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Abstract
Background: The accuracy of protein secondary structure prediction has been improving steadily
towards the 88% estimated theoretical limit. There are two types of prediction algorithms: Single-
sequence prediction algorithms imply that information about other (homologous) proteins is not
available, while algorithms of the second type imply that information about homologous proteins is
available, and use it intensively. The single-sequence algorithms could make an important
contribution to studies of proteins with no detected homologs, however the accuracy of protein
secondary structure prediction from a single-sequence is not as high as when the additional
evolutionary information is present.

Results: In this paper, we further refine and extend the hidden semi-Markov model (HSMM)
initially considered in the BSPSS algorithm. We introduce an improved residue dependency model
by considering the patterns of statistically significant amino acid correlation at structural segment
borders. We also derive models that specialize on different sections of the dependency structure
and incorporate them into HSMM. In addition, we implement an iterative training method to refine
estimates of HSMM parameters. The three-state-per-residue accuracy and other accuracy
measures of the new method, IPSSP, are shown to be comparable or better than ones for BSPSS
as well as for PSIPRED, tested under the single-sequence condition.

Conclusions: We have shown that new dependency models and training methods bring further
improvements to single-sequence protein secondary structure prediction. The results are obtained
under cross-validation conditions using a dataset with no pair of sequences having significant
sequence similarity. As new sequences are added to the database it is possible to augment the
dependency structure and obtain even higher accuracy. Current and future advances should
contribute to the improvement of function prediction for orphan proteins inscrutable to current
similarity search methods.

Background
Accurate prediction of the regular elements of protein 3D
structure is important for precise prediction of the whole

3D structure. A protein secondary structure prediction
algorithm assigns to each amino acid a structural state
from a 3-letter alphabet {H, E, L} representing the α-helix,
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β-strand and loop, respectively. Prediction of function via
sequence similarity search for new proteins (function
annotation transfer) should be facilitated by a more accu-
rate prediction of secondary structure since structure is
more conserved than sequence.

Algorithms of protein secondary structure prediction fre-
quently employ neural networks [1-7], support vector
machines [8-13] and hidden Markov models [14-16].
Parameters of the algorithm have to be defined by
machine learning, therefore algorithm development and
assessment usually contains four steps. The first one is a
statistical analysis to identify the most informative corre-
lations and patterns. The second one is the creation of a
model that represents dependencies between structure
and sequence elements. In the third step, the model
parameters are derived from a training set. Finally, in the
fourth step, the algorithm prediction accuracy is assessed
on test samples (sets) with known structure.

There are two types of protein secondary structure predic-
tion algorithms. A single-sequence algorithm does not use
information about other (homologous) proteins. The
algorithm should be suitable for a sequence with no sim-
ilarity to any other protein sequence. Algorithms of
another type are explicitly using sequences of homolo-
gous proteins, which often have similar structures. The
prediction accuracy of such an algorithm should be higher
than one of a single-sequence algorithm due to incorpora-
tion of additional evolutionary information from multi-
ple alignments [17].

The estimated theoretical limit of the accuracy of second-
ary structure assignment from experimentally determined
3D structure is 88% [18]. The accuracy (see formal accu-
racy definition below) of the best current single-sequence
prediction methods is below 70% [19].  BSPSS [14],
SIMPA [20], SOPM [21], and GOR V [22] are examples of
single-sequence prediction algorithms. Among the cur-
rent best methods that use evolutionary information
(multiple alignments, PSI-BLAST profiles), one can men-
tion PSIPRED [1], Porter [23], SSpro [24], APSSP2 [2],
SVMpsi [9], PHDpsi [25], JPRED2 [4] and PROF [26]. For
instance, the prediction accuracy of Porter was shown to
be as high as 80.4% [27]. The joint utilization of methods
that specialize on single-sequence prediction and meth-

ods using homology information will definitely improve
the prediction performance.

Single-sequence algorithms for protein secondary struc-
ture prediction are important because a significant per-
centage of the proteins identified in genome sequencing
projects have no detectable sequence similarity to any
known protein [28,29]. Particularly in sequenced
prokaryotic genomes, about a third of the protein coding
genes are annotated as encoding hypothetical proteins
lacking similarity to any protein with a known function
[30]. Also, out of the 25,000 genes believed to be present
in the human genome, no more than 40–60% can be
assigned a functional role based on similarity to known
proteins [31,32]. For a larger picture, the Pfam database
allows one to get information on the distribution of pro-
teins with known functional domains in three domains of
life (Table 1).

From the structure prediction standpoint, it is important
that two or more hypothetical proteins may bear similar-
ity with each other, in which case it still would be possible
to incorporate evolutionary information in a structure
prediction algorithm. However, many hypothetical pro-
teins would not have detectable similarity to any protein
at all. Such "orphan" proteins may represent a sizeable
portion of a proteome, as it is shown in Table 2 represent-
ing three newly sequenced genomes.

For an orphan protein, any method of secondary structure
prediction performs as a single-sequence method. Devel-
oping better methods of protein secondary structure pre-
diction from single-sequence has a definite merit as it
helps improving the functional annotation of orphan pro-
teins. In this work, we describe a new algorithm for pro-
tein secondary structure prediction, which develops
further the model suggested by Schmidler et al. [14]. We

Table 1: Number of proteins with known functional domains.

# Proteins # Proteins with Pfam hit (%)

Bacteria 623,037 450,962 72.38
Archaea 50,406 33,259 65.98

Eukaryota 284,392 187,472 65.92
Total 957,835 671,693 70.13

Table 2: Statistics of hypothetical proteins and orphan proteins observed in the recently sequenced genomes (year 2004).

# Proteins (%) hypothetical proteins (%) orphans in hypotheticals

Sulfolobus islandicus (Archaea) 197 65.98 57.69
Bacillus claussi (Bacteria) 4121 31.64 18.66
Gallus gallus (Eukaryota) 29,172 11.84 32.4
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consider the protein secondary structure prediction as a
problem of maximization of a posteriori probability of a
structure, given primary sequence, as defined by a hidden
semi-Markov model (HSMM). To determine the architec-
ture of this HSMM, we performed a statistical analysis
identifying the most informative correlations between
sequence and structure variables. We specifically consid-
ered correlations at proximal positions of structural seg-
ments and dependencies to upstream and downstream
residues. Finally, we proceeded with an iterative estima-
tion of the HSMM parameters.

Results and discussion
We first compared the performances of BSPSS [14] and
IPSSP in strict jacknife conditions. In our computations,
we used the EVA set of "sequence-unique" proteins
derived from the PDB database (see the Methods section).
We removed sequences shorter than 30 amino acids and
arrived to a set of 2720 proteins. The performances of
IPSSP and BSPSS were evaluated by a leave-one-out cross
validation experiment (jacknife procedure) on this
reduced set.

Then we evaluated and compared the performances of
BSPSS, IPSSP and PSIPRED on the set of 81 CASP6 targets
(see the Methods section) that are available in the PDB.
This evaluation is at the "single-sequence condition"
implying no additional evolutionary information is avail-
able. We used the software "PSIPRED_single", version 2.0,
which uses a set of fixed weight matrices in the neural net-
work and does not employ PSI-BLAST profiles. This pro-

gram was downloaded from the PSIPRED server [33] with
the available training data (see the Methods section). We
used the same training set to estimate the parameters of
BSPSS and IPSSP.

To reduce eight secondary structure states used in the
DSSP notation to three, it is possible to use different con-
version rules. Here we considered the following three
rules: (i) H, G and I to H; E, B to E; all other states to L, (ii)
H, G to H; E, B to E; all other states to L, (iii) H to H; E to
E; all other states to L. The first rule is also known as the
'EHL' mapping [34,35], the second rule is the one used in
PSIPRED [1] and earlier outlined by Rost and Sander [36],
while, finally, the third rule is the common 'CK' mapping,
which is the one used in BSPSS and other methods
[17,37,38]. We also analyzed the effect of making further
adjustments after applying either of the three conversion
rules. We used the adjustments proposed by Frishman
and Argos [39] that lead to a secondary structure sequence
with the minimum β-strand length of 3 and the minimum
α-helix length of 5. In our simulations, we used D = 50 for
the maximum allowed segment length. This value is suffi-
ciently large to cover almost all observed uniform second-
ary structure segments (see the Bayesian formulation
section). For the IPSSP method, we performed 2 iterations
and used a percentage threshold value of 35% in the data-
set reduction step (see the Iterative model training sec-
tion).

Performance measures
We have compared the performances of the methods in
terms of four measures: the Sensitivity, Specificity, Mat-
thew's correlation coefficient and Segment Overlap score.
We use the three-state-per-residue accuracy (Q3), defined
in Eq. 1 as the overall sensitivity measure:

Q
N

N
c

3 100 1% .( ) = × ( )

Table 3: The matrix of transition probabilities, P(Tj | Tj-1), used in 
the hidden semi-Markov model. Rows represent Tj-1 values.

P(Tj | Tj-1) H E L

H - 0.031 0.969
E 0.029 - 0.971
L 0.314 0.686 -

Table 4: Correlations at the amino acid level as characterized by the χ2 measure (PDB_SELECT set).

Helix Strand Loop

Separation χ2 # of pairs χ2 # of pairs χ2 # of pairs

1 1854.34 118,324 2579.85 60,423 9600.85 154,404
2 7008.83 103,853 1832.78 44,121 5774.58 124,249
3 2454.03 89,414 1116.65 30,909 4828.13 100,325
4 5095.27 77,302 535.02 20,336 2276.21 80,930
5 2052.68 67,036 461.70 12,584 1298.16 66,109
6 1295.46 57,602 398.44 7361 950.66 54,993
7 2196.94 49,017 392.93 4196 895.42 46,391
8 627.00 41,350 355.81 2292 761.48 39,611
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Here, Nc is the total number of residues with correctly pre-
dicted secondary structure, N is the total number of
observed amino acids. The same measure can be used for
each type of secondary structure, Qα, Qβ and QL (Eq. 2):

where  is the total number of residues with correctly

predicted secondary structure of type i, and Ni is the total
number of amino acids observed in conformation of type
i. The distribution of IPSSP predictions evaluated on the
EVA set with respect to the sensitivity measure is shown in
Fig. 1.

We first compared the performances of BSPSS and IPSSP
on the EVA set. From the results shown in Table 8, there is
a 1.9% increase in the overall 3-state prediction accuracy
in comparison with BSPSS, when the third conversion
rule was used with the length adjustments.

The prediction accuracy of the structural conformation of
the residues situated close to structural segment borders
(residues located in proximal positions) is measured by
sensitivity values computed as overall Q3_sb as well as
structure type specific Qα_sb, Qβ_sb, QL_sb. We observed that,
the accuracy of IPSSP is better than BSPSS in proximal
positions by 1.6% (Table 9).

The specificity measure SPi is defined for individual types
of secondary structure as follows:

where  is the total number of amino acids predicted to

be in conformation of type i. Note that, we do not con-
sider the overall specificity measure SP3, since its numeric

value is the same as Q3. It was observed in Table 10 that

values of SPα and SPL are higher for IPSSP, while SPβ value

is higher for BSPSS.

The Matthew's correlation coefficient [40] is a single
parameter characterizing the extent of a match between
the observed and predicted secondary structure. Mat-
thew's correlation is defined for each type of secondary
structure as follows:

For instance, for the α-helix, TP (true positives) is the
number of α-helix residues that are correctly predicted.
TN (true negatives) is the number of residues observed in
β-strands and loops that are not predicted as α-helix. FP
(false positives) is the number of residues incorrectly pre-
dicted in α-helix conformation, and finally FN (false neg-
atives) is the number of residues observed in α-helices but
predicted to be either in β-strands or loops. All the MCC
values shown in Table 11 are higher for IPSSP.

In terms of the Segment Overlap scores, IPSSP performs
uniformly better than BSPSS [see Additional file 1]. We
also assessed the reliability of predictions (prediction con-
fidence) produced by the methods BSPSS and IPSSP [see
Additional file 2]. The results lead us to the conclusion
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Table 5: KL distance between distributions of amino acids in proximal and internal positions (PDB_SELECT set).

KL-dis N1 N2 N3 N4 C4 C3 C2 C1

α-Helix 0.402 0.194 0.100 0.053 0.018 0.018 0.020 0.036
β-Strand 0.047 0.025 0.019 - - 0.021 0.039 0.074

Loop 0.045 0.019 0.008 0.003 0.004 0.008 0.026 0.028

Distribution of the prediction accuracy, Q3(%), over different amino acid sequences in the datasetFigure 1
Distribution of the prediction accuracy, Q3(%), over different 
amino acid sequences in the dataset.
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that IPSSP is better than BSPSS in terms of the reliability
measures.

To investigate the effect of length adjustments, we con-
verted short α-helices and β-strands to loops so that the α-
helix and β-strand segments had at least 5 and 3 residues,
respectively [39]. We also compared IPSSP and BSPSS
using different conversion rules and length adjustments
(Table 12). It is seen that IPSSP performs better than
BSPSS for each set of rules.

Next, we compared the performances of the three meth-
ods BSPSS, IPSSP and, PSIPRED_v2.0 on 81 CASP6 targets
that are available in PDB. From the results shown in Table
15, and Table 16, IPSSP is comparable to PSIPRED and is
more accurate than BSPSS.

Improvements over the BSPSS method

In summary, the differences with the BSPSS algorithm
proposed by Schmidler et al. [14] are as follows. We intro-
duced three residue dependency models (both probabilis-
tic and heuristic) incorporating the statistically significant
amino acid correlation patterns at structural segment bor-
ders. In these models, we allowed dependencies to posi-
tions outside the segments to relax the condition of
segment independence. Another novelty of the models is
the dependency to downstream positions, which we
believe is necessary due to asymmetric correlation pat-
terns observed uniformly in structural segments. To assess
the individual performances of the dependency models,

we evaluated IPSSP using 1, 2, 3, and C,

where C is the combination of the three models

obtained using an averaging filter. The results in Table 13
show that the combined models improve the overall accu-
racy by more than 1% when the second conversion rule
(H, G to H, E, B to E and all other states to L) is used with-
out length adjustments. Note that, all three models use a
five letter alphabet for positions with significantly high
correlation measures. The performance obtained when all

the hydrophobicity groupings are defined using the three
letter alphabet is 0.4% lower (data not shown).

Apart from the more elaborate dependency structure, we
introduced an iterative training strategy to refine estimates
of model parameters. The individual contributions of the
dependency model and the iterative training is given in
Table 14. In this table, the method PSSP refers to the
IPSSP method without iterative training. To reduce 8
states to 3, the second conversion rule is used without
length adjustments. Under this setting, the dependency
model improves the overall sensitivity measure by 1.6%
as compared to the BSPSS method. The inclusion of the
iterative training further improves the results by 0.5%.

Single-sequence vs. sequence-unique condition
We would like to emphasize that throughout the paper,
we use the term single-sequence prediction in its strict
meaning, i.e. the prediction method does not exploit
information about any protein sequence similar to the
sequence in question as for a true single-sequence such
information does not exist. The "single-sequence" concept
should be distinguished from the concept of the
"sequence-unique" category. The "sequence-unique" con-
dition requires the absence of significant similarity
between proteins in the test and in the training set. How-
ever, this condition leaves an opportunity to use the
sequence profile information that typically improves the
prediction accuracy by several percentage points in com-
parison with the single-sequence condition, in which such
profiles are not available. Indeed, methods such as
APSSP2 [2] and SVMpsi [9] achieved values around 78%
in the "sequence-unique" category of CASP [41] and
CAFASP [42] experiments. Similarly, the SSPAL method
[43] was cited [14] to have 71% accuracy in terms of
Q3(%) again in the "sequence-unique" category. Single-
sequence condition, as defined, is more stringent. This
condition is common for "orphan" proteins, which have
no detectable homologs. Improvement of structural pre-
diction under the single-sequence condition should con-
tribute to the improvement of function prediction for

   


Table 6: Position specific correlations as characterized by the χ2 measure in α-helix proximal positions (PDB_SELECT set).

χ2 i - 5 i - 4 i - 3 i - 2 i - 1 i + 1 i + 2 i + 3 i + 4 i + 5

N1 380.33 491.35 416.40 524.46 708.76 770.43 982.18 875.59 1132.54 487.41
N2 410.29 409.30 637.47 1029.24 770.43 805.38 993.92 619.44 872.68 594.32
N3 421.77 591.87 2000.33 731.30 661.04 702.25 844.97 697.18 694.83 652.90
N4 538.17 482.28 552.22 649.11 614.21 470.58 827.26 465.17 1055.63 468.99
C4 604.79 830.18 696.89 1082.25 481.05 463.31 933.17 578.54 657.20 527.83
C3 628.98 963.03 632.99 1181.51 497.00 527.86 903.81 485.95 443.62 370.97
C2 549.77 1261.04 624.90 1270.42 603.44 717.04 591.22 507.21 397.44 378.79
C1 563.37 1213.12 714.48 1300.46 810.35 1266.49 631.45 482.92 476.19 454.61
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Table 7: Positional dependencies within structural segments for the models 1, 2, and 3.  ∈ {hydrophobic, neutral, 

hydrohilic} indicates the hydrophobicity class of the amino acid Rj, where hydrophobic = {A, M, C, F, L, V, I}, neutral = {P, Y, W, S, T, G}, 

hydrophilic = {R, K, N, D, Q, E, H}.  is a 5 letter alphabet with groups defined as {P, G}, {E, K, R, Q}, {D, S, N, T, H, C}, {I, V, W, Y, F}, {A, 

L, M}.

1 2 3
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orphan proteins, which are not easy targets for functional
characterization.

Conclusions
We have shown that new dependency models and train-
ing methods bring further improvements to single-
sequence protein secondary structure prediction. The
results are obtained under cross-validation conditions
using a dataset with no pair of sequences having signifi-
cant sequence similarity. As new sequences are added to
the database it is possible to augment the dependency
structure and obtain even higher accuracy.

Typically protein secondary structure prediction methods
suffer from low accuracy in predicting β-strands, in which
non-local correlations have a significant role. In this work,
we did not specifically address this problem, but showed
that improvements are possible when higher order
dependency models are used and significant correlations
outside the segments are considered. To achieve substan-
tial improvements in the prediction accuracy, it is neces-
sary to develop models that incorporate long-range
interactions in β-sheets. The advances in secondary struc-
ture prediction should contribute to the improvement of
function prediction for orphan proteins inscrutable to
current similarity search methods.

Methods
The representative set of 2482 amino acid sequences
(PDB_SELECT) for preliminary statistical analysis were
obtained from [44]. The procedure used to generate the
PDB_SELECT list was described earlier [45]. In this set, the
percentage of identity between any pair of sequences is
less than 25%. The 3324 "sequence-unique" proteins
were downloaded from the EVA server ftp site, as of
2004_05_09, and the copy of the data were placed at [46].
The proteins in this set, which was used in leave-one-out
cross validation experiments were selected to satisfy the
condition that percentage of identity between any pair of
sequences should not exceed the length dependent
threshold S (for instance, for sequences longer than 450
amino acids, S = 19.5) [47]. CASP6 targets were down-
loaded from [48], and the PDB definitions were used for
the amino acid sequences and secondary structure assign-
ments. PSIPRED training data was downloaded from [49].

Bayesian formulation
The linear sequence that defines a secondary structure of a
protein can be described by a pair of vectors (S, T), where
S denotes the structural segment end (border) positions
and, T determines the structural state of each segment (α-
helix, β-strand or loop). For instance, for the secondary
structure shown in Fig. 2, S = (4, 9, 12, 16, 21, 28, 33) and
T = (L, E, L, E, L, H, L).

The secondary structure sequence and its representation by structural segmentsFigure 2
The secondary structure sequence and its representation by structural segments.

T1=L T2=E T3=L T4=E T5=L T6=H T7=L 
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     S1=4           S2=9    S3=12     S4=16       S5=21                 S6=28         S7=33 
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Table 7: Positional dependencies within structural segments for the models 1, 2, and 3.  ∈ {hydrophobic, neutral, 

hydrohilic} indicates the hydrophobicity class of the amino acid Rj, where hydrophobic = {A, M, C, F, L, V, I}, neutral = {P, Y, W, S, T, G}, 

hydrophilic = {R, K, N, D, Q, E, H}.  is a 5 letter alphabet with groups defined as {P, G}, {E, K, R, Q}, {D, S, N, T, H, C}, {I, V, W, Y, F}, {A, 

L, M}. (Continued)
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Given a statistical model specifying probabilistic depend-
encies between sequence and structure elements, the
problem of protein secondary structure prediction could
be stated as the problem of maximizing the a posteriori
probability of a structure given the primary sequence.
Thus, given the sequence of amino acids, R, one has to
find the vector (S, T) with maximum a posteriori probabil-
ity P(S, T | R) as defined by an appropriate statistical
model. Using Bayes' rule, this probability can be
expressed as:

where P(R | S, T) denotes the likelihood and P(S, T) is the
a priori probability. Since P(R) is a constant with respect to
(S, T), maximizing P(S, T | R) is equivalent to maximizing
P(R | S, T)P(S, T). To proceed further, we need models for
each of these probabilistic terms. We model the distribu-
tion of a priori probability P(S, T) as follows:

Here, m denotes the total number of uniform secondary
structure segments. P(Tj | Tj-1) is the probability of transi-
tion from segment with secondary structure type Tj-1 to a
segment with secondary structure type Tj. Table 3 shows
the transition probabilities P(Tj | Tj-1), estimated from a
representative set of 2482 "unrelated" proteins (see the
Methods section). The third term, P(Sj | Sj-1, Tj), reflects
the length distribution of the uniform secondary structure
segments. It is assumed that

P(Sj | Sj-1, Tj) = P(Sj - Sj-1 | Tj),  (7)

where Sj - Sj-1 is equal to the segment length (Fig. 2). The
segment length distributions for different types of second-
ary structure have been determined earlier [50].

The likelihood term P(R | S, T) can be written as:

Here, R[p:q] denotes the sequence of amino acid residues

with position indices from p to q. The probability of
observing a particular amino acid sequence in a segment
adopting a particular type of secondary structure is

P(  | S, T). This term is assumed to be equal to

P(  | Sj-1, Sj, Tj), thus this probability depends

only on the secondary structure type of a given segment,
and not of adjacent segments. Note that, we ignore the

non-local interactions observed in β-sheets. This simplifi-
cation allows us to implement an efficient hidden semi-
Markov model.

To elaborate on the segment likelihood terms in Eq. 8, we
have to consider the correlation patterns within the seg-
ment with uniform secondary structure. These patterns
reflect the secondary structure specific physico-chemical
interactions. For instance, α-helices are strengthened by
hydrogen bonding between amino acid pairs situated at
specific distances. To correctly define the likelihood term
we should also pay attention to proximal positions, typi-
cally the four initial and the four final positions of a sec-
ondary structure segment. In particular, α-helices include
capping boxes, where the hydrogen bonding patterns and
side-chain interactions are different from the internal
positions [51,52]. The observed distributions of amino
acid frequencies in proximal (capping boxes) and internal
positions of α-helix segments are depicted in Schmidler et
al. [14], and show noticeably distinct patterns.

Presence of this inhomogeneity in the statistical model

leads to the following expression for P(  | Sj, Sj-

1, Tj):
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S Sj j− + 1 1:Table 9: Segment border sensitivity values, Q.-sb(%), evaluated on 

the EVA set under the single-sequence condition.

Sensitivity Q3_sb(%) Qα_sb(%) Qβ_sb(%) QL_sb(%)

BSPSS 62.207 52.634 24.215 81.903
IPSSP 63.883 55.669 32.754 80.303

Table 8: Prediction sensitivity measures, Q.(%) evaluated on the 
EVA set under the single-sequence condition.

Sensitivity Q3(%) Qα(%) Qβ(%) QL(%)

BSPSS 68.400 63.203 36.737 82.167
IPSSP 70.300 65.934 45.445 81.280
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Here, the first and third sub-products represent the prob-
ability of observing lN and lC specific amino acids at the
segment's N-terminal and C-terminal, respectively. The
second sub-product defines the observation probability of
given amino acids in the segment's internal positions.
Note that, kb and ke designate Sj-1 + 1 and Sj, respectively.
The probabilistic expression (9) is generic for α-helices, β-
strands and loops. Formula (9) assumes that, the probabi-
listic model is fully dependent within a segment, i.e.
observation of an amino acid at a given position depends
on all previous amino acids within the segment. However,
at this time, the Protein Data Bank (PDB, [53]) does not
have a sufficient amount of experimental data to reliably
estimate all the parameters of a fully dependent model.
Therefore, it is important to reduce the dependency struc-
ture and keep only the most important correlations. In
order to achieve this goal, we performed the statistical
analysis described in the following section.

Correlation patterns of amino acids
Amino acids have distinct propensities for the adoption of
secondary structure conformations [54]. These propensi-
ties are in the heart of many secondary structure predic-
tion methods [51,52,55-62]. Our goal is to come up with
a dependency pattern that is comprehensive enough to
capture the essential correlations yet simple enough in
terms of the number of model parameters to allow relia-
ble parameter estimation from the available training data.
Therefore, we performed a χ2-test to identify the most sig-
nificant correlations between amino acid pairs located in
adjacent and non-adjacent positions for each type of sec-
ondary structure segments. The χ2-test compared empiri-

cal distribution of amino acid pairs with the respective
product of marginal distributions. Therefore, a 20 × 20
contingency table was computed for the frequencies of
possible amino acid pairs observed in different structural
states. In this test, the threshold was computed as 404.6
for a statistical significance level of 0.05.

We first considered the correlations between amino acid
pairs at various separation distances (Table 4). In α-helix
segments, a residue at position i is highly correlated with
residues at positions i - 2, i - 3 and i - 4. Similarly, a β-
strand residue had its highest correlations with residues at
positions i - 1, i - 2, and a loop residue had its most signif-
icant correlation with a residue at position i - 1. The test
statistics for the remaining pairs were above the threshold
for statistical significance but these values were considera-
bly lower than the ones listed above. The dependencies
that were identified by the statistical analysis are in agree-
ment with the well known physical nature of the second-
ary structure conformations.

Next, we analyzed proximal positions and a representative
set of internal positions. Frequency patterns in proximal
positions deviate from the patterns observed in internal
positions [51,58]. For a better quantification, we com-
puted the Kullback-Liebler (KL) distance between proba-
bility distributions of the proximal and internal positions
(Table 5). The observation that the KL distance is signifi-
cantly higher for positions closer to segment borders sug-
gests that amino acids in proximal locations have
significantly different distributions from those at internal
regions.

Finally, we performed a χ2-test for proximal positions to
identify the correlations between amino acid pairs at var-
ious separation distances. As can be seen from the results
for α-helix segments (Table 6), the general assumption of
segment independence does not hold as statistically sig-
nificant correlations were observed between residues situ-
ated on both sides of the segment borders. For instance,
the second amino acid i in the α-helix N-terminal signifi-
cantly correlates with the previous amino acid at position
i - 2, which is outside the segment. This correlation can be
caused by physical interactions between nearby residues
[51]. Also, the strength of correlation for the i + (down-
stream) residues was different from the strength observed
for i - (upstream) residues (Table 6). This fact indicates an
asymmetry in correlation behavior for i+ and i- residues.
The parameters of position specific correlations were also
computed for β-strand and loop segments (data not
shown).

A similar asymmetry in the correlation patterns was also
observed in internal positions (data not shown). For
instance, for α-helices, the ith residue in an internal posi-
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Table 11: Matthew's correlation coefficient values, C., evaluated 
on the EVA set under the single-sequence condition.

MCC Cα Cβ CL

BSPSS 0.5195 0.3849 0.4468
IPSSP 0.5638 0.4312 0.4764

Table 10: Prediction specificity measures, SP.(%), evaluated on 
the EVA set under the single-sequence condition.

Specificity SP.α(%) SP.β(%) SPL(%)

BSPSS 68.636 59.728 69.832
IPSSP 72.132 59.203 72.002
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tion is highly correlated with the i - 2th, i - 3th, i - 4th, i + 2th

and i + 4th residues. The parameters of correlation between
ithand i - 2th residues is different from the parameters of
correlation between ith and i + 2th residues.

In the next section, we will refine the probabilistic model

needed to determine P(  | Sj-1, Sj, Tj) using the

most significant correlations identified by the statistical
analysis.

Reduced dependency model

Correlation analysis allows one to reduce the alphabet
size in the likelihood expression (Eq. 9) by selecting only
the most significant correlations. The dependence pat-
terns revealed by the statistical analysis are shown in Table

7 divided into panels for α-helix (H), β-strand (E), and
loop (L) structures. To reduce the dimension of the
parameter space, we grouped the amino acids into three
and five hydrophobicity classes. We used five classes only
for those positions, which have significantly high correla-

tion measures. In Table 7,  stands for the dependency

of an amino acid at position i to the hydrophobicity class
of an amino acid at position i - 1, and the superscript 3
represents the total number of hydrophobicity classes.

To better characterize the features that define the second-
ary structure, we distinguished positions within a segment
as well as segments with different lengths. We identified as
proximal positions those in which the amino acid fre-
quency distributions significantly deviate from ones in
internal positions in terms of the KL distance (Table 5).
Based on the available training data, we chose 6 proximal
positions (N1-N4, C1-C2) for α-helices, 4 proximal posi-
tions (N1-N2, C1-C2) for β-strands, and 8 proximal posi-
tions (N1-N4, C1-C4) for loops. The remaining positions
are defined as internal positions (Int). In addition to posi-
tion specific dependencies, we derived separate patterns
for segments with different lengths. Table 7 shows the
dependence patterns for segments longer than L residues,
where L is 5 for α-helices, and 3 for β-strands and loops.
For shorter segments, we selected a representative set of
patterns from Table 7 according to the available training
data. 

To fully utilize the dependency structure, we found it use-
ful to derive three separate dependency models. The first

model, 1, uses only dependencies to upstream posi-

tions, (i-), the second model, 2, includes dependencies
to upstream (i-), and downstream (i+) positions simulta-

neously, and the third model, 3, incorporates only
downstream (i+) dependencies. For each dependency

model ( 1- 3), the probability of observing an
amino acid at a given position is defined using the
dependence patterns selected from Table 7. For instance,

according to the model 2, the conditional probability

of observing an amino acid at position i = N3 of an α-helix

segment becomes PN3
 (Ril ). By multiplying

the conditional probabilities selected from Table 7 as for-
mulated in Eq. 9, we obtain the propensity value for the
observation of the amino acid segment under the speci-

fied model. In the case of 1, and 3, this product
gives the segment likelihood expression, which is a prop-

erly normalized probability value P(  | S, T).

Hence, 1, and 3 are probabilistic models. For the

model 2, we rather obtain a score Q(  | S,

T) that represents the potential of a given amino acid seg-
ment to adopt a particular secondary structure conforma-
tion. This scoring system can be used to characterize
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Table 13: Performances of the BSPSS, IPSSP with dependency 

models, 1, 2, 3, and IPSSP with the combined model, 

C (obtained using an averaging filter), evaluated on the EVA 

set under the single-sequence condition.

Sensitivity Q3(%) Qα(%) Qβ(%) QL(%)

BSPSS 65.175 65.640 38.814 76.658

IPSSP- 1
65.968 66.199 45.387 75.043

IPSSP- 2
66.003 66.606 46.952 74.108

IPSSP- 3
66.315 67.012 45.005 75.364

IPSSP- C
67.421 68.089 46.395 76.363

  







Table 12: Prediction sensitivity measures, Q.(%), analyzed with 
respect to three conversion rules and length adjustments, 
evaluated on the EVA set under the single-sequence condition.

Sensitivity Q3(%) Qα(%) Qβ(%) QL(%)

BSPSS Rule 1 65.177 65.655 38.844 76.644
BSPSS Rule 2 65.175 65.640 38.814 76.658
BSPSS Rule 3 67.218 64.048 38.071 80.491

BSPSS Rule 1 + Length adj 68.060 63.775 37.022 81.378
BSPSS Rule 2 + Length adj 68.078 63.793 37.017 81.399
BSPSS Rule 3 + Length adj 68.400 63.203 36.737 82.167

IPSSP Rule 1 67.415 68.115 46.386 76.340
IPSSP Rule 2 67.421 68.089 46.395 76.363
IPSSP Rule 3 69.096 66.559 45.319 79.893

IPSSP Rule 1 + Length adj 70.027 66.557 45.588 80.577
IPSSP Rule 2 + Length adj 70.036 66.554 45.559 80.602
IPSSP Rule 3 + Length adj 70.300 65.934 45.445 81.280
Page 10 of 15
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:178 http://www.biomedcentral.com/1471-2105/7/178
amino acid segments in terms of their propensity to form
structures of different types and when uniformly applied
to compute segment potentials, allows to implement
algorithms following the theory of hidden semi-Markov
models. Implementing three different models enables to
generate three predictions each specializing in a different
section of the dependency structure. Those predictions
can then be combined to get a final prediction sequence,
as explained in the next section.

The hidden semi-Markov model and computational 
methods
Amino acid and DNA sequences have been successfully
analyzed using hidden Markov models (HMM) as the
character strings generated in "left-to-right" direction. For
a comprehensive introduction to HMMs, see [63].

Here, we consider a hidden semi-Markov model (HSMM)
also known as HMM with duration. Such type of model
was earlier used in gene finding methods, such as Genie
[64], GenScan [65] and GeneMark.hmm [66]. The HSMM
technique was introduced for protein structure prediction
by Schmidler et al. [14]. In a HSMM, a transition from a
hidden state into itself cannot occur, while a hidden state
can emit a whole string of symbols rather than a single
symbol. The hidden states of the model used in protein
secondary structure prediction are the structural states {H,

E, L} designating α-helix, β-strand and loop segments,
respectively. The state transitions occur with probabilities
P(Tj | Tj-1) thus forming a first order Markov chain. At each

hidden state, an amino acid segment with uniform struc-
ture is generated according to a given length distribution

P(Sj | Sj-1, Tj), and the likelihood P(  | Sj-1, Sj, Tj)

(Fig. 3).

Having defined this HSMM, we can consider the protein
secondary structure prediction problem as the problem of
finding the sequence of hidden states with the highest a
posteriori probability given the amino acid sequence. One
efficient algorithm to solve this optimization problem is
well known. Given an amino acid sequence R, the vector
(S, T)* = arg max P(S, T | R) can be found using the Viterbi
algorithm. Here lies a subtle difference between the result
that can be delivered by the Viterbi algorithm and the
result needed in the traditional statement of the protein
secondary structure prediction problem.

The Viterbi path does not directly optimize the three-state-
per residue accuracy (Q3):

Also, the Viterbi algorithm might generate many different
segmentations, which might have significant probability
mass but are not optimal [14]. As an alternative to the
Viterbi algorithm, we can determine the sequence of struc-
tural states that are most likely to occur in each position.
This approach will use forward and backward algorithms
(posterior decoding) generalized for HSMM [63].
Although the prediction sequence obtained by forward
and backward algorithms might not be a perfectly valid
state sequence (i.e. it might not be realized given the
parameters of HSMM), the prediction measure defined as
the marginal posterior probability distribution (Eq. 14)
correlates very strongly with the prediction accuracy (Q3)
[14]. The performance of the Viterbi and forward-back-
ward algorithms are compared in Schmidler et al. [14].
Here, forward and backward variables are defined as fol-
lows (n is the total number of amino acids in a sequence):

R
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Table 15: Prediction sensitivity measures, Q.(%), evaluated on 
the CASP6 targets.

Sensitivity Q3(%) Qα(%) Qβ(%) QL(%)

BSPSS 66.541 75.177 41.743 72.696
IPSSP 67.899 74.984 46.087 73.755

PSIPRED 67.680 76.066 52.032 69.028

Table 14: Comparison of prediction sensitivity measures, Q.(%), 
for BSPSS, IPSSP and PSSP (the method that does not use 
iterative training), evaluated on the EVA set under the single-
sequence condition.

Sensitivity Q3(%) Qα(%) Qβ(%) QL(%)

BSPSS 65.175 65.640 38.814 76.658
IPSSP 67.421 68.089 46.395 76.363
PSSP 66.840 66.945 44.566 76.761
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The forward variable αθ(j, t) is the joint probability of
observing the amino acid sequence up to position j, and a
secondary structure segment that ends at position j with
type t.  Here, θ represents the statistical dependency
model. Similarly, the backward variable βθ(j, t) defines the
conditional probability of observing the amino acid
sequence in positions j + 1 to n, and a secondary structure
segment that ends at position j with type t. Then, the a pos-
teriori probability for a hidden state in position i to be
either an α-helix, β-strand or loop is computed via all pos-
sible segmentations that include position i (Eq. 13).  The
hidden state at position i is identified as the state with
maximum a posteriori probability. Finally, the whole pre-
dicted sequence of hidden states is defined by Eq.14.

The computational complexity of this algorithm is O(n3).
If the maximum size of a segment is limited by a value D,
the first summation in Eq. 11 starts at (j - D), and the first
summation in Eq. 12 ends at (j + D) reducing the compu-
tational cost to O(nD2).

Note that, forward and backward variables are computed
by multiplying probabilities, which are less than 1, and as
the sequence gets longer, these variables approximate to
zero after a certain position. Hence it is necessary to intro-
duce a scaling procedure to prevent numerical underflow.
The scaling for a "classic" HMM is described in [63]. This
procedure can easily be generalized for an HSMM, where
the scaling coefficients are introduced at every D posi-
tions.

This completes the derivation of the algorithm for a single

model. Since we are utilizing three dependency models, θ
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= 1, 2, 3, it becomes necessary to combine the
outputs of the three models with an appropriate function.
In our simulations, we implemented averaging and maxi-
mum functions to perform this task and observed that the
averaging function gives a better performance. The final
prediction sequence is then computed as:

Iterative model training
To improve the estimation of the model parameters, we
implemented an iterative training procedure. Upon
obtaining an initial secondary structure prediction for a
given amino acid sequence, we re-adjust the HSMM
parameters using proteins that have similar structural fea-
tures and repeat the prediction step. That is, once we
obtain the prediction result for a test sequence, we com-
pute the α-helix, β-strand, and loop compositions (the
percentages of α-helix, β-strand, and loop predictions).
We then remove from the training set those sequences
that do not have a similar secondary structure composi-
tion. To assess the similarity between the prediction
sequence and a training set protein, we compute the abso-
lute value differences of the composition values and apply

a fixed threshold. If the differences for all secondary struc-
ture types are less than the threshold, then the two
sequences are assumed to be similar. The dataset reduc-
tion step is followed by the re-estimation of the HSMM
parameters and the prediction of the secondary structure
(Fig. 4). Note that, in the second and all subsequent itera-
tions, we always start from the initial data set of training
sequences and use the predicted sequence to reconstruct
the training set. This approach prevents the iterations
from sidetracking and converging to an incorrect result.

Although affinity in structural composition does not guar-
antee structural similarity, using this measure allows us to
reduce the training set to proteins that belong to more
closely related SCOP families [67]. Thus, for example, a
prediction of a structure from an all-α class is likely to be
followed by a training using proteins having high α-helix
content. In our simulations, we observed that after several
iterations (no more than 3) the predicted secondary struc-
ture sequence did not change indicating the algorithm
convergence.
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Table 16: Matthew's correlation coefficient values, evaluated on 
the CASP6 targets.

MCC Cα(%) Cβ(%) CL(%)

BSPSS 0.5403 0.4354 0.4457
IPSSP 0.5657 0.4486 0.4696

PSIPRED 0.5465 0.4801 0.4646
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Additional File 1
Segment Overlap Score. In this file, the performances of the methods 
BSPSS and IPSSP are evaluated and compared on the Segment Overlap 
(SOV) measure, which is based on the average overlap between the 
observed and the predicted segments.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-178-S1.pdf]

Additional File 2
Reliability Measures. In this file, the performances of the methods BSPSS 
and IPSSP are evaluated and compared on two reliability measures: the 
prediction confidence and the percentage of predicted positions. Both 
measures are computed with respect to the prediction threshold.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-178-S2.pdf]
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