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Abstract

Rationale:There is conflicting evidence on harm related to exposure
to supraphysiologic PaO2

(hyperoxemia) in critically ill patients.

Objectives: To examine the association between longitudinal
exposure to hyperoxemia andmortality in patients admitted to ICUs
in five United Kingdom university hospitals.

Methods: A retrospective cohort of ICU admissions between
January 31, 2014, andDecember 31, 2018, from theNational Institute
of Health Research Critical Care Health Informatics Collaborative
was studied. Multivariable logistic regression modeled death in ICU
by exposure to hyperoxemia.

Measurements and Main Results: Subsets with oxygen exposure
windows of 0 to 1, 0 to 3, 0 to 5, and 0 to 7 days were evaluated, capturing
19,515, 10,525, 6,360, and 4,296 patients, respectively. Hyperoxemia dose

wasdefinedas theareabetweenthePaO2
timecurveandaboundaryof13.3

kPa (100mmHg) divided by the hours of potential exposure (24, 72, 120,
or 168 h). An association was found between exposure to hyperoxemia
and ICUmortality for exposure windows of 0 to 1 days (odds ratio [OR],
1.15; 95% compatibility interval [CI], 0.95–1.38;P=0.15), 0 to 3 days (OR
1.35; 95%CI, 1.04–1.74;P=0.02), 0 to 5 days (OR, 1.5; 95%CI, 1.07–2.13;
P=0.02), and0to7days (OR,1.74;95%CI,1.11–2.72;P=0.02).However,
a dose–response relationship was not observed. There was no evidence to
support a differential effect between hyperoxemia and either a respiratory
diagnosis or mechanical ventilation.

Conclusions:An association between hyperoxemia andmortality was
observed in our large, unselected multicenter cohort. The absence of a
dose–response relationship weakens causal interpretation. Further
experimental research is warranted to elucidate this important question.
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Oxygen therapy is widely used to treat
critically ill patients. British Thoracic Society
guidelines regard oxygen as a drug and advise
a prescription to accompany its use (1).
These guidelines acknowledge potential
harm and recommend targeting a specific
oxygen saturation range in acutely unwell
patients. In adult patients, hyperoxemia may
induce hemodynamic changes (2, 3),
including vasoconstriction (4, 5), reduced
cardiac output, and increased peripheral
vascular resistance (6–8); and inflammatory
changes, including the generation of reactive
oxygen species (9) and absorption atelectasis
(10). In healthy subjects, exposure to high
inspired oxygen concentrations causes
alveolar leak and release of mediators
responsible for lung fibrosis (11).

Despite these concerns, other than in
patients with type II (hypercarbic) respiratory

failure, oxygen use is still largely unregulated
in clinical practice. Prospective randomized
trials of oxygen therapy in patients suffering
myocardial infarction have reported either
harm (12, 13) or no effect (14). Increased
mortality risk has been suggested in patients
receiving higher concentrations of inspired
oxygen (15–20) in conditions such as cardiac
arrest (21–23) and septic shock (24–26), as
well as in general critically ill populations (19,
27). However, most of these studies lack a
delineation between harm from appropriately
high levels of inspired oxygen used to
maintain normoxemia and excessive
concentrations that result in hyperoxemia
(28). Similarly, analyses of ICU databases
variably report an association (29, 30) or lack
thereof (31) between hyperoxemia and poor
outcomes in the critically ill. Many of these
approaches are limited by using only a single
measure of PaO2

or inspired oxygen to define
oxygen exposure for an entire ICU admission.

A recent systematic review and meta-
analysis of more than 16,000 patients (32)
indicated potential harm, concluding,
“Patients treated liberally with oxygen had a
dose-dependent increased risk of short-term
and long-term mortality.” Yet, paradoxically,
they could find “no significant difference in
disability, hospital-acquired pneumonia, or
length of hospital stay.”

The aim of the present study was
to determine whether exposure to
supraphysiologic PaO2

, measured as time-
weighted mean exposure to hyperoxemia
(referred to as “hyperoxemia dose” for
brevity), was associated with excess ICU
mortality. Particular attention was paid to
dose–response as a proxy for a causal
relationship (33). The specific impact of
hyperoxemia was assessed in patients with a
primary respiratory diagnosis for ICU
admission or those who were mechanically
ventilated because concurrent lung
inflammation may predispose to pulmonary
oxygen toxicity and increased mortality (27).

Methods

Data were prospectively collected between
January 31, 2014, and December 31, 2018,

on all adult (>18 yr) patients attending an
ICU from five United Kingdom university
hospitals contributing to the National
Institute of Health Research Critical Care
Health Informatics Collaborative, for which
the themes are described elsewhere (34), as
is a detailed description of its data
specification (35). The legal basis for
handling the data is provided in the online
supplement. The present study was
conducted as a retrospective cohort
analysis, with findings reported in
accordance with Strengthening the
Reporting of Observational Studies in
Epidemiology guidance (36).

Patients were included in the study
if their ICU length of stay was longer
than 24 hours. Those staying less than
24 hours were typically admitted after
elective surgery with very low mortality.
These cases were removed because this would
lead to prognostic deenrichment while not
providing a large enough exposure window
for the effects of hyperoxemia to become
apparent. Patients with treatment limitation
orders, in receipt of cardiopulmonary
resucitation in the 24 hours preceeding ICU
admission, or failing prespecified data quality
checks were excluded. To limit confounding
by an unknown exposure to oxygen, or
other factors following ICU discharge,
only the index admission was considered
if a patient had more than one ICU
admission. For similar reasons, ICU
mortality for that index admission was
chosen as the primary endpoint, in
preference to hospital mortality or other
distant outcome measures. The cohort
was narrowed to create nested subsets
with progressively longer potential
hyperoxemia exposure windows (0–3,
0–5, and 0–7 days). Each subset,
therefore, had a period of potential exposure
unaffected by informative censoring from
either ICU discharge or death (Figure 1; see
Figure E1 in the online supplement).

ICU mortality was modeled as a
function of hyperoxemia dose using
multivariable logistic regression.
Hyperoxemia dose was defined as the area
under the PaO2

time curve above a threshold
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At a Glance Commentary

Scientific Knowledge on the
Subject: Oxygen is a drug that carries
potential toxicity, but this fact often
passes unappreciated in clinical
practice. In recent years, hyperoxemia
has been increasingly linked with worse
outcomes, though the literature is
conflicting. Bias may be introduced
into studies through confounding by
treatment indication, failure to
consider oxygen as a longitudinal
exposure, and dropout of patients over
time.

What this Study Adds to the Field:
We interrogated a large multicenter
cohort of patients requiring at least
24 hours of critical care and used a
modelling approach that addressed the
above core concerns. We found an
association between hyperoxemia and
mortality; however, a lack of dose
dependency challenges a causal
relationship. Our findings support the
need for prospective randomized trials
with appropriate power.
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PaO2
value of 13.3 kPa (100 mm Hg)

divided by the number of hours of potential
exposure. This was applied from the time
of ICU admission (Day 0) until 1, 3, 5,
or 7 days (Figure 1). Under this definition,
1 kPa (7.6 mm Hg) of hyperoxemia dose
describes that a patient’s average PaO2

was 1 kPa (7.6 mm Hg) above 13.3 kPa
(100 mm Hg) for the duration of
the exposure window. The 13.3 kPa
(100 mm Hg) threshold was chosen
because values exceeding this can only
be achieved with supplementary oxygen.
This boundary, therefore, represents a

range of PaO2
that is unambiguously

supraphysiological and hence not
confounded by treatment indication.

A substantial proportion of admissions
had a hyperoxemia dose of 0. To address this
“spike at zero,” an additional covariable
indicating any hyperoxemia exposure was
added to the model (37). Both covariables
(“any hyperoxemia” and hyperoxemia
dose) should be considered in concert when
interpreting the model.

Other predictor covariables included a
primary diagnosis of respiratory illness
(yes/no), sex (male/female), age at admission
(years), weight (kg), prior need for assisted
daily living (independent or any level of
dependence), mechanical ventilation for the
entirety of the exposure window (yes/no),
primary admission reason (medical/surgical),
and the Acute Physiology and Chronic Health
Evaluation II score. These variables were
chosen on the basis of salience to the
underlying research question, scientific
plausibility, and after exclusion of significant
collinearity. Continuous variables were
entered without categorization. Age and
weight were modeled nonlinearly using
restricted cubic splines (38). The Acute
Physiology and Chronic Health Evaluation II
score was also modeled with restricted cubic
splines because evidence from the data
supported this decision.

To account for possible differential
effects of exposure to hyperoxemia, interaction
effects between exposure to hyperoxemia
with an underlying respiratory diagnosis
and continuous mechanical ventilation
were evaluated. Penalized maximum
likelihood was applied with a penalty factor
determined by optimal model Akaike
information criterion (AIC). Penalization
was applied to interaction effects only.

Four models were fitted, one for each
exposure subset. Figure 1 provides an
exemplar case and Figure E1 provides an
overview of this process. This procedure was
undertaken to balance informative censoring
of patient data with the investigation of
hyperoxemia, thus maintaining a uniform
exposure potential within each subset for
this necessarily longitudinal measure.

To create the notion of a continuous
time series for PaO2

, which is measured as a
point process when arterial blood gas
samples are drawn, linear imputation was
performed with a 12-hour window. Details
of the imputation procedure are presented in
Table E1. Where PaO2

measures were still
unavailable, the exposure was assumed to be
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Figure 1. Illustration of the calculation of hyperoxemia dose. The blue area defines hyperoxemia
exposure for a real patient drawn from the Critical Care Health Informatics Collaborative
database. Red points indicate actual observations. Black interrupted lines show the linear
imputation strategy. Gaps exist in the imputation between observations greater than 12 hours
apart. Hyperoxemia dose was calculated by summing the blue area and dividing by the hours of
the potential exposure window for the given model (from top panel to bottom panel: 24, 72, 120,
or 168 h). This yields the natural units originally used to measure PaO2

(shown in kilopascals).
Vertical dashed lines indicate the point of censoring at the end of the exposure window.
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0. There were less than 1% missing variables,
so a complete case analysis was conducted.

Model validation was performed using
bootstrapped corrected calibration plots
and Brier scores using 500 resamples. The
c-index (area under the receiver operator
characteristic curve), precision–recall, and AIC
were calculated. The average treatment effect
of exposure to hyperoxemia was calculated by
fitting models with each individual’s own
recorded exposure to hyperoxemia and
comparing it with their counterfactual scenario
had this exposure been 0.

All statistical analyses were performed
using R Version 3.4.4 (R Foundation for
Statistical Computing). The full analysis
code was made publicly available before
manuscript submission (39).

Results

Over the 4-year period of the study, 45,188
episodes were available. After exclusions, a

primary cohort with a minimum 1-day ICU
length of stay of 19,515 episodes remained
(Figure E2). This cohort was further nested
into those who remained in ICU for at least
3 (10,525), 5 (6,360), and 7 (4,296) days.
Baseline characteristics for the primary cohort
and nested exposure windows are shown in
Table 1 and Table E2. A total of 77.5% of
patients were exposed to hyperoxemia by Day
1, increasing to 90.6% by Day 7. We observed
an association between any hyperoxemia
exposure and increased ICU mortality, with
an odds ratio (OR) ranging from 1.15
(95% compatibility interval [CI] 0.95–1.38;
P=0.15) over Days 0–1 to 1.74 (95% CI,
1.11–2.72; P=0.02) over Days 0–7.

There was a lack of evidence to support
a dose-dependent effect (Table 2) or the
presence of nonlinearities in hyperoxemia
dose; accordingly, this component was
modeled linearly for parsimony. Point
estimates for the ORs and their 95% CIs for
covariables are presented in Figure 2. All
results are presented in Table E3. These

findings were robust to using probit or
complementary log–log link functions.

There was no overall evidence to support
an interaction effect between exposure to
hyperoxemia and either an underlying
respiratory diagnosis or mechanical ventilation.
Likelihood ratios comparing the base model
with the penalized maximum likelihood model
are shown in Table E4. There was no
evidence to support a change in the log
odds for death from the interaction
between hyperoxemia and either primary
respiratory diagnosis or mechanical
ventilation status (Table E5). The
interaction terms were removed from the
final model specification based upon
likelihood criteria.

The modification to risk of mortality
between observed exposure to hyperoxemia
and the counterfactual scenario setting this
exposure to 0 is shown in Figure 3, using the
Day 0 to Day 5 cohort as an illustrative
example. All models are shown on the
absolute risk scale in Figure E3. Point

Table 1. Abridged Patient Characteristics, Stratified by Nested Exposure Window

Characteristic 1-d Exposure 3-d Exposure 5-d Exposure 7-d Exposure

n 19,593 10,571 6,391 4,318
Hyperoxemia dose, kPa 0.54 (0.01–1.75) 0.30 (0.04–0.86) 0.26 (0.04–0.68) 0.27 (0.06–0.65)
Any hyperoxemia exposure (yes) 15,182 (77.5) 8,865 (83.9) 5,580 (87.3) 3,912 (90.6)
Cumulative hyperoxemia exposure, kPa $ h 13.00 (0.4–42.1) 21.84 (2.6–61.6) 31.41 (5.3–81.9) 45.03 (10.6–108.7)
Pre-ICU hospital length of stay, d 1 (1–2) 1 (1–3) 1 (1–3) 1 (1–3)
Age, yr 65 (51–74) 65 (51–75) 64 (49–74) 63 (48–74)
Weight, kg 776 20 77619 77620 77620
Sex
F 7,834 (40.0) 4,149 (39.2) 2,431 (38.0) 1,621 (37.5)
M 11,758 (60.0) 6,421 (60.7) 3,959 (61.9) 2,696 (62.4)
Not available 1 (0.0) 1 (0.0) 1 (0.0) 1 (0.0)

APACHE II score 15.46 5.8 16.56 6.0 17.26 6.2 17.76 6.3
Prior dependency (none) 16,239 (82.9) 8,575 (81.1) 5,115 (80.0) 3,433 (79.5)
Patient type
Surgical 10,721 (54.7) 4,652 (44.0) 2,319 (36.3) 1,290 (29.9)
Medical 8,861 (45.2) 5,913 (55.9) 4,067 (63.6) 3,025 (70.1)
Not available 11 (0.1) 6 (0.1) 5 (0.1) 3 (0.1)

Surgical classification
Elective 6,758 (34.5) 2,597 (24.6) 1,144 (17.9) 539 (12.5)
Scheduled 1,557 (7.9) 804 (7.6) 372 (5.8) 176 (4.1)
Urgent 1,025 (5.2) 412 (3.9) 220 (3.4) 145 (3.4)
Emergency 1,702 (8.7) 1,029 (9.7) 699 (10.9) 517 (12.0)
Not applicable (medical) or not available 8,551 (43.6) 5,729 (54.2) 3,956 (61.9) 2,941 (68.1)

Ethnicity
Asian/Asian British Indian 335 (1.7) 180 (1.7) 112 (1.8) 85 (2.0)
Asian/Asian British other 335 (1.7) 206 (1.9) 152 (2.4) 119 (2.8)
Black/black British African 555 (2.8) 288 (2.7) 188 (2.9) 128 (3.0)
Black/black British Caribbean 430 (2.2) 211 (2.0) 123 (1.9) 82 (1.9)
Other or not stated 4,746 (24.2) 2,592 (24.5) 1,574 (24.6) 1,031 (23.9)
White British 11,880 (60.6) 6,337 (59.9) 3,759 (58.8) 2,541 (58.8)
White other 1,312 (6.7) 757 (7.2) 483 (7.6) 332 (7.7)

ICU length of stay, d 3.5 (2.0–6.6) 6.0 (4.1–11.0) 9.2 (6.6–16.8) 13.1 (9.1–21.7)
ICU mortality (deceased) 835 (4.3) 577 (5.5) 435 (6.8) 360 (8.3)

Definition of abbreviation: APACHE=Acute Physiology and Chronic Health Evaluation.
Variables are presented as mean (SD), median (interquartile range), or count (%) as appropriate. For all characteristics, please see Table E1.
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estimates for the average treatment effect
were 0.4%, 0.9%, 1.6%, and 2.7% for
exposure windows of 0 to 1, 0 to 3, 0 to 5,
and 0 to 7, respectively, favoring no
exposure to hyperoxemia.

The overall model fit across the four
exposure windows was good; each model
c-index, optimism-corrected (bootstrapped)
Brier score, and AIC is detailed in Table E6.

On calibration checks, there was a tendency
for models to underpredict mortality in
more severe cases (Figure E4).

Discussion

A consistent association was found across
models between any exposure to
hyperoxemia for up to 7 days following ICU

admission and ICU mortality. This is in
keeping with findings from most observational
(29, 30, 40, 41) and interventional (17, 18, 27)
studies. However, Eastwood and colleagues,
using a well controlled model, could not find
supporting evidence of an association between
hyperoxemia and increased mortality (31).

Crucially, many prior retrospective
studies examining the relationship between
hyperoxemia and outcome are limited by the
availability of longitudinal oxygenation data. A
common approach has modeled outcomes as a
function of a single arterial blood gas result,
usually taken soon after ICU admission. The
degree and duration of hyperoxemia before
and after this result are undocumented. It is
biologically implausible that a singlemeasure of
oxygen exposure could shift outcomes so
dramatically. Any single measure of
oxygenation exposure is likely to be
confounded by treatment effects. For example,
sicker patients are more likely to be
administered higher concentrations of oxygen.
This confoundingmay exert a greater influence
on the first arterial blood gas result because it
will be this very sample that triggers a de-
escalation of oxygen, should this be required.

To our knowledge, only one prior large
database study has modeled a longitudinal
notion of oxygen (30). The authors found “a
dose-response relationship between supra-
physiologic arterial oxygen levels and
hospital mortality.” Such a hypothesis is
difficult to discern, however, given that this
effect was only seen in the uppermost
category of exposure to oxygen, and a
gradient of worsening outcomes across
oxygen exposure levels was not
demonstrated. Additionally, continuous
measures of oxygenation were routinely
categorized; this procedure impairs
statistical inference, leading to both false-
positive findings and reduced statistical power

Table 2. Odds Ratios (95% Compatibility Intervals) for Hyperoxemia Dose (in Kilopascals) and Any Hyperoxemia Exposure
(as Indicator Variable)

Model Variable Odds Ratio (95% CI) Chi Square DoF P Value

0–1 d Hyperoxemia dose 1.01 (0.93–1.10) 0.071 1 0.790
Any hyperoxemia exposure 1.15 (0.95–1.38) 2.110 1 0.146

0–3 d Hyperoxemia dose 0.94 (0.85–1.03) 1.777 1 0.183
Any hyperoxemia exposure 1.35 (1.04–1.74) 5.157 1 0.023

0–5 d Hyperoxemia dose 0.93 (0.83–1.04) 1.441 1 0.230
Any hyperoxemia exposure 1.5 (1.07–2.13) 5.372 1 0.020

0–7 d Hyperoxemia dose 0.92 (0.81–1.05) 1.416 1 0.234
Any hyperoxemia exposure 1.74 (1.11–2.72) 5.815 1 0.016

Definition of abbreviations: CI = compatibility interval; DoF= degrees of freedom.
All other predictor variables are described in the online supplement.
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Figure 2. Point estimates of odds ratios and 95% compatibility intervals are presented for all linear
model terms. Hyperoxemia has been assessed in two ways: as an indicator (any hyperoxemia
exposure) and hyperoxemia dose variables. There was a progressively stronger association between
any hyperoxemia exposure and ICU mortality from the Day 0 to Day 1 model up to the Day 0 to Day 7
model. There was a lack of evidence to support a relationship between hyperoxemia dose and ICU
mortality. Odds ratios are not presented for age, weight, and the Acute Physiology and Chronic
Health Evaluation II score because these were modeled nonlinearly.
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(38). The most directly similar measure in
their study to our own approach was a
96-hour area under the curve for PaO2

. This
finding was associated with increased hospital
(but not ICU) mortality and was found at the
upper quintile of exposure only. Under these
constraints, there was no clear dose–response
relationship. A small study by Ruggiu and
colleagues bears a resemblance to our
approach in using any PaO2

greater than or
equal to 13.3 kPa (100 mm Hg) to indicate
hyperoxemia (40). They modeled mortality
with survival analysis and arrived at a similar
conclusion that a dose-independent exposure
to hyperoxemia was associated with harm.
They did not, however, account for
informative censoring of patient data.

The varied findings between studies
may be due in part to a broad range of
oxygenation criteria, statistical methods, and
heterogeneous study populations being used
to assess the impact of excessive oxygen
administration in the ICU (24). Studies have
variously used values of oxygenation,
including PaO2

(25, 42, 43), PaO2
and oxygen

saturation as measured by pulse oximetry
(SpO2

) (18, 44), PaO2
and FIO2

(29, 41), and
alveolar-arteriolar oxygen gradient (31). From
a biological standpoint, it remains unclear
which of these (or combination thereof)
provides the best measure to elucidate harm.
SpO2

has a ceiling effect at 100% and so is
limited in its capacity to reveal excess
oxygenation. The relationship between SpO2

and PaO2
may be altered by pathophysiology

and ageing (45). FIO2
is strongly confounded

with a treatment effect because patients with
high FIO2

requirements are more likely to
have higher disease severity (46, 47). Our
approach has the merit of using longitudinal
information regarding the arterial
oxygenation status of each patient throughout
the study period. By calculating the
hyperoxemia dose and accounting for the
effect of spike at zero (37), questions relating
to a dose–response relationship can be
addressed in a principled manner. This
approach may better explain systematic
variance in outcomes above what could be
achieved by previously reported strategies.

We were unable to find supporting
evidence for a dose–response relationship
between hyperoxemia dose and ICU
mortality. This does not necessarily mean
that this effect is absent; however, this
weakens causal interpretation of our
findings. A cut point of 13.3 kPa
(100 mm Hg) was used to define
hyperoxemia, rather than modeling the
entire area under the PaO2

time curve. This
latter approach would lead to inescapable
unmeasured confounding by severity of
illness that can prove challenging to
adequately control for. In our experience,
longitudinal measures of acute illness
severity, particularly those that encompass
a notion of respiratory dysfunction, are
particularly volatile. Our definition makes
minimal assumptions about what
constitutes hyperoxemia but at the expense
of reducing the number of cases from
which to learn. Given the reducing number
of cases without exposure to hyperoxemia,
particularly toward 7 days, residual
confounding remains a concern as a
potential explanation of these findings.

There was no evidence to support the
presence of a differential effect of exposure to
hyperoxemia regardless of primary respiratory
diagnosis or mechanical ventilation status.
There may, however, have been inadequate
power in our cohort to detect these effects.

In terms of limitations, we conducted a
two-stage analysis of longitudinal data. In
this approach, a longitudinal process, such
as serial PaO2

, is collapsed into a single
measure to be included within a model.
Although this is a common approach,
there is necessarily a loss of statistical
information. We are thus unable to address
questions related to, for example, the profile
of oxygen exposure over an ICU admission.
Under our approach, exposure to high
levels of excess oxygen for a short period of
time are thought of as equal to low levels of
excess oxygen for a long period of time.

We sought to apply a methodologically
rigorous approach to this problem, reducing
the bias inherent in studies of this nature by
accounting for informative censoring,
exploring dose–response relationships and
interaction effects. Nevertheless, the
associations described could still represent
particular patient subgroups known to
experience higher mortality and regular
exposure to hyperoxemia; for example,
those who undergo multiple transfers and
procedures. These patients are inherently less
stable, experience higher mortality (48) and
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Figure 3. Counterfactual risk plot illustrating the change in predicted mortality by setting all
hyperoxemia exposure to 0. The model-predicted risk of mortality with the observed hyperoxemia
is shown on the y-axis. The model-predicted risk of mortality when setting hyperoxemia to 0 is
shown on the x-axis. The Day 0 to Day 5 cohort is used as an example (other cohorts demonstrate
a similar pattern). The 458 identity line is marked as a dashed diagonal line representing no change
in risk. Several observations lie on the identity line, in keeping with the proportion of patients who had
no exposure to hyperoxemia and so cannot see an adjustment to their mortality risk via this
mechanism.
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morbidity (49), and may be placed on a high
inspired oxygen concentration for transfer,
regardless of clinical need. Such events are
common and our model would highlight
these associations.

There is likely a large and variable
exposure to oxygen before ICU admission.
Information with regard to oxygenation of
patients outside the ICU was unavailable
in our database. Given that patients
from our cohort enter critical care after
variable amounts of time in an operating
room, emergency department, or ward, it
is reasonable to assume that most have
had a prior exposure to oxygen. Indeed,
even if normoxemia is achieved after
admission to ICU, a brief period of
hyperoxemia in the emergency
department has been suggested to be
detrimental (50). Should exposure to
hyperoxemia increase the risk of mortality, it
is unclear over what timeframe following
exposure this risk returns to baseline. We
chose to model ICU mortality in place of
other more distant measures of outcome
(hospital mortality, 90-day mortality etc.)
because the proximity of the outcome to our
measure of oxygen exposure helps to
elucidate a causal relationship, if one
exists. We chose to censor readmissions
from the model for similar reasoning
because this would induce a large
unaccounted-for exposure to oxygen
between admissions.

We chose to model a function of PaO2

(hyperoxemia dose) because this approach

implicitly addresses the problem of
confounding by treatment effect, albeit at
the expense of creating an imperfect
definition of excess oxygen exposure. A
PaO2

above 13.3 kPa (100 mm Hg) likely
captures a surrogate of the mechanism
that is causing harm (high inspired oxygen
concentrations). Much of the preclinical
data favors high FIO2

as being causative for
lung parenchymal damage (9). However,
there may be other unrecognized systemic
effects that result from supraphysiological
PaO2

.
We did not model PaO2

directly because
this holds a nonmonotonic relationship with
mortality; hypoxemia and hyperoxemia are
both thought to be detrimental (51, 52).
Thus, by constraining this variable as
hyperoxemia dose, we could investigate the
effect of hyperoxemia, without needing to
account for hypoxemia, and thus create a
more parsimonious model.

Exposure to hyperoxemia is an
inherently time-dependent variable.
As such, it is difficult to model this
phenomenon inside the ICU for two main
reasons. First, informative censoring will
bias results (patients get better or die,
and stop contributing data at variable
nonrandom points in time). Second, to
measure hyperoxemia dose, a window of
observation is required to demonstrate an
effect. We tested over several time windows
to balance the tension between patient
numbers and the opportunity for
hyperoxemia exposure.

Conclusions
This study suggests that exposure to
supraphysiologic levels of oxygen is associated
with harm in the critically ill patient.We were,
however, unable to find evidence supporting a
dose–response relationship between exposure
to supraphysiologic oxygenation and
mortality. The lack of a dose–response
relationship weakens any causal
interpretation of this finding or implies that
the effect is relatively small and/or reaches a
plateau. We cannot, however, exclude an
undetected dose-dependent effect. Placing
these findings within the context of the
broader literature, our study suggests that a
small but meaningful reduction in mortality
could be achieved by avoiding exposure to
hyperoxemia. However, the potential for
unmeasured confounding to bias this result
places strong caveats on a causal
interpretation. Further experimental
investigation into this controversial field is
thus warranted. n
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28. Sjöberg F, Singer M. The medical use of oxygen: a time for critical
reappraisal. J Intern Med 2013;274:505–528.

29. de Jonge E, Peelen L, Keijzers PJ, Joore H, de Lange D, van der Voort
PHJ, et al. Association between administered oxygen, arterial partial
oxygen pressure and mortality in mechanically ventilated intensive
care unit patients. Crit Care 2008;12:R156.

30. Helmerhorst HJF, Arts DL, Schultz MJ, van der Voort PHJ, Abu-Hanna
A, de Jonge E, et al. Metrics of arterial hyperoxia and associated
outcomes in critical care. Crit Care Med 2017;45:187–195.

31. Eastwood G, Bellomo R, Bailey M, Taori G, Pilcher D, Young P, et al.
Arterial oxygen tension and mortality in mechanically ventilated
patients. Intensive Care Med 2012;38:91–98.

32. Chu DK, Kim LH-y, Young PJ, Zamiri N, Almenawer SA, Jaeschke R,
et al. Mortality and morbidity in acutely ill adults treated with liberal
versus conservative oxygen therapy (IOTA): a systematic review and
meta-analysis. Lancet 2018;391:1693–1705.

33. Hill AB. The environment and disease: association or causation? Proc
R Soc Med 1965;58:295–300.

34. NIHR health data finder; 2018 [accessed 2019 Jul 1]. Available from
http://www.hdf.nihr.ac.uk.

35. Harris S, Shi S, Brealey D, MacCallum NS, Denaxas S, Perez-Suarez D,
et al. Critical Care Health Informatics Collaborative (CCHIC): data,
tools and methods for reproducible research. A multi-centre UK
intensive care database. Int J Med Inform 2018;112:82–89.

36. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC,
Vandenbroucke JP; STROBE Initiative. The Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)
statement: guidelines for reporting observational studies. Lancet
2007;370:1453–1457.

37. Royston P, Sauerbrei W, Becher H. Modelling continuous exposures
with a ‘spike’ at zero: a new procedure based on fractional
polynomials. Stat Med 2010;29:1219–1227.

38. Harrell F. Regression modeling strategies with applications to linear
models, logistic and ordinal regression, and survival analysis.
New York, NY: Springer; 2015.

39. Palmer E. CC-HIC/hyperoxaemia: Post peer review release (version
1.2). Zenodo. 2019 Jul 11 [accessed 2019 Oct 30]. Available from:
http://doi.org/10.5281/zenodo.3332775.

40. Ruggiu M, Aissaoui N, Nael J, Haw-Berlemont C, Herrmann B,
Augy J-L, et al. Hyperoxia effects on intensive care unit mortality: a
retrospective pragmatic cohort study. Crit Care 2018;22:218.

41. Rachmale S, Li G, Wilson G, Malinchoc M, Gajic O. Practice of
excessive FIO2

and effect on pulmonary outcomes in mechanically
ventilated patients with acute lung injury. Respir Care 2012;67:
1887–1893.

42. Elmer J, Scutella M, Pullalarevu R, Wang B, Vaghasia N, Trzeciak S,
et al.; Pittsburgh Post-Cardiac Arrest Service (PCAS). The
association between hyperoxia and patient outcomes after cardiac
arrest: analysis of a high-resolution database. Intensive Care Med
2015;41:49–57.

43. Vaahersalo J, Bendel S, Reinikainen M, Kurola J, Tiainen M, Raj R,
et al.; FINNRESUSCI Study Group. Arterial blood gas tensions after
resuscitation from out-of-hospital cardiac arrest: associations with
long-term neurologic outcome. Crit Care Med 2014;42:1463–1470.

44. Durlinger EMJ, Spoelstra-de Man AME, Smit B, de Grooth HJ, Girbes
ARJ, Oudemans-van Straaten HM, et al. Hyperoxia: at what level of
SpO2 is a patient safe? A study in mechanically ventilated ICU
patients. J Crit Care 2017;39:199–204.

45. Martin DS, Levett DZH, Grocott MPW, Montgomery HE. Variation in
human performance in the hypoxic mountain environment. Exp
Physiol 2010;95:463–470.

46. Pisani L, Roozeman J-P, Simonis FD, Giangregorio A, van der Hoeven
SM, Schouten LR, et al.; MARS consortium. Risk stratification using
SpO2/FiO2 and PEEP at initial ARDS diagnosis and after 24 h in
patients with moderate or severe ARDS. Ann Intensive Care 2017;7:108.

47. Adams JY, Rogers A, Schuler A, Marelich GP, Fresco JM, Taylor SL,
et al. The association between SpO2/FiO2 ratio time-at-risk and
hospital mortality in mechanically ventilated patients. Am J Respir
Crit Care Med 2017;195:A5029.

48. Beckmann U, Gillies DM, Berenholtz SM, Wu AW, Pronovost P.
Incidents relating to the intra-hospital transfer of critically ill patients:
an analysis of the reports submitted to the Australian Incident
Monitoring Study in Intensive Care. Intensive Care Med 2004;30:
1579–1585.

49. Papson JPN, Russell KL, Taylor DM. Unexpected events during the
intrahospital transport of critically ill patients. Acad Emerg Med
2007;14:574–577.

50. Page D, Ablordeppey E, Wessman BT, Mohr NM, Trzeciak S, Kollef
MH, et al. Emergency department hyperoxia is associated with
increased mortality in mechanically ventilated patients: a cohort
study. Crit Care 2018;22:9.

51. Lee BK, Jeung KW, Lee HY, Lee SJ, Jung YH, Lee WK, et al.
Association between mean arterial blood gas tension and outcome in
cardiac arrest patients treated with therapeutic hypothermia. Am J
Emerg Med 2014;32:55–60.

52. Davis DP, Meade W, Sise MJ, Kennedy F, Simon F, Tominaga G, et al.
Both hypoxemia and extreme hyperoxemia may be detrimental in
patients with severe traumatic brain injury. J Neurotrauma 2009;26:
2217–2223.

ORIGINAL ARTICLE

1380 American Journal of Respiratory and Critical Care Medicine Volume 200 Number 11 | December 1 2019

http://www.hdf.nihr.ac.uk
http://doi.org/10.5281/zenodo.3332775

	link2external
	link2external
	link2external



