for cardiovascular mortality risk) [35], 
may thus be more informative.

Accurately estimating life expectancy is critical towards 
understanding whether a patient is expected to live long 
enough to benefit from screening tests or long-term preven-
tative treatments. For example, while it takes approximately 
10 years to prevent one death from colorectal or breast can-
cer from screening 1000 patients [7], time to benefit for 
statin treatment to prevent myocardial infarction is approxi-
mately 2–5 years [6], and 11 months for alendronate treat-
ment to prevent one fragility fracture [8]. Tools predicting 

Fig. 1  Calibration of the HOSPITAL score and LACE index to predict 1-year mortality. CIs confidence intervals. Predicted vs. observed mortal-
ity at 1 year after discharge score points (left panels) and deciles (right panels)
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mortality, such as the HOSPITAL score or the LACE index, 
may enable patients to make healthcare choices to better 
align with their personalized goals, accounting for overall 
benefit [36].

Whereas previous models were developed to predict 
mortality over 1 year or longer, we also studied short-term 
(30-day) mortality. Overall performance was similar for 
1-year and 30-day mortality. These models may thus play a 
role in predicting short-term mortality also, whose clinical 
implications may be different than for longer-term mortality. 
This estimation may indeed help to reduce uncertainty about 
short-term prognosis and consequently inform end-of-life 
conversations between caregivers and patients. This helps 
to focus end-of-life care on the patients where appropriate, 
avoid treatments or procedures whose benefit may be time-
limited and that might not be acceptable to the patients, and 
thus potentially to improve quality of life during the final 
weeks and months of life of older people.

4.1  Limitations and Strengths

We must acknowledge some limitations. First, the Charlson 
Comorbidity Index used in the LACE index is based on ICD 
codes, which might be subject to underreporting. Second, 
patients who died during hospitalization were not included, 
and we included only patients aged ≥ 70 years with mul-
timorbidity and polypharmacy, limiting generalizability to 
other populations. Third, the number of outcomes at 30 days 
was limited. Finally, the population was part of a clinical 
trial that aimed to optimize prescribing and might thus have 
influenced mortality; however, this risk is rather unlikely 

given that the trial was negative and that we adjusted for the 
intervention arm [26].

This study presents some significant strengths. First, we 
used prospective data systematically collected along the 
OPERAM trial. Second, we compared two prediction mod-
els and assessed both short- and long-term mortality. Third, 
there were only few missing data for the predictive variables 
(< 1% for each). Finally, our study was larger than most pre-
vious studies [14], was conducted in four different countries, 
and included both surgical and medical patients with only 
a few exclusion criteria (i.e. real-world patients, including 
patients with dementia, were enrolled) [25], increasing the 
generalizability of our findings.

5  Conclusion

In hospitalized older multimorbid patients, the HOSPITAL 
score and LACE index showed very good overall accuracy 
(i.e., very low Brier score), good calibration (i.e., well-
matching predicted and observed proportions) and moder-
ate discrimination to predict 1-year mortality. Their perfor-
mance was slightly lower for 30-day mortality. These simple 
tools may help predict mortality risk in older multimorbid 
patients after acute hospitalization, which may inform post-
hospitalization intensity of care.

Appendix

See Table 3 and Figs, 3, 4 and 5. 

Fig. 2  Boxplots and discrimination slope for predicted mortality according to death status at 1 year. The discrimination slopes were calculated as 
the mean predicted mortality in patients dead minus the mean predicted mortality in patients alive
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Table 3  Predicted and observed mortality at 30 days and 1 year for the HOSPITAL score and the LACE index, by deciles of equally sized 
groups, and point categories

N 30-Day mortality 1-Year mortality

Predicted (%) Observed (%) Predicted (%) Observed

HOSPITAL score deciles
Decile 1 187 1.7 1.7 6.0 6.4
Decile 2 188 2.3 1.6 8.2 4.8
Decile 3 188 2.9 3.2 11.6 12.8
Decile 4 188 3.3 0.0 13.4 12.2
Decile 5 188 4.3 8.0 16.3 20.2
Decile 6 188 4.8 5.3 20.2 22.9
Decile 7 188 5.8 5.9 23.0 19.7
Decile 8 188 6.3 8.4 25.0 27.7
Decile 9 188 8.0 8.0 33.5 30.3
Decile 10 188 10.6 9.0 42.3 42.6
HOSPITAL score points
0 point 58 1.2 3.4 4.4 5.2
1 point 218 2.1 3.2 7.6 7.6
2 points 243 2.6 0.4 10.5 10.5
3 points 387 4.2 4.9 16.1 17.1
4 points 368 5.0 4.3 20.5 19.3
5 points 251 6.2 6.4 25.1 25.9
6 points 195 7.9 9.2 32.7 33.3
7 points 95 9.0 9.5 37.5 37.9
8 points 43 11.2 7.0 44.5 44.2
9 points 14 13.1 7.1 50.1 64.3
10 points 3 13.2 33.3 50.8 100.0
11 points 4 20.2 25.0 66.0 50.0
LACE index deciles
Decile 1 187 3.0 3.7 11.0 10.7
Decile 2 188 3.4 1.1 11.8 13.3
Decile 3 188 3.8 1.1 14.2 11.2
Decile 4 188 5.1 5.9 15.9 18.6
Decile 5 188 5.0 4.9 20.1 23.4
Decile 6 188 5.5 4.3 19.4 13.8
Decile 7 188 5.3 5.9 21.4 26.1
Decile 8 188 5.6 5.9 26.8 24.4
Decile 9 188 6.6 6.9 29.0 31.9
Decile 10 188 6.8 10.6 29.8 26.1
LACE index points
2 points 2 1.1 0.0 2.8 0.0
3 points 3 1.4 0.0 3.9 0.0
4 points 4 1.8 0.0 5.3 0.0
5 points 27 2.1 3.7 6.5 7.4
6 points 52 2.7 0.0 9.0 3.8
7 points 92 3.1 3.3 11.0 14.1
8 points 328 3.2 2.4 11.1 10.7
9 points 193 3.9 4.7 13.6 14.5
10 points 257 4.3 5.4 16.1 16.7
11 points 260 4.9 5.8 19.7 19.6
12 points 223 5.3 4.0 20.7 23.8
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Table 3  (continued)

N 30-Day mortality 1-Year mortality

Predicted (%) Observed (%) Predicted (%) Observed

13 points 184 5.9 6.0 24.8 20.1
14 points 224 6.6 5.8 29.5 29.5
15 points 54 4.1 1.9 18.6 22.2
16 points 98 9.5 9.2 39.8 44.9
17 points 39 4.8 7.7 23.4 28.2
18 points 3 6.8 33.3 35.2 33.3
19 points 16 7.2 6.2 35.7 25.0

N number of patients in each category

Fig. 3  Comparison of the C-statistics for the HOSPITAL score and LACE index for 1-year and 30-day mortality
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Fig. 4  Calibration of the HOSPITAL score and the LACE index to predict 30-day mortality. CIs confidence intervals. Predicted vs. observed 
mortality at 30 days after discharge by score points (left panels) and by deciles (right panels)
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