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Abstract 

Background and purpose: N-acetyl-ρ-aminophen (APAP) is a widely used medication with analgesic and 

antipyretic characteristics. High paracetamol doses can damage the liver. Thai-pigmented rice may treat 

numerous liver disorders due to its antioxidant, anti-inflammatory, and glutathione-restoring capabilities. This 

study aimed to evaluate the phenolic components in three Thai rice bran extracts and their antioxidant and 

hepatoprotective activities in an animal model. 

Experimental approach: Fifty male mice were randomly assigned to the control and APAP studies. Each 

study was divided into 5 groups (n = 5) treated with distilled water, Hom Mali, Hang-Ngok, and Hom Nil (HN) 

rice compared with N-acetylcysteine with/without 60 mg/kg/day of APAP orally once a day for two weeks. 

Blood and liver sampling were collected for analysis. 

Findings/Results: HN rice bran exhibited higher contents of total phenolic, total flavonoid, total anthocyanin, 

ferric-reducing antioxidant, and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities than Hom Mali 

and Hang-Ngok. Anthocyanin was merely detected in HN. Following APAP administration, mice exhibited 

significant increases in hepatic enzymes including alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST), pro-inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin-6 

(IL-6)), and malondialdehyde (MDA), but lower levels of antioxidant enzymes and glutathione profiles. 

Amongst the three cultivars, HN rice was the only compound that decreased MDA, ALT, AST, TNF-α, and 

IL-6 while increasing antioxidant enzyme activity such as superoxide dismutase, catalase, and glutathione 

peroxidase that was very close to that of N-acetylcysteine groups.  

Conclusion and implications: Given the hepatoprotective and antioxidant properties, HN has the potential to 

be used as a health supplement. 

Keywords: Anti-inflammation; Antioxidant; N-acetyl-ρ-aminophen; Thai rice cultivars. 

INTRODUCTION 

N-acetyl-ρ-aminophen (APAP) is a 

commonly used medicine that serves as both an 

analgesic and an antipyretic worldwide. At 

therapeutic concentrations, it is safe; an adult’s 

typical dose is 10-15 mg/kg, and a maximum 

daily intake of 3-4 g is recommended                        

(1,2). Despite being classified APAP as                           

a non-steroidal anti-inflammatory drug 

(NSAID), it has very modest anti-inflammatory 

activities due to its ability to block the 

cyclooxygenase enzyme and prostaglandin 

synthesis (3). For treating fever and both acute 

and chronic pain, because of its many benefits 

including its affordable price, easy 

accessibility, and few side effects, APAP is 

often chosen as the first medication of choice 

(4). Nevertheless, current research has 

connected the negative consequences of      

APAP therapy to central nervous system 

disturbances and neuronal death in     

addition to hepatotoxicity (5). 
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Hepatotoxicity is the most significant side 

effect of paracetamol. N-acetyl-p-

benzoquinone imine (NAPQI) is mostly 

converted in the liver to sulfate and glucuronic 

acid through the oxidative metabolism 

involving CYP450 enzyme systems. 

Glutathione transforms this metabolite form 

which is produced under normal circumstances 

into cysteine and mercaptopurine. Conversely, 

when ingested in excess, hepatocyte 

glutathione depots decrease and NAPQI levels 

rise. Glutathione reserves that fall below 30% 

of the typical level are the first indications of 

hepatic damage (3,6). Moreover, NAPQI, 

which is not metabolized, combines with lipids, 

proteins, and DNA in the cells to induce 

necrosis. Reactive oxygen species (ROS) 

production leads to the development of 

oxidative stress. ROS further reduces 

glutathione (GSH) reserves by oxidizing GSH 

to glutathione disulfide (GSSG), which 

ultimately compromises hepatocyte integrity 

and function. Thus, protecting against the 

hepatotoxic effects of paracetamol should focus 

on restoring GSH (6,7). GSH readily detoxifies 

the metabolite NAPQI at therapeutic levels of 

APAP. Conversely, reactive species develop 

when high concentrations of APAP deplete 

glutathione and the toxic metabolite links itself 

to proteins within the cell, especially in the 

mitochondria (6,8). N-acetylcysteine (NAC) 

has been used to treat paracetamol intoxication 

by stimulating the synthesis of reduced 

glutathione. Nevertheless, there are still 

disagreements over the optimal dosage and 

duration of NAC administration due to its 

severe side effects, including bronchospasm, 

nausea, vomiting, and anaphylaxis (1,9,10). 

Rice is one of the most significant cereal 

crops farmed globally (Oryza sativa L.). 

Additionally, it is a significant staple crop, 

especially in Asia. Important bioactive 

components of rice, including γ-oryzanol, 

flavonoids, anthocyanins, sterols, and 

tocopherols have been shown to modulate and 

ameliorate human health conditions like 

oxidative diseases and cancer, owing to their 

diverse biological activities (11,12). Pigmented 

rice is regarded as an effective source of 

antioxidants in functional diets and possesses 

components that promote health (13). Thailand 

produces and consumes an extensive amount of 

rice, similar to many other Asian nations. 

Thailand’s Khao Dok Mali 105 (KDML105), 

also known as Hom Mali (HM) rice, is well 

known throughout the world for its delicate 

texture and pleasant aroma. Traditional folklore 

wisdom is used to make Hang-Ngok (HNg), 

also known as germinated Hang rice or 

parboiled germinated brown rice. Its capacity to 

produce gamma-aminobutyric acid (GABA) 

has grabbed a great deal of interest from 

researchers in the field (14). Thai black rice 

(Oryza sativa) known as Hom Nil (HN) has 

antioxidant-rich polyphenolic compounds (15). 

The most nutrient-dense portion of the rice 

grain is the bran. It has high concentrations of 

essential fatty acids and ɤ-oryzanol. Rice bran 

contains ɤ-oryzanol, which has been shown to 

have potent antioxidant properties. Because of 

its many distinctive qualities, rice bran is suited 

for niche markets including the pharmaceutical 

and nutraceutical sectors. 

Thus, the key contribution of this study was 

to determine rice bran fractions of the potential 

of HN rice bran extract that are appropriate 

sources of phytochemicals for a nutraceutical 

development that aims to evaluate Thai rice 

cultivars’ hepatoprotective effects in the 

treatment of liver damage induced by APAP, 

specifically compared to other Thai rice bran 

cultivars, i.e., HM and HNg, in addition to the 

use of a standard treatment of NAC. 

Information compiled from our study can 

validate Thai rice bran’s potential use as an 

effective natural antioxidant that could be used 

to create food, pharmaceutical, and 

nutraceutical products.  
 

MATERIALS AND METHODS 
 

Chemicals 
Johnson & Johnson Ltd. (Bangkok, Thailand) 

was the manufacturer of paracetamol. Now Foods 

(New York City, USA) supplied NAC. Sigma 

Aldrich (St. Louis, MO) provided the reduced β-

nicotinamide adenine dinucleotide phosphate 

(NADPH), 4-vinylpyridine, 5,5′-dithiobis-(2-

nitrobenzoic acid) (DTNB), nitrotetrazolium blue 

chloride (NBT), standard malondialdehyde 

(MDA), bovine serum albumin (BSA), xanthine 
oxidase, and standard superoxide dismutase 

(SOD) from bovine erythrocytes. Fisher 
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Scientific provided hydrogen peroxide (H2O2) 

(Leicestershire, UK).  FlukaChemika Co. 

(Steinheim, Switzerland) provided the 

thiobarbituric acid (TBA). The supplier of 

Trizol® was Invitrogen® (Carlsbad, CA). The 

purified chemicals used in the laboratory were 

obtained from commercial suppliers. 

 

Preparation of Thai rice bran crude extracts 

Northeastern Thailand provided samples of 

Thai rice, including HM (Khao Dawk Mali 105 

variety), HNg (germinated Hang rice or 

parboiled germinated brown rice of Khao Dawk 

Mali 105 variety), and HN (non-glutinous 

purple rice). The bran was extracted by 

polishing the brown rice. By drying to constant 

mass at 110 °C, moisture was measured. Three 

duplicate samples were used for each study, and 

the results were expressed on a dry matter basis. 

Before being analyzed, the samples were kept 

in storage at a temperature of -20 °C. Three 

Thai rice varieties yielded 1,000 g of bran that 

was extracted using 80% ethanol at 25 °C for 

seven days. A rotary evaporator R-II (Buchi 

Company, Flawil, Switzerland) was used to 

filter the crude extract before it was evaporated 

at a reduced pressure. The extracted rice bran 

was weighed to determine the yield percentage. 

 

Sample preparation for the in vitro assays 

For 48 h, 10 g of each sample was steeped in 

200 mL of 80% methanol (1:20) and shaken 

intermittently. The resultant suspension was 

filtered via Whatman No. 1 filter paper. The 

filtrate was then kept at -20 °C until needed, and 

it was concentrated at 40 °C in a rotary 

evaporator R-II (Buchi Company, Flawil, 

Switzerland). 

For one week, 80% ethanol was used to 

extract the three Thai rice cultivars brans (1000 

g), HM, HNg, and HN, at 25 °C. The crude 

extract was filtered via a rotary evaporator R-II 

and evaporated at a reduced pressure. Weighing 

the extracted rice allowed us to determine the 

percentage of yield. Using high-performance 

liquid chromatography, a preliminary 

phytochemical analysis was conducted. Using 

previously reported techniques (16,17), the 

biologically active substances, such as 

anthocyanins, phenolics, and flavonoids, were 

filtered out. 

Animal treatments 

Under the direction of the Animal Ethics 

Committee for Use and Care (Approval No. 

AEKSU 92/2559), fifty male ICR mice at seven 

weeks of age were provided by the National 

Laboratory Animal Center (Mahidol 

University, Nakhonpathom, Thailand) and 

housed at Kalasin University, Thailand. Unless 

otherwise specified, the mice were housed in 

cages with water, wood chip bedding, and a 

commercial mouse diet supplied ad libitum. 

The mice’s quarters featured air conditioning 

set at 23 ± 2 ℃ and a 12/12-h light/dark                  

cycle. 

Fifty mice were assigned to two categories, 

control and APAP (18-21). Each category was 

divided into 5 groups (five mice each) as 

follows: the control study included (the 

treatment was administered by oral gavage once 

a day for 14 days) group 1 received 0.1 

mL/mouse of deionized water (ColT-DW); 

groups 2 to 4 were administered 512 mg/kg/day 

of HM (ColT-HM) (22), HNg (ColT-HNg) 

(23), and HN (ColT-HN) bran rice extract (11); 

and 150 mg/kg/day of NAC (ColT-NAC) (6), 

respectively. In contrast, the mice of all five 

groups of the APAP treatment trial 

(administered 60 mg/kg/day orally once a day 

for 14 days) received the same portions of 

treatment as those in the control study. For 

studying the effects of the three rice, groups               

2-5, HM, HNg, HN, and NAC (APAP-HM, 

APAP-Hng, APAP-HN, and APAP-NAC) 

were administered orally to mice of the 14 days-

paracetamol-treated groups, respectively                

(Fig. 1). On day 15th, the mice were sacrificed. 

For hematological and biochemical analyses, 

heart blood was collected. Internal organs were 

excised, frozen, and kept at -80 °C for later 

analysis. 

 

Biochemical parameter analysis 

The plasma samples were analyzed using an 

automatic chemistry analyzer (Konelab                       

20i, Thermo Fisher Scientific) at the Veterinary 

Laboratory Diagnostic Service, Faculty of 

Veterinary Medicine, Khon Kaen                   

University, Thailand. Biochemical parameters 

including alanine aminotransferase (ALT) and                      

aspartate aminotransferase (AST) were 

evaluated (24-29).  
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Fig. 1. Experimental treatments of mice. ICR mice at 7 weeks of age (n = 50) were divided into two treatment categories 

including control (ColT) and APAP-induced hepatotoxicity group (APAP). Each category was treated with DW, HM, 

HNg, HN, and NAC. Each experimental treatment was performed on five mice. APAP, N-acetyl-ρ-aminophen; DW, 

deionized water; HM, Hom mali rice; HNg, Hang-Ngok rice; HN, Hom Nil rice; NAC, N-acetylcysteine. 

 

Determination of antioxidant activity  

The amount of SOD activity was evaluated 

by the degree of inhibition of formazan 

production. An aliquot of homogenate was 

removed using a solution of ethanol and 

chloroform. The SOD assay was conducted 

using the supernatant. The reagent                    

mixture, consisting of xanthine, ethyl-

enediaminetetraacetic acid (EDTA), 

nitrotetrazolium blue chloride, Na2CO3, BSA, 

and xanthine oxidase, was mixed with the 

supernatant and the bovine SOD standards. 

After incubating the mixture for 20 min at                   

25 °C, the reaction was terminated using                                

CuCl2. At the wavelength of 550 nm, 

formazan’s absorbance was measured. A 

comparison was made between the formazan 

inhibition% and the SOD standard. 
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The homogenate sample was incubated                    

for 1 min at 37 °C in an H2O2 substrate before 

ammonium molybdate was added to cease the 

reaction and measure the level of CAT                   

activity. A wavelength of 405 nm was used to 

measure the yellow complex. The hepatic 

bovine CAT standard was used to compare                      

the percentage of yellow complex                   

inhibition. 

The sample homogenate, sodium azide, 

EDTA, and sodium phosphate buffer (pH 7.4) 

were all included in the reaction mixture. GSH 

was then added. Subsequently, the mixture was 

incubated at 30 °C for 10 min. H2O2 was added 

to begin the reaction, and 5-sulfosalicylic acid 

(SSA) was used for terminating it. The 

glutathione peroxidase (GPx) activity was 

calculated using the GSSG concentration of the 

supernatant, which was obtained after 

centrifuging the reaction mixture for 15 min at 

350 g. Based on a GPx unit of mmol(s) of 

GSSG formed/min at pH 7.4 and 30 °C (30), the 

protein results were expressed as a unit/mg. 

 

Measurement of GSSG, GSH, and glutathione 

content  

The homogenate samples were 

deproteinized using SSA and then centrifuged 

at 10,000 g for 10 min at 4 °C after being stored 

for 10 min at 2-8 °C. The reaction mixture, 

which further included glutathione reductase, 

EDTA, NADPH, DTNB, and potassium 

phosphate buffer (pH 7.0), was combined with 

the supernatants in order to measure the total 

GSH. Over the course of 5 min, the absorbance 

of the thiol anions at 405 nm (A405) was 

measured every 60 s. To determine the total 

GSH levels, the sample’s A405/min (slope) was 

compared to the glutathione standard series. 

The contents of total GSH were subtracted from 

the amounts of GSSG to determine the GSH 

contents. 4-Vinylpyridine was incubated for 60 

min at room temperature with an aliquot of the 

sample supernatant and the GSSG standard in 

order to determine the GSSG concentration. 

The process for determining the contents of 

GSSG was similar to that of GSH (31). 

 

Determination of lipid peroxidation  

The amount of lipid peroxidation was 

measured using the TBA assay. The 

homogenate sample and MDA standard were 

incubated for 1 h at 37 °C before the reaction 

mixtures (trichloroacetic acid, TBA, and acetic 

acid) were added. After that, the samples were 

heated to a 15-min boil. The thiobarbituric acid-

reactive species was measured with a 

spectrofluorometer that was calibrated to emit 

at 551 nm and excite at 528 nm (32). 

 

Cytokine analysis 

Samples of serum were warmed to room 

temperature. Using commercial kits from 

Invitrogen, Thermo Fisher Scientific, USA, the 

inflammatory cytokines (tumor necrosis factor-

alpha (TNF-α) and interleukin-6 (IL-6)) were 

quantified by enzyme-linked immunosorbent 

assay (ELISA), adhering to the manufacturer’s 

protocols. The lower limit of detection was 4.4 

pg/mL. The intra- and inter-assay coefficients 

of variation for TNF-α were 5.2% and 9.2%, 

respectively. While the minimum detection of 

IL-6 was estimated to be 2 pg/mL, the intra- and 

inter-assay coefficients of variation for IL-6 

were 9.2% and 8.4%, respectively. 

 

Assessment of antioxidant activity and total 

phenolic compounds 

DPPH radical scavenging activity 

The 1,1-diphenyl-2-picrylhydrazyl radical 

(DPPH) scavenging activity of the extracts was 

evaluated with various modifications (16). 

One-tenth mL of the sample extract was mixed 

with 1.9 mL of 0.1 mM DPPH in ethanol.                  

The mixture was vortexed for 1 min, and after 

being at room temperature in the dark for 30 

min, the absorbance of this solution at 517 nm 

was determined. The % inhibitory activity was 

calculated using the equation below:  

Activity inhibition (%) =
Ao − Ae

Ao
×  100                        (1) 

where Ao stands for absorbance without extract 

and Ae for absorbance with extract. 

 

Ferric reducing/antioxidant power assay 

Fresh ferric reducing/antioxidant power 

(FRAP) reagent was made by combining 12 mL 

of distilled water at 37 °C with 100 mL of 

acetate buffer (300 mM, pH 3.6), 10 mL of 

2,3,5-triphenyl-tetrazolium chloride solution 

(10 mM 2,3,5-triphenyl-tetrazolium chloride in 

40 mM/HCl), and 10 mL FeCl3•6H2O (20 nM) 
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in a 10:1:1 ratio. To conduct the assay, identical 

test tubes, 180 µL of Milli-Q water, 1.8 mL of 

FRAP reagent, and 60 µL of sample, standard, 

or blank were added. The absorbance of the 

tubes was measured at 593 nm following 4 min 

of incubation at 37 °C, using the FRAP working 

solution as a blank. If the relative absorbance 

reading is not between 0 and 2.0, the sample 

must be diluted. To calculate the sample’s 

FRAP values in the FRAP assay, the 

antioxidant potential of the sample was 

determined using a standard curve plotted using 

the FeSO4•7H2O linear regression equation 

(16). 

 

Determination of total phenolic content 

The Folin-Ciocalteu reagent was used to 

measure the total phenolic content (TPC). After 

the extract was left at room temperature for 5 

min, 2.25 mL of diluted Folin-Ciocalteu reagent 

(diluted ten times) and distilled water were 

combined with 300 µL of the extract. Then, 

2.25 mL of a 60 g/L sodium carbonate solution 

was added. A spectrophotometer was used to 

measure the absorbance at 725 nm following        

90 min at room temperature. The results are 

expressed as milligrams of gallic acid 

equivalents to each gram of dried sample                 

(mg GAE/g) (16). 

 

Determination of total flavonoid content  

The total flavonoid content (TFC) was 

calculated using the colorimetric technique. In 

a test tube, 0.5 mL of the extract and 2.25 mL 

of distilled water were combined with 0.15 mL 

of a 5% NaNO2 solution. Following a                        

six-minute stand time, 0.3 mL of a 10% 

AlCl3•6H2O solution and 1.0 mL of 1 M NaOH 

were added 5 min apart. The mixture was               

mixed using a vortex mixer. At 510 nm,                        

the absorbance was promptly determined                  

with a spectrophotometer. According to                      

the findings, 1 g of the dried sample (16) 

included mg of rutin equivalent (mg RE/g)                        

as well as mg of quercetin equivalent (and mg 

QE/g). 

 

Determination of total anthocyanin content 

With a minor modification, the colorimetric 

approach was used to determine the colored 

rice’s total anthocyanin content. Using 10 mL 

of distilled water, three extractions totaling               

10 mg of rice brans were produced. The mixture 

was centrifuged at 10,000 g for 10 min, and the 

supernatants were collected (17). 

 

Evaluation of in vitro anti-inflammation 

activity 

The BSA assay was utilized to determine the 

crude extract’s anti-inflammatory properties, 

with few modifications (33). Phosphate 

buffered saline (PBS, pH 6.4), 0.2 mL of                 

1% bovine albumin, and 0.02 mL of extract 

made up the reaction mixture (5 mL). The 

mixture was then allowed to incubate for 15 

min at 37 °C in a water bath. For 5 min, the 

mixture was heated to 70 °C. The turbidity at 

660 nm was measured using a UV-visible 

spectrometer after the mixture cooled. 

Phosphate buffer solution was used as a control. 

The percentage inhibition of BSA denaturation 

was calculated as follows: 

 𝐴𝑛𝑡𝑖𝑑𝑒𝑛𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%)

=
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 −  𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

× 100                                                                                       (2) 

Statistical analysis 

The obtained data, represented as mean ± 

SD. were analyzed using; SPSS software 

(version 17, Chicago, IL, USA). One-way 

analysis of variance (ANOVA) followed by 

Tukey’s post-hoc tests was applied to compare 

the groups. The P-values < 0.05 were 

considered statistically significant. 

 

RESULTS 

 

Phytochemical contents of rice bran extracts 

Using the FRAP and DPPH radical 

scavenging activity (% inhibition) assays, the 

antioxidant capacity of Thai rice bran was 

evaluated. Table 1 illustrates the results of these 

examinations. HN rice bran had the highest 

value of scavenging activity and FRAP 

(87.83% and 16.73 mM FeSO4/g), followed by 

HNg rice bran (35.03% and 2.52 mM FeSO4/g) 

and the lowest activity was found in HM                  

rice bran (24.97% and 1.20 mM FeSO4/g).                   

In comparison to other rice brans, HN rice                 

bran demonstrated a substantially greater 

capacity for free radical scavenging and 

reduction.  
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Table 1. Antioxidant activity and total phenolic compounds of Thai rice bran extracts. The data are presented as mean 

± SD (n = 5). Different lower-case letters indicate a significant difference among different precipitation at the level of 

P-values < 0.05. 

Rice bran Hom Mali Hang-Ngok Hom Nil 

1,1-Diphenyl-2-picrylhydrazyl radical (% inhibition) 24.97 ± 0.33c 35.03 ± 0.62b 87.83 ± 0.10a 

Ferric reducing/antioxidant power (mM FeSO4/ g) 1.20 ± 0.02c 2.52 ± 0.02b 16.73 ± 0.70a 

Total phenolic content (mg GAE/g) 14.11 ± 0.09c 57.23 ± 0.18b 316.29 ± 2.08a 

Total flavonoid content (mg RE/g) 2.32 ± 0.08c 6.37 ± 0.13b 27.45 ± 0.23a 

Total flavonoid content (mg QE/g) 9.73 ± 1.04c 20.10 ± 0.14b 183.40 ± 4.72a 

Total anthocyanin content (mg cya3glu/100 g) Not detected Not detected 9.63 ± 0.06 

GAE/g, Gallic acid equivalents for each gram of dried sample; RE/g rutin equivalents for each gram of dried sample; QE, quercetin equivalents for 
each gram of dried sample. 

 

Table 1 also shows the TPC, TFC, and total 

anthocyanin content of Thai rice bran. The TPC 

values were significantly different amongst 

different varieties. Thai rice bran’s TPC varied 

from 14 to 316 mg GAE/g. HN rice bran had 

the highest TPC with a concentration of 316.29 

mg GAE/g, followed by HNg rice bran (57.23 

mg GAE/g), while HM rice bran had the lowest 

TPC (14.11 mg GAE/g). There was a 

significant difference in flavonoids amongst 

varieties of Thai rice brans in this study. HN 

rice bran had higher levels of TFC than HM and 

HNg rice bran, which was consistent with the 

findings of antioxidant activity and TPC (Table 

1). HN rice bran had the highest TFC with a 

concentration of 27.45 mg RE/g and 183.40 mg 

QE/g, followed by HNg rice bran (6.37 mg 

RE/g and 20.10 mg QE/g), while HM rice bran 

had the lowest TFC (2.32 mg RE/g and 9.73 mg 

QE/g). Total phenolic and flavonoid levels and 

antioxidant activity were shown to be strongly 

correlated in the data. Measuring 9.63 mg of 

cya3glu per 100 g, anthocyanin was exclusively 

detected in pigmented rice bran (HN). It was 

not detected in non-pigmented rice bran (HM 

and HNg).   

 

In vitro anti-inflammation assays of rice bran 

extracts 

Protein denaturation was inhibited by 

ethanolic extracts of Thai rice bran in a manner 

that depended on the variety of rice used.        

Figure 2 illustrates the inhibitory effect of 

various Thai rice brans on protein denaturation. 

These Thai rice brans had an inhibition 

percentage of protein denaturation that ranged 

from 21.74% to 68.12%. HN rice bran showed 

the highest level of inhibition, whereas HM rice 

bran showed the lowest levels of inhibition. 

 
Fig. 2. The percentage inhibition of anti-inflammation of 

various Thai rice bran cultivars. Data are expressed as 

mean ± SD, n = 5. Different letters (a-c) indicate 

significant differences amongst the groups at the level of 

P-values < 0.05. HM, Hom mali rice; HNg, Hang-Ngok 

rice; HN, Hom Nil rice. 

 

Effect of Thai rice cultivars on biochemical 

parameters  

Serum AST and ALT levels (IU/L) were 

measured to evaluate the liver’s function 

following intoxication. The levels of AST and 

ALT were rather constant in all groups without 

APAP. However, liver function increased after 

APAP intoxication. HM, HNg, HN, and NAC 

treatment decreased the levels of AST and 

ALT, although those levels in the groups treated 

with HN were rather close to those of NAC. 

Changes in the levels of AST and ALT 

followed the same trends; however, the levels 

of AST in both CoIT and APAP were much 

higher than those of ALT (Fig. 3A and B).  
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Fig. 3. Evaluation of liver function by measuring (A) AST and (B) ALT levels in APAP-induced hepatotoxicity mice. Data are 

expressed as mean ± SD, n = 5. Different letters (a-c) indicate significant differences amongst the groups at the level of P-values 
< 0.05. ColT, Control category not receiving APAP; APAP, N-acetyl-ρ-aminophen; DW, deionized water; HM, Hom mali rice; 

HNg, Hang-Ngok rice; HN, Hom Nil rice; NAC, N-acetylcysteine. 
 

 
Fig. 4. Evaluation of lipid peroxidation and antioxidant enzyme activities by measuring (A) CAT, (B) SOD, (C) GPx, and (D) 

MDA levels in APAP-induced hepatotoxicity mice. Data are expressed as mean ± SD, n = 5. Different letters (a-e) indicate 
significant differences amongst the groups at the level of P-values < 0.05. ColT, Control category not receiving APAP; APAP, 
N-acetyl-ρ-aminophen; DW, deionized water; HM, Hom mali rice; HNg, Hang-Ngok rice; HN, Hom Nil rice; NAC, N-
acetylcysteine; CAT, catalase; SOD, superoxide dismutase; GPx, glutathione peroxidase; MDA, malondialdehyde. 

 

The effect of Thai rice cultivars on antioxidant 

activities  
In the ColT groups of mice treated with HNg 

and HN, the antioxidant activity of CAT and 
SOD, also GPx activity following treatment 
with HN markedly increased (compared to the 
DW group which was the same as HM and 
NAC). On the other hand, after APAP 
intoxication, the enzyme activities were the 
lowest in the APAP-DW group.                               

The antioxidant enzyme activity levels 
significantly increased in APAP groups                 
treated with HNg, HN, and NAC.                
Surprisingly, after administration of HN, the 
activity of the enzymes CAT, SOD, and                      
GPx gradually increased which was not 
different from that in the NAC group                           
(Fig. 4A-C). 

The lipid peroxidation level in APAP mice 

was unusually high during the intoxication 
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period as showed by the high concentration of 

MDA (Fig. 4D). MDA levels substantially 

decreased after treatment with HNg, HN, and 

NAC (MDA level was similar in HM and DW 

groups). Intriguingly, the HN rice-treated 

population showed a significant reduction in 

lipid peroxidation, similar to that of the NAC 

group. The levels of MDAs were similar in 

CoIT but only the lowest in HN. 

 

The effect of Thai rice cultivars on glutathione 

and the GSH/GSSG ratio  

No significant differences in the level of 

total glutathione, GSH, GSSG, and GSH/GSSG 

were observed in all ColT groups. While in 

APAP mice, a lower total glutathione level was 

presented. When mice were given HN and 

NAC, the level of total glutathione significantly 

increased. Not only total glutathione value was 

raised through treatment with the extract of HN 

rice but also all of the glutathione profiles 

including GSH, GSSG, and the Ratio of 

GSH/GSSG were improved (Table 2). 

 

Effect of Thai rice cultivars on the serum 

inflammatory cytokines  

The levels of TNF-α and IL-6 increased in 

APAP-intoxicated mice treated with DW, HM, 

or HNg. The TNF-α level in the HN-treated 

group is similar to that of the NAC-treated 

group which was much lower than that of the 

other APAP groups. The trends followed by 

both inflammatory factors, but the levels of IL-

6 were almost higher in comparison with TNF- 

α, as shown in Fig. 5A and B. It was also 

observed that there was no statistically 

significant difference between the ColT groups’ 

serum inflammatory profile levels.’ 

 

 
Fig. 5. Evaluation of serum inflammatory profile by measuring (A) TNF-α and (B) IL-6 levels in APAP-induced hepatotoxicity 

mice. Different letters (a, b, and c) indicate significant differences amongst the groups at the level of P-values < 0.05. ColT, 

Control category not receiving APAP; APAP, N-acetyl-ρ-aminophen; DW, deionized water; HM, Hom mali rice; HNg, Hang-

Ngok rice; HN, Hom Nil rice; NAC, N-acetylcysteine; TNF-α, tumor necrosis factor-alpha; IL-6, interleukin-6.  

Table 2. The total glutathione level and ratio of GSH/GSSG in APAP-induced hepatotoxicity mice. The two treatments 

including the control and APAP-induced hepatotoxicity group and each treatment were treated with DW, HM, HNg, 

and HN, and NAC. The data are presented as the mean ± SD (n = 5).  Different lower-case letters indicate a significant 

difference among different precipitation at the level of P-values < 0.05. 

Groups Total glutathione GSH GSSG GSH/GSSG 

ColT 

DW 7.30 ± 0.21a 5.10 ± 0.11a 2.31 ± 0.17a 2.245a 

HM 7.27 ± 0.27a 5.12 ± 0.15a 2.24 ± 0.09a 2.234a 

HNg 7.48 ± 0.43a 5.19 ± 0.30a 2.48 ± 0.24a 2.265a 

HN 7.92 ± 0.17a 5.47 ± 0.27a 2.51 ± 0.08a 2.259a 

NAC 7.49 ± 0.02a 5.26 ± 0.43a 2.29± 0.44a 2.188a 

APAP 

DW 3.18 ± 0.17b 1.73 ± 0.10b 1.47 ± 0.07b 1.152b 

HM 3.04 ± 0.42b 1.69 ± 0.12b 1.34 ± 0.02b 1.123b 

HNg 4.61 ± 0.13ab 2.42 ± 0.06ab 2.13 ± 0.45ab 1.141ab 

HN 7.11 ± 0.28a 4.92 ± 0.09a 2.37 ± 0.27a 2.125a 

NAC 7.31 ± 0.32a 5.31 ± 0.23a 2.20 ± 0.47a 2.525a 

GSH, Reduced glutathione; GSSG, oxidized glutathione; APAP, N-acetyl-ρ-aminophen; ColT, control; DW, deionized water; DW, deionized water; 
HM, Hom mali rice; HNg, Hang-Ngok rice; HN, Hom Nil rice; NAC, N-acetylcysteine; 



The effect of Thai rice bran on APAP-induced hepatotoxicity 

197 

 

DISCUSSION 

 

Similar to other rice-consuming nations, 

Asia in particular, Thailand cultivates and 

consumes a lot of rice. There are about 5000 

recognized types of rice in the nation; one of the 

natural plants that are grown is Thai-colored 

rice (Oryza sativa L. indica). Black rice 

contains more protein, vitamins, minerals, and 

bioactive substances than white rice, according 

to many studies comparing the two types of rice 

(11). It has been noted to have health-promoting 

compounds and to be a potent antioxidant 

source (34). Rice contains essential bioactive 

components, including γ-oryzanol, flavonoids, 

phenolic acids, anthocyanins, sterols, 

tocopherols, and tocotrienols, which have been 

shown to manage and alleviate human health 

disorders, including oxidative diseases (11,12). 

In this study, the finding of phytochemicals of 

black rice for nutraceutical development was 

presented in the total anthocyanin, phenolic, 

and flavonoid contents in HN rice bran which 

was one of the black rice cultivated in Thailand.  

Anthocyanin is one of the main antioxidants 

that protect cells in all animals, including 

humans against ROS. Research has indicated 

that it contains antiviral, anti-inflammatory, and 

anti-aging properties. In addition, it lowers the 

chance of developing serious conditions like 

cancer and obesity (35-37). The HN extract of 

black rice cultivars had all of the phenolic and 

flavonoid components. 

This outcome is consistent with the research 

conducted by Settapramote et al. (34) which 

discovered that rice that has been pigmented 

(black, red, brown, dark purple, and rice berry 

rice) has flavones, anthocyanins, 

proanthocyanidins, tannins, phenolics, γ-

oryzanols, tocopherols, phytosterols, and 

essential oils, all of which are shown to be 

beneficial to human health. Natural compounds 

that protect the liver often have a range of 

properties, such as antiviral, 

immunomodulatory, anti-inflammatory, and 

antioxidant effects (38,39). Because these 

substances have the function of decreasing liver 

damage caused by APAP, they can be further 

developed as hepatoprotective agents or 

antioxidants. APAP is one of the most often 

used medications due to its antipyretic and 

analgesic qualities. The recommended doses 

are safe and effective. On the other hand, 

hepatotoxicity and acute liver failure could 

result from an overdose (40). 

The etiology of APAP-induced 

hepatotoxicity is mostly attributed to oxidative 

stress and mitochondrial dysfunction (38). ROS 

are produced when the thiol groups in proteins 

are oxidized by the high amount of APAP, 

which also depletes the glutathione reservoir. 

Damage to mitochondrial DNA is caused by 

both NAPQI and ROS. The subsequent binding 

of NAPQI to cellular macromolecules, such as 

proteins, lipids, and nucleic acids, causes 

hepatocyte death and centrilobular liver 

damage (38,41,42). The results, corroborating 

with those of others, demonstrate that the higher 

dose of APAP leads to liver damage with the 

increase of liver enzyme function (ALT and 

AST). Following the research conducted by 

Hosack et al. (26) and Kuna et al. (27) for acute 

or chronic drug-induced hepatotoxicity or liver 

injury, drug-induced liver injury can be 

diagnosed by liver biopsy histology, 

hepatotoxicity mechanism, hepatocellular, 

cholestatic, or mixed clinical presentation. It is 

the leading cause of acute liver failure in the US 

and elsewhere, although its prevalence is 

unknown. Hepatotoxicity is caused by dose-

dependent intrinsic and unexpected 

idiosyncratic processes. Most drug-induced 

liver injury patients have asymptomatic 

jaundice. Hepatocellular and cholestatic 

injuries elevate ALP and aminotransferases in 

lab tests. Although not necessary for diagnosis, 

a liver biopsy may rule out other liver disease 

causes (28,29). 

According to the findings of the study by 

Mrakic-Sposta et al. (43) and Sun et al. (44), 

correctly determining the prevalence of liver 

injury in humans is difficult, but it is the main 

cause of acute liver failure. Drug-induced liver 

injury including acute or chronic liver damage 

might be caused by the use of natural or 

synthetic drugs (45-46). The clinical symptoms, 

cellular and molecular mechanism, or liver 

biopsy histology can classify drug-induced 

liver injury. APAP-induced liver damage 

certainly contributes to acute liver failure (46). 

NAPQI is produced abundantly in liver cells by 

APAP. Increased NAPQI lowers glutathione 
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levels in the cytosol and mitochondria, causing 

oxidative stress. Lipid oxidation and ROS 

generation increase. High liver enzyme levels 

including ALT and AST correspond to the 

increase of ROS and lipid peroxidation in the 

liver damage and necrotize hepatocytes. This 

study shows that drug-induced liver damage 

(44-46) requires ROS-targeted treatments. 

The serum inflammatory cytokines of the 

APAP-intoxicated animals showed elevated 

levels of TNF-α and IL-6, which indicated liver 

damage. A high dose of APAP can result in 

redox imbalance in addition to liver injury 

(6,47). 

Due to their considerable increase over those 

in mice without APAP loading, the MDA levels 

can be used as an indicator of oxidative stress 

caused by APAP. Considering these findings, 

the APAP animals had a markedly higher 

antioxidant state as evidenced by the relative 

activity of antioxidant enzymes (SOD, CAT, 

and GPx). Thus, this behavior suggests that 

oxidative stress is a greater threat to APAP 

mice. The first line of defense against oxidant 

processes is antioxidant enzymes. For 

biological systems to repair the damage induced 

by oxidative stress in diverse tissues, such as 

the hematopoietic and reproductive organs, or 

to scavenge oxidative metabolites, an 

equilibrium between oxidants like MDA and 

antioxidants like CAT, SOD, and GPX is 

crucial (41). 

During the APAP hepatotoxicity damage 

process, NAPQI primarily targets 

mitochondrial proteins. Additionally, this 

substance disrupts the electron transport chain 

complex in the mitochondria, allowing electron 

leakages from the electron transport chain to 

oxygen and forming superoxide radicals (48). 

After superoxide radicals are created, SOD 

converts them to molecular oxygen (O2) and 

hydrogen peroxide (H2O2), or they can combine 

with endogenous nitric oxide (NO) to make 

peroxynitrite (ONOO−). Subsequently, H2O2 is 

either directly detoxified by GSH or scavenged 

by various antioxidant enzymes in hepatocytes, 

including CAT and GPx. Additionally, ONOO− 

formed in mitochondria may react with GSH to 

facilitate detoxification (38,39). As a result of 

these excessive free radicals, GSH is depleted, 

which leads to the accumulation of ONOO−, 

which damages mitochondrial DNA and forms 

nitrotyrosine protein adducts (48). 

Clinically, NAC is utilized as the 

conventional antidote for APAP poisoning, 

mostly by replenishing GSH to improve 

NAPQI detoxification. NAC also provides 

protective effects when taken during the 

oxidative damage phase, when the 

mitochondria produce ROS and hepatocellular 

GSH is reduced (48,50,51). However, there are 

some negative aspects to this medicine, 

including a limited therapeutic window and 

initial infusion-related adverse effects such as 

nausea, vomiting, and anaphylactoid responses 

(51,52). Therefore, due to their anti-

inflammatory and antioxidant qualities, Thai 

rice cultivars have been explored for the 

treatment of APAP at high doses (11,34). 

A crucial aspect of APAP intoxication in this 

investigation is the elevation of liver enzyme 

function, serum inflammatory cytokine, and 

MDA levels. Blood interacts with all organs 

and tissues creating reactive species (43,53-55). 

Blood also includes oxidizable substrates and 

compounds like thiobarbituric acid-reactive 

species that indicate oxidative stress. The blood 

levels of these indicators reflect tissue changes. 

Mrakic-Sposta et al. also evaluated a human 

ROS production profile (43). We found that 

measuring ROS production in capillary blood 

can detect free radical-induced alterations in 

skeletal muscle, heart, and liver. 
The findings demonstrated a decrease in 

these parameters after the administration of HN 
rice bran. In addition, mice fed 512 mg/kg HN 
rice bran had lower MDA levels than those of 
the mice in the APAP group. These findings 
support previous research showing that HN rice 
provides better overall antioxidant capacity 
protection against oxidative damage. 
Additionally, the studies using HN rice have 
demonstrated that flavonoids, by increasing 
SOD, CAT, and GPx activity and decreasing 
MDA levels, can enhance antioxidant capacity, 
promote nonspecific immunity, and minimize 
oxidative stress. The primary explanation for 
the impact is that anthocyanin, phenolic,                 
and flavonoid compounds have the capacity                 
to function as hydrogen donors and reducing 
agents, neutralizing ROS, and removing 
superoxide and hydrogen peroxide ions. 
Numerous studies have found that HN rice bran 
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has two main functions in lowering oxidative 
stress through (1) direct interaction with ROS 
and (2) augmentation of antioxidant enzyme 
activity (56-60). 

The pro-inflammatory cytokines TNF-α and 
IL-6 play a crucial role in mediating 
inflammation activation and pathogenic 
progression in APAP-induced hepatotoxicity 
(6,61). The present investigation showed that 
the HN rice and NAC-treated groups exhibited 
reduced levels of TNF-α and IL-6, potentially 
signifying a decrease in hepatic cell death. 
Similarly, it has been indicated that eating HN 
rice reduces pro-inflammatory components, 
(11,36,60,62,63). 
 

CONCLUSION 

 
In summary, this study demonstrated how 

Thai rice bran cultivars’ anti-inflammatory and 
antioxidant properties shielded mice against 
APAP-induced hepatotoxicity. Based on the 
findings, Thai black rice bran, or rice cultivars 
known as Hom Nil, could be an effective 
natural source of antioxidant and anti-
inflammatory agents that can be used as an 
active natural pharmaceutical ingredient in 
functional foods and nutraceuticals, especially 
ones that promote liver protection. 
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