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Spinal cord injury (SCI) is a profound affliction of the central nervous system that often remains 
inadequately addressed. Prior research has indicated that endoplasmic reticulum stress (ERS), 
associated with apoptotic signaling, plays a part in subsequent injuries post-SCI. However, the exact 
mechanisms are still unclear. ERS-related genes and SCI-associated datasets were sourced from the 
Genecard and GEO databases. We identified 68 ERSDEGs and pinpointed 6 marker genes vital for SCI 
diagnosis (CYBB, PRDX6, PTGS1, GCH1, TLR2 and PIK3CG) which were all upregulated in SCI based on 
bioinformatics and qRT-PCR. The nomogram exhibited that these genes could effectively predict the 
occurrence of SCI. Functional analysis revealed the potential roles of these genes was closely related to 
neuron cells and immune response. Immune infiltration research underscored the substantial roles of 
macrophage and CD56 dim NK cells in SCI. The ceRNA network analysis further revealed the complex 
interplay among marker genes, lncRNAs and miRNAs in SCI. We screened six marker genes with great 
diagnostic value, and found that these genes may affect the occurrence of SCI by affecting the immune 
response and recovery of neurons.
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Spinal cord injury (SCI), results in profound impairment, incurring both financial and emotional burdens1. 
Annually, over 12,000 individuals suffer from spinal cord injuries in the U.S., leading to a rough count of 270,000 
such incidents across North America2. Despite global efforts, present surgical and pharmacological treatments 
yield inadequate results, often leading to suboptimal patient recovery3. Hence, a comprehensive understanding 
of SCI’s pathological progression becomes indispensable for devising effective therapeutic strategies.

The underlying physiological processes of SCI can be segmented into two stages: an initial injury, mainly 
due to physical trauma to the spine, followed by a subsequent phase characterized by a series of cellular and 
biological reactions. The latter encompasses a myriad of events including hemorrhage, ischemia, oxidative stress, 
inflammation, neuronal death, demyelination, and scar formation. Recent single-cell transcriptome analyses 
highlight that the most significant changes post-SCI occur between days 3 and 14, marked by microglia activation 
and cellular transformations4. The initial injury triggers microglial activity in the vicinity, compromising the 
stability of the barrier between the blood and spinal cord. This attracts circulating immune cells like neutrophils, 
lymphocytes, and macrophages into the spine area. As these cells emit agents that are either inflammatory or 
modulatory in nature, they have a complex impact on immunity, typically hindering the recovery from SCI5,6. 
Nevertheless, the precise role of immunity, spanning from damage amplification to regenerative potential, 
remains a contentious topic.

The endoplasmic reticulum (ER), serving as a cellular hub, is actively involved in both protein production 
and calcium storage, and it participates in diverse cell signaling pathways, including those of lipid biogenesis and 
calcium metabolism7,8. Acute intrinsic responses within the spinal cord post-SCI involve ER stress activation9. 
Notably, the demise of neuronal cells post-SCI, pivotal to the ensued neurological deficits, is predominantly 
attributed to secondary biochemical perturbations rather than the immediate mechanical impact10. These 
biochemical aberrations, including protein misfolding, instigate the ER stress response. Prolonged and intensified 
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ER stress can perturb ER functions, culminating in cell death11. However, the detailed mechanisms by which 
endoplasmic reticulum stress accentuates apoptosis during secondary injuries remain elusive.

To bridge this knowledge chasm, we deployed an array of bioinformatic techniques, ranging from differential 
expression analysis to molecular subtyping, aiming to discern robust biomarkers pertinent to SCI diagnosis. 
Concurrently, we discerned dual immune regulatory modalities in SCI and constructed a competing endogenous 
RNA (ceRNA) network. Key gene-immune cell interactions were explored, and validation was done using 
datasets from single cell RNA (scRNA)-seq for gene expression, with qPCR analysis for core genes. Our findings 
accentuate the significance of genes associated with ER stress in SCI evolution, proffering enhanced insights into 
the molecular immunological frameworks orchestrating SCI pathology.

Materials and methods
Data acquisition and preprocessing
The four mRNA datasets of SCI patients (GSE5296, GSE47681, GSE132242) were obtained from GEO database, 
including 23 SCI and 19 Sham samples. Besides, these SCI samples were all collected on day 3 post-SCI.

In instances where multiple probes matched a singular gene, we took the average expression, excluding the 
minimal values and outliers. To ensure uniformity across the datasets, we employed batch normalization with 
the assistance of “sva” package12. The integrity of the downloaded and processed data was corroborated through 
boxplots and principal component analysis (PCA) using “ggplot2” and “FactoMineR”. Separately, we retrieved 
1193 ER-associated genes via the Genecard platform, with the condition that a relevance score exceeding 7. The 
study workflow is succinctly depicted in Fig. 1.

Differentially expressed genes (DEGs) identification
We initiated our analysis by extracting the expression matrix of genes related to ERS from the merged dataset, 
yielding 409 genes in common. Through the R package “limma”13, differentially expressed analysis was analyzed. 
Genes were deemed differentially expressed if they met the criteria of |logFC| > 1, and a significance level of 
p < 0.05. Visualization of these findings was facilitated using the “ggplot2” package.

Functional enrichment and pathway analysis
For a deeper understanding of the implications of the identified genes, we conducted Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses with “ClusterProfiler” in R14. We set 
the significance thresholds at p < 0.05 and FDR < 0.25.

Fig. 1.  The normalization of datasets and identification of DEGs. (A) The boxplot of three datasets before 
normalization. (B) The boxplot of three datasets after normalization. (C) PCA plot of three datasets before 
normalization. (D) PCA plot of three datasets after normalization. (E) The volcano diagram showed the 
differentially expressed genes between SCI group and control group.

 

Scientific Reports |        (2024) 14:29981 2| https://doi.org/10.1038/s41598-024-81844-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Biomarker identification and risk prediction modeling
To refine data dimensionality, we applied the LASSO method with the “glmnet” tool in R15. Concurrently, we 
employed the SVM-RFE model using the “SVM” package. The performance of model was evaluated based 
on mean misclassification rates across 10-fold cross-validations16. The overlapping genes recognized by both 
algorithms were considered optimal for SCI diagnosis. Besides, ROC curve was used to evaluate the diagnostic 
capabilities of our selected markers using “pROC” package.

Pathway analysis using single-gene gene set enrichment analysis (GSEA)
For clarification of pathways linked to the marker genes, we examined their relationships with the remaining 
genes using the GSEA algorithm. Subsequently, genes were ranked based on their correlation strengths, from 
highest to lowest, and this ranked list was utilized for the enrichment analysis. The KEGG pathway database was 
used as the reference to determine the enrichment levels within the gene set.

Assessment of immune cell infiltration in SCI
To evaluate the degree of immune cell infiltration in both SCI and control samples, the single sample GSEA 
(ssGSEA) method was employed. Then, an evaluation of the association among the identified genes and the 
infiltrated immune cells was performed based on Pearson correlation analysis using reshape2 package.

Elucidation of SCI-associated molecular subtypes
The consensus cluster plus analysis was used to determine the subtype of SCI using ConsensusClusterPlus 
package. Parameters for this analysis were set as follows: sample resampling ratio at 80%, number of resampling 
at 1,000, and a maximum of 9 clusters. By analyzing the cumulative distribution function (CDF), consensus 
matrix, and variations in the region beneath the CDF curve, the best cluster count was ascertained. Visualization 
of the molecular typing results was achieved using the pheatmap package.

Construction of the ceRNA and TF-mRNA network
In our research, a ceRNA framework was built encompassing mRNAs, miRNAs, and lncRNAs. ​M​i​R​W​a​l​k​(​​​h​t​t​p​:​
/​/​m​i​r​w​a​l​k​.​u​m​m​.​u​n​i​-​h​e​i​d​e​l​b​e​r​g​.​d​e​/​​​​​) was employed to forecast the targeted miRNAs for the chosen 6 mRNAs17. 
Subsequent identification of lncRNAs, acting as upstream regulators of miRNAs, was conducted with StarBase 
v2.0 18. Given that both databases include experimentally confirmed miRNA-target interactions, we ensured a 
robust network construct. The ceRNA framework was depicted with the assistance of Cytoscape (version 3.9.0).

Data for forming the TF-mRNA network was acquired through the TRRUST database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​g​r​n​p​e​d​
i​a​.​o​r​g​/​t​r​r​u​s​t​/​​​​​)​​​1​9​​​. Using the paired TFs and mRNAs, we juxtaposed the findings from RNA differential analysis, 
which yielded a unique TF-mRNA network. This network was subsequently visualized using the “ggplot2” and 
“ggalluvial” packages20 in R.

Single-cell dataset exploration and validation
The scRNA-seq count data was retrieved from GSE189070 for our exploration, comprising eight instances: 
seven from SCI at varying time points and one from an uninjured sample. We specifically chose GSM5694214 
(from three days post-SCI) and GSM5694211 (uninjured) for our analysis. The Seurat R package21 was utilized 
for Quality Control (QC). Specific criteria led to the exclusion of cells: (a) fewer than 500 RNA counts or 
(b) mitochondrial gene expression ratios exceeding 5%. The Seurat package’s NormalizeData function was 
employed for data normalization. Subsequently, cell clusters were pinpointed using the FindClusters tool in 
Seurat (configured to a 0.5 resolution) and visualized through a 2D tSNE plot22. Using the SingleR package, we 
compared cells across clusters to a previously annotated reference dataset23. Cluster annotations were finalized 
after analyzing cell markers and assessing comparison outcomes.

Establishment of SCI mice model
Six male C57BL/6 mice were procured at the age of 6–7 weeks and accommodated in an environment that 
alternated between 12-hour day and night cycles, maintaining a temperature range of 20–23 degrees Celsius 
and a humidity level of 50%. All operational procedures adhered rigorously to the standards established by 
the National Institutes of Health. The mice were assigned randomly to two distinct groups: three underwent 
spinal cord injury surgery with a deliberate injury at the T10 segment, while the remaining three underwent a 
sham operation involving a laminectomy without spinal cord injury. The surgical procedure was meticulously 
executed as follows: the mice were anesthetized with 1% Isoflurane, sterilized using povidone-iodine, and a 
median dorsal incision was skillfully performed to expose the T10 segment of the spinal cord. Subsequently, 
the T10 laminectomy was executed to unveil the spinal cord. A spinal cord injury percussion device was then 
employed to deliver a blow at a height of 1 cm, utilizing a percussion rod weighing 10 g. Following the impact, 
both lower limbs of the mice exhibited involuntary twitching, and their tails demonstrated reflexive movements. 
Upon regaining consciousness from anesthesia, the mice experienced complete lower limb paralysis. The 
presence of dark red blood at the impact site served as an unequivocal indicator of the successful preparation 
of the injury model. In contrast, the sham operation group experienced immediate closure of the incision after 
laminectomy. The mice were humanely euthanized three days post-procedure to facilitate tissue sampling.

Quantitative real-time polymerase chain reaction (qRT-PCR)
Total RNA was meticulously isolated from mice spinal cord tissues utilizing TRIzol reagent (Solarbio, 15596-
026, China). Subsequently, the RNA underwent reverse transcription, employing the HiFiScript Reverse 
Transcription Kit (Cwbio, CW2020M, China). To gauge gene expression levels, we conducted qRT-PCR 
using the Takara TB Green® Fast qPCR Mix kit (Takara, RR430A, China) in conjunction with a state-of-the-
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art LightCycler 7500 System. Each sample was subjected to three sets of replicate experiments to ensure data 
robustness. To quantify the mRNA expression levels accurately, the 2−ΔΔCt method was employed. The internal 
reference of mRNA was glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The primer sequences for the 
pivotal genes under investigation can be found in Table 1 for reference.

Statistical analysis
All bioinformatic and statistical evaluations were carried out via R software (version 4.2.2). Statistical contrasts 
were made using the t-test for two groups. Using a two-tailed perspective, we interpreted all p-values, marking a 
value of p < 0.05 as the cutoff for statistical significance.

Results
Identification and characterization of DE-ERSRGs
It was obvious that the gene expression distribution of samples from different dataset has some deviation 
(Fig.  1A). However, the gene expression level is basically in the same range after the batch removal effect 
treatment (Fig. 1B). Besides, PCA results show that after batch effect is removed, samples from different data sets 
overlap together, indicating that batch effect is effectively removed (Fig. 1C–D).

From our results, 68 genes were differentially expressed (63 upregulated genes and 5 downregulated genes) 
in SCI group compared with sham group (Fig. 1E).

Functional enrichment analysis of DE-ERSRGs
During the development of SCI, the DE-ERSRGs may play essential roles. As shown in Fig. 2A, the BP of GO 
results exhibited that DE-ERSRGs were mainly involved in the response to toxic substance, response to oxidative 
stress and cellular response to chemical stress. Besides, most DE-ERSRGs were existed in collagen-containing 
extracellular matrix, endoplasmic reticulum lumen and phagocytic vesicle (Fig. 2B). In the term of MF, these 
genes were involved in peroxidase activity, heme binding and Toll-like receptor binding (Fig. 2C). The KEGG 
results showed that DE-ERSRGs were closely related to the lipid and atherosclerosis, TNF signaling pathway and 
HIF-1 signaling pathway (Fig. 2D).

Identification and validation of diagnostic markers for SCI
Then, we tried to determine the key genes with diagnosis value for SCI through machine learning. Through 
tenfold cross-validation in LASSO logistic regression, 9 key features were screened out based on the optimal 
lambda (Fig.  3A–B). Besides, the SVM-RFE algorithm further refined this list, targeting the optimal gene 
feature combination. Ultimately, 10 genes were pinpointed as the most distinguishing features with the lowest 
RMSE and the highest accuracy (Fig. 3C–D). An intersection of genes derived from both algorithms led to the 
identification of 6 key marker genes, namely CYBB, PRDX6, PTGS1, GCH1, TLR2, and PIK3CG, for subsequent 
analyses (Fig. 3E).

To further discern the diagnostic utility of each gene, we illustrated individual ROC curves using the set of 
markers. Figure 3F–G shows that the diagnosis model and all 6 genes rendered AUC values exceeding 0.9.

Then, as shown in Fig. 4A–F, it can be seen that six hub genes were all significantly upregulated in SCI samples 
compared with normal samples. Moreover, leveraging the logistic regression findings, we designed a predictive 
nomogram to estimate the likelihood of SCI occurrence. It was obvious that PTGS1 had the highest point 
while PRDX6 had the lowest point (Fig. 5A). The corresponding calibration curve attested to the nomogram’s 
proficiency in identifying SCI with remarkable precision (Fig. 5B). Besides, the DCA curves showed that the 
nomogram has great net benefits in diagnosis of SCI (Fig. 5C).

Involvement of key genes in SCI-associated pathways
In an endeavor to elucidate the implications of the identified marker genes in differentiating SCI from sham 
samples, we conducted a GSEA-KEGG pathway analysis for individual genes. A multifaceted analysis revealed 
substantial associations of four highly expressed marker genes, namely GCH1, PIK3CG, PRDX6 and PTGS1, 

Gene Sequence(5′-3′)

CYBB Forward: ​C​C​A​A​C​T​G​G​G​A​T​A​A​C​G​A​G​T​T​C​A
Reverse: ​G​A​G​A​G​T​T​T​C​A​G​C​C​A​A​G​G​C​T​T​C

PRDX6 Forward: ​C​A​G​T​A​G​A​G​T​G​T​C​C​C​A​G​G​A​G​G​A
Reverse: ​G​C​T​G​G​G​A​T​T​T​T​G​G​G​G​T​T​A​C​G

PTGS1 Forward: ​C​C​A​G​A​A​C​C​A​G​G​G​T​G​T​C​T​G​T​G​T
Reverse: ​G​T​A​G​C​C​C​G​T​G​C​G​A​G​T​A​C​A​A​T​C

GCH1 Forward: ​A​G​C​A​A​G​T​C​C​T​T​G​G​T​C​T​C​A​G​T​A​A​A​C
Reverse: ​A​C​C​G​C​A​A​T​C​T​G​T​T​T​G​G​T​G​A​G​G​C

TLR2 Forward: ​C​T​C​C​T​G​A​A​G​C​T​G​T​T​G​C​G​T​T​A​C
Reverse: ​G​C​T​C​C​C​T​T​A​C​A​G​G​C​T​G​A​G​T​T​C

PIK3CG Forward: ​T​G​T​T​T​A​C​T​C​C​T​G​T​G​C​A​G​G​C​T
Reverse: ​A​A​G​C​T​C​T​A​A​C​A​C​A​G​A​C​A​T​C​C​C​C

GAPDH Forward: ​G​T​C​T​T​C​A​C​C​A​C​C​A​T​G​G​A​G​A​A
Reverse: ​T​A​A​G​C​A​G​T​T​G​G​T​G​G​T​G​C​A​G

Table 1.  Primer sequences of the core genes.
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Fig. 3.  Identification of DE-ERSRGs as SCI diagnostic markers. (A,  B) LASSO approach identification. (C, 
D) SVM-RFE algorithm filtering. (E) Venn diagram showing algorithm intersections. (F) Logistic regression 
model underwent ROC analysis. (G) ROC evaluation of the 6 markers.

 

Fig. 2.  The GO and KEGG functional enrichment of DE-ERSRGs. (A) The GO enrichment of DE-ERSRGs in 
term of BP. (B) The GO enrichment of DE-ERSRGs in term of CC. (C) The GO enrichment of DE-ERSRGs in 
term of MF. (D) The KEGG enrichment of DE-ERSRGs.
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with pathways like focal adhesion and ECM receptor interaction (Fig. 6A–D). Furthermore, the downregulated 
expression of TLR2 were enriched in Nod like receptor signal pathway and Toll like receptor pathway (Fig. 6E). 
In addition, the downregulated expression of CYBB were enriched in Notch signaling pathway (Fig. 6F).

Molecular subtyping and immune correlations in SCI
In our pursuit to determine the immune subtypes inherent in SCI, we employed the cumulative distribution 
function (CDF) to meticulously categorize SCI patients, leveraging the expression profiles of the 68 DE-
ERSRGs. Optimal subtyping was achieved with k = 2, denoting the most suitable count of patterns (Fig. 7A–C). 
Subsequently, the discernibility of these two clusters was substantiated by principal component analysis (PCA) 
(Fig. 7D). Besides, boxplots and heatmaps illustrated that the expression of CYBB, PIK3CG, GCH1 and TLR2 
were significantly downregulated in cluster 2 compared with cluster 1, while the difference of PRDX6 and PTGS1 
were not significant between cluster 1 and cluster 2 (Fig. 7E–F).

Immune landscape in SCI
The interplay between SCI and the immune microenvironment is increasingly recognized. In light of this, the 
degree of immune infiltration within SCI samples was assessed by us utilizing the ssGSEA approach. Figure 8A 
depicts a noticeable reduction in the proportion of CD56dim natural killer (NK) cells and activated B cells 
among SCI samples compared to control groups. In contrast, the fractions of gamma delta T cells, MDSC, 
regulatory T cells, natural killer T cells, plasmacytoid dendritic cells, activated dendritic cells, natural killer cells, 
macrophages, mast cells, immature B cells, and type 1 T helper cells were noticeably elevated in SCI samples.

Then, we also explored the disparities in immune landscape between two clusters. Notably, Cluster 1 
exhibited a heightened abundance of MDSC, Macrophage, Regulatory T cells (Treg), and Immature B cells when 
contrasted with Cluster 2. In contrast, Cluster 2 was enriched in Activated CD8 T cells, CD56 bright NK cells, 
and CD56 dim NK cells (Fig. 8B).

The correlation between hub genes and Immune cells
Next, we further analyzed the correlation between hub genes and infiltration levels of immune cells to explore 
the potential roles in the development of SCI. From Fig. 9A, it can be seen that PRDX6 was only positively 
related to the activated B cells. PTGS1 was positively and negatively related to the activated B cells and activated 
CD8T cells, respectively (Fig. 9B). Besides, PIK3CG was positively and closely related to the immature B cell, 
monocyte, T follicular helper cell and macrophage (Fig.  9C). In addition, CYBB, TLR2 and GCH1 were all 
negatively related to CD56 dim NK cells (Fig. 9D-F).

Constructing ceRNA networks and transcription factor predictions
To further understand the post-transcriptional regulations in SCI, we established ceRNA networks, pinpointing 
the intersections between the target miRNAs of lncRNAs and those of the hub genes. Among the identified 
miRNAs, several showcased a high frequency of connections with genes (Supplement Fig.  1A). Specifically, 

Fig. 4.  The expression of six marker genes in SCI and normal group. (A) The expression of GCH1 in SCI and 
normal group. (B) The expression of CYBB in SCI and normal group. (C) The expression of TLR2 in SCI and 
normal group. (D) The expression of PTGS1 in SCI and normal group. (E) The expression of PRDX6 in SCI 
and normal group. (F) The expression of PIK3CG in SCI and normal group. *** (p < 0.001).
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miRNAs such as hsa-miR-873-5p, hsa-miR-875-3p, hsa-miR-1-3p, hsa-miR-561-3p, and hsa-miR-590-3p 
exhibited connections with four genes, while others including hsa-miR-4305, hsa-miR-3126-3p, hsa-miR-335-
3p, hsa-miR-130b-5p, and hsa-miR-33a-3p were linked to three. In total, 11 miRNAs manifested an extensive 
interaction network with at least two genes. Of these, hsa-miR-873-5p, hsa-miR-1-3p, and hsa-miR-875-
3p displayed the highest reliability by having upstream regulatory lncRNAs, with all three targeting the gene 
PTGS1. Consequently, through these interactions, we identified eight lncRNAs – CDR1-AS, LINC01043, RP5-
894D12.5, RP11-102K13.5, RP13-895J2.3, RP11-96L7.2, RP4-539M6.22, and RP11-333E1.2 – that target these 
three key miRNAs.

Building upon the findings, we harvested a comprehensive 830 pairs involving transcription factors and 
mRNA by referencing the TRRUST database’s variably expressed mRNAs. The intricate associations between 
the 318 transcription factors and corresponding mRNA sequences were effectively visualized using a Sankey 
diagram. Prominently, MYC, HSF1, JMJD1C, and SUMO1 emerged as the top four transcription factors 
exhibiting the strongest correlations (Supplement Fig. 1B).

Single-cell dataset validation
In this phase of the study, we used a scRNA-seq dataset for a more granular look into the cellular environment 
of SCI and uninjured samples.

From the entire dataset, 22,768 cells passed the quality control (QC) benchmarks. These cells were divided 
between SCI samples (12,757 cells) and uninjured samples (the remaining 10,011 cells). Through unsupervised 

Fig. 5.  The construction and validation of nomogram based on six marker genes. (A) The construction of 
nomogram for SCI diagnosis. (B) The calibration curve for nomogram. (C) Decision curve analysis (DCA) was 
performed for the Nomogram.
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clustering, the dataset was further categorized into 19 distinct clusters, as depicted in Fig. 10A. When exploring 
these clusters in depth, seven predominant cell types emerged from both the SCI and uninjured samples. These 
are: Gametocytes, Neurons, Dendritic Cells (DC), Bone Marrow Cells (BM), Erythroblasts, Embryonic stem 
cells, and Hematopoietic Stem Cells (HSC CD34+). This distribution is showcased in Fig. 10B.

The study then proceeded to scrutinize the expression patterns of the six previously identified marker 
genes (CYBB, PRDX6, PTGS1, GCH1, TLR2, and PIK3CG) across these cell types, in both SCI and uninjured 
conditions. Figure 10C-H visually depict how these identified genes are expressed among predominant cellular 
categories, facilitating a straightforward contrast between SCI and uninjured samples. Notably, Neurons in the 

Fig. 6.  Single-gene GSEA for six marker genes using KEGG reference dataset. (A) The GSEA pathway 
enrichment analysis for GCH1. (B) The GSEA pathway enrichment analysis for PIK3CG. (C) The GSEA 
pathway enrichment analysis for PRDX6. (D) The GSEA pathway enrichment analysis for PTGS1. (E) The 
GSEA pathway enrichment analysis for TLR2. (F) The GSEA pathway enrichment analysis for CYBB.
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Fig. 7.  Molecular subtypes and expression of six marker genes in SCI. (A) Cumulative distribution function 
(CDF) curve illustrating consensus clustering for SCI-related molecules. (B) Area variation under the CDF 
curve illustrating two stable molecular types. (C) Cluster heatmap for SCI molecular subtypes. (D) SCI-related 
molecular subtypes evaluated by Principal component analysis (PCA). (E) Expression difference in 6 markers 
between Cluster1 and Cluster2. (F) Heatmap of 6 markers across two subtypes.
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Fig. 8.  The calculation of immune landscape between different groups. (A) The infiltration levels of multiple 
immune cells in SCI and sham were assessed via the ssGSEA (B) The infiltration levels of multiple immune 
cells in cluster1 and cluster2 were assessed via the ssGSEA. ns (p > 0.05), * (p < 0.05), ** (p < 0.01), *** 
(p < 0.001).
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Fig. 9.  The correlation between immune cells and six marker genes. (A) The correlation between the 
infiltration of immune cells and PRDX6 expression. (B) The correlation between the infiltration of immune 
cells and PTGS1 expression. (C) The correlation between the infiltration of immune cells and PIK3CG 
expression. (D) The correlation between the infiltration of immune cells and CYBB expression. (E) The 
correlation between the infiltration of immune cells and TLR2 expression. (F) The correlation between the 
infiltration of immune cells and GCH1 expression.
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SCI samples expressed the majority of these marker genes. Specifically, CYBB, PTGS1, GCH1, TLR2, and PIK3CG 
were recognized as distinct markers for Neurons. Additionally, CYBB, GCH1, TLR2, and PTGS1 were markedly 
enriched in Erythroblasts. Furthermore, PTGS1 and TLR2 were pronouncedly expressed in Gametocytes.

Validation of marker genes in vivo
Finally, we evaluated the expression of six marker genes in mouse spinal cord tissues through qRT-PCR. It was 
observed that the SCI group exhibited markedly elevated levels of these five key biomarkers, namely CYBB, 
PRDX6, PTGS1, TLR2, and PIK3CG, in comparison to the sham group, while GCH1 was downregulated in SCI 
group (Fig. 11A–F).

Discussion
SCI represents a grave medical condition, inflicting profound health implications on patients and imposing 
a significant economic strain1. Despite the rapid technological advancements, a plethora of basic and clinical 
research studies on SCI have been undertaken, yet the validation of effective molecularly targeted therapies 
remains elusive. The activation of ERS has historically been acknowledged as a component of the immediate 
intrinsic response after a traumatic injury to the spinal cord9. However, the intricacies of its mechanism 

Fig. 10.  The analysis of single-cell sequencing dataset. (A–B) T-Distributed Stochastic Neighbor Embedding 
(T-SNE) plots showcasing 19 cell clusters and 7 main cell types in pSCI3d and uninjured tissues. (C-H) Violin 
diagrams displaying expression of 6 marker genes across varied cell types.
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continue to be elusive. In light of this, our study aimed to discern potential ERSRGs associated with SCI using 
bioinformatics analysis and further explore the influence of immune cell infiltration in SCI.

In our study, three SCI datasets (GSE5296, GSE47681, GSE132242) were chosen to mitigate the potential 
error rate and to bolster the reliability of our findings. We identified 68 DE-ERSRGs when comparing SCI with 
healthy controls: 63 of these were up-regulated, while 5 exhibited down-regulation. Both GO and KEGG analyses 
further substantiated a deep connection of these DEGs with an array of pathways. These pathways encompassed 
TNF, HIF-1, p53, NOD-like receptor and IL-17 signaling pathways. The TNF signaling pathway, specifically, 
plays a crucial role in modulating immune responses and facilitating T-cell activation, which can result in 
cellular demise24. Notably, studies have emphasized the advantageous impact of inhibiting the TNF-α signaling 
pathway on enhancing post-SCI functional recovery25. Additionally, Chen et al. discovered that activating the 
HIF-1 signaling pathway could enhance angiogenesis, neurogenesis, and the hypoxic ischemic environment 
to facilitate the recovery of neural functionality by regulating HIF-1α, VEGF proteins, and M2 macrophage 
exosomes26,27. Moreover, the role of p53, NOD-like, and IL17 in the pathogenesis of SCI is intricately linked to 
the inflammatory response28–30. Collectively, these findings underscore the pivotal significance of inflammation, 
immune response, oxidative stress, and neurogenesis in the initiation and progression of SCI.

In our analysis, six critical DE-ERSRGs, including CYBB, PRDX6, PTGS1, GCH1, TLR2 and PIK3CG, 
were identified through machine learning, demonstrating remarkable predictive accuracy for SCI. CYBB, a 
constituent of cytochrome B, has been implicated in inducing oxidative stress following SCI31. TLR2, a member 
of the Toll-like receptor (TLR) family, is essential for pathogen detection and the initiation of innate immune 

Fig. 11.  The validation of six marker genes in SCI and sham mouse samples calculating by qRT-PCR. (A) The 
expression of TLR2 in control and SCI groups. (B) The expression of GCH1 in control and SCI groups. (C) The 
expression of CYBB in control and SCI groups. (D) The expression of PTGS1 in control and SCI groups. (E) 
The expression of PRDX6 in control and SCI groups. (F) The expression of PIK3CG in control and SCI groups. 
* (p < 0.05), ** (p < 0.01), **** (p < 0.0001).
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responses32. Its significant role is further highlighted in the pathogenesis of various autoimmune diseases, 
with studies indicating that TLR2 deletion may potentially hinder recovery processes post-injury33,34. GCH1 
encodes for GTP cyclohydrolase I, a key enzyme in tetrahydrobiopterin synthesis, crucial for nitric oxide 
synthase activity35. The downregulation of GCH1 resulted in reduced microglial activation and pain36 and was 
associated with neuroprotection in SCI37. PIK3CG (PI3Kγ/p110γ) serves as a central regulator in inflammation 
and oxidation38,39. Further studies demonstrated that PIK3CG could enhance the recovery of SCI patients by 
promoting neuronal differentiation40. PRDX6, or peroxiredoxin-6, is an antioxidant protein. It has been detected 
in traumatic central nervous system injuries and linked to post-injury inflammation and apoptotic reactions41–43. 
PTGS1 encodes for cyclooxygenase-1 (COX-1), which plays a substantial role in neuronal health, with studies 
showing its protective capabilities post-injury44,45. In conclusion, our findings underscore the pivotal roles of 
these six marker genes in the evolution and progression of SCI.

The significant impact of immune cell infiltration on the progression and development of SCI is highlighted 
in recent research46. For example, Noble et al. demonstrated that functional recovery following SCI could be 
enhanced by restoring immune homeostasis47. SCI post-injury leads to reduced activity of NK cells, indicating 
their potential as therapeutic targets for SCI48. Furthermore, our study compared immune cells in SCI with 
sham samples. Notably, certain immunocytes such as macrophages, regulatory T cells, and NK cells exhibited 
increased infiltration in SCI samples, while the presence of CD8 T cells and CD56dim NK cells was reduced. 
CD8 T cells are among the most prevalent and crucial effector cells in the immune system49. Wu et al. discovered 
that the levels of CD8 T cells increased at 3-, 7-, and 14-day post-SCI treatment in a mouse model50. Similarly, 
we also observed an increase in CD8 T cell levels in the SCI group. However, PTGS1 was upregulated in the SCI 
group and negatively correlated with CD8 T cells, suggesting that CD8 T cells were not primarily affected by 
PTGS1. Additionally, PTGS1 and PRDX6 were both positively correlated with activated B cells, which showed 
no significant difference between the SCI and sham groups. According to GSEA results, we found that PTGS1 
and PRDX6 were enriched in ECM receptor interaction and focal adhesion, which may be involved in the 
migration and proliferation of neural cells51,52. These findings suggest that PTGS1 and PRDX6 may play a role in 
the development of SCI by influencing neural cells rather than the immune response.

Macrophages typically differentiate into two subtypes: M1 macrophage and M2 macrophage. M1 
macrophages are primarily associated with inflammatory responses53,54. In the mouse model of SCI, the 
microenvironment is predominantly influenced by M1 macrophages55. Elevated levels of M1 macrophages lead 
to increased production of pro-inflammatory mediators, exacerbating SCI, impeding recovery post-injury, and 
inducing neuronal damage27,56. Additionally, several studies have identified that PIK3CG can enhance the levels 
of M1 macrophages57. In our study, we observed that PIK3CG was upregulated in the SCI group and closely 
associated with macrophages. This suggests that PIK3CG may exacerbate SCI by promoting the polarization and 
infiltration of M1 macrophages.

Furthermore, CD56dim NK cells are the predominant NK cell subsets and exhibit potent cytotoxicity58. 
Campagnolo et al. demonstrated that NK cell cytotoxicity was significantly reduced in the SCI group compared 
to the control group59. Similarly, we observed a decrease in the levels of CD56dim NK cells in the SCI group 
in our study. Additionally, we found that the upregulated CYBB, GCH1, and TLR2 exhibited strong negative 
correlations with CD56dim NK cells. This suggests that CYBB, GCH1, and TLR2 may be involved in the 
development of SCI by inhibiting CD56dim NK cells, thereby promoting inflammation.

Nonetheless, our study has limitations. It predominantly relies on bioinformatics, necessitating further 
experimental and clinical validation. Data were sourced from public repositories with a limited sample 
size, and our clinical diagnostic model awaits external validation. In the initial phase of our study, we relied 
predominantly on animal data for analysis instead of patient specimens. Moving forward, the next stage of our 
research will involve the use of patient blood samples and other relevant specimens. In addition, our in vitro 
experiments included only three mice per group. Further studies should increase the number of experimental 
subjects to enhance the reliability of the results. This progression is anticipated to significantly enhance the 
clinical applicability and the informative value of our results.

Conclusion
In summary, our research discerned six pivotal marker genes tied to SCI’s onset and progression using advanced 
machine learning techniques. By developing a diagnostic model, we can precisely diagnose SCI based on 
these genes. Additionally, significant alterations in the immune landscape following SCI were uncovered in 
our findings, emphasizing the nuanced interplay of immune cells during post-injury reactions. Moreover, our 
understanding of the intricacies of ceRNA interactions and the ability to discern varying immune response 
patterns in SCI paves the way for personalized therapeutic strategies. Collectively, our findings offer enhanced 
insights into SCI’s molecular foundations and unveil promising avenues for therapeutic intervention.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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