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To study the mechanisms of perception and cognition, neural measurements must be
made during behavior. A goal of the Allen Brain Observatory is to map the activity
of distinct cortical cell classes underlying visual and behavioral processing. Here we
describe standardized methodology for training head-fixed mice on a visual change
detection task, and we use our paradigm to characterize learning and behavior of
five GCaMP6-expressing transgenic lines. We used automated training procedures to
facilitate comparisons across mice. Training times varied, but most transgenic mice
learned the behavioral task. Motivation levels also varied across mice. To compare mice
in similar motivational states we subdivided sessions into over-, under-, and optimally
motivated periods. When motivated, the pattern of perceptual decisions were highly
correlated across transgenic lines, although overall performance (d-prime) was lower in
one line labeling somatostatin inhibitory cells. These results provide important context
for using these mice to map neural activity underlying perception and behavior.

Keywords: mouse behavior, GCaMP transgenic mice, visual perception, motivation, learning, change detection

INTRODUCTION

Goal-oriented behavior involves coordinated neural activity across brain regions, but the cellular
mechanisms mediating these activity dynamics are not fully understood. The mouse provides
unique opportunities to dissect cell type- and circuit-specific mechanisms of perception and
behavior (Luo et al., 2008, 2018; Niell, 2015). Head-fixed behaviors are well-established and allow
precise measurements of cellular activity using 2-photon imaging and electrode recordings, in
addition to optogenetic perturbations (Andermann et al., 2010; O’Connor et al., 2010; Histed
et al., 2012; Guo et al., 2014b; Burgess et al., 2017). Applications of these methods are revealing
mechanisms of perception and action across multiple sensory modalities and cognitive systems
(Harvey et al., 2012; Huber et al., 2012; Petreanu et al., 2012; Chen et al., 2013; Glickfeld et al., 2013;
O’Connor et al., 2013; Pinto et al., 2013; Guo et al., 2014a; Peron et al., 2015; Poort et al., 2015;
Goard et al., 2016; Li et al., 2016; Resulaj et al., 2018).
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At the Allen Institute we seek to generate a database of cell
type-specific activity across visual cortical areas during visual
stimulation and behavior (Koch and Reid, 2012). We previously
developed a standardized physiological pipeline—the Allen Brain
Observatory—to monitor cellular population activity using 2-
photon calcium imaging during passive visual stimulation in
mice (De Vries et al., 2020). These experiments used transgenic
Cre driver mouse lines to express the genetically encoded calcium
indicator GCaMP6 in specific cortical cell subpopulations to
monitor activity based on changes in cellular fluorescence. To
expand on these passive viewing datasets, we are adapting our
existing pipeline to include GCaMP6 measurements from mice
performing visually guided behaviors. For large-scale pipeline
compatibility we seek tasks that are simple yet adaptable to more
complex variants, easily learned, and consistently performed.
Candidate tasks must also support head-fixed physiological
measurements using our standardized instruments.

In this study we test a go/no-go visual change detection
task. Change detection is a fundamental behavioral capacity
of animals and humans (Rensink, 2002; Elmore et al., 2011;
Hagmann and Cook, 2013; Pearson and Platt, 2013), and the
visual cortex of mice and primates is implicated in the detection
of changes in visual features (Womelsdorf et al., 2006; Glickfeld
et al., 2013; Brunet et al., 2014). The core task we describe can
be used to test perception of various visual features including
orientation, contrast, color, and natural images (Glickfeld et al.,
2013; Denman et al., 2018; Garrett et al., 2020). Moreover,
our task includes features that permit investigation of the
physiological correlates of behavior and cognition. For instance,
this task allows for exploration of stimulus novelty and learning,
temporal expectation (Garrett et al., 2020), and short-term
memory (Hu et al., 2020).

To support future studies of neural activity during this
task, we have characterized learning and behavior of five Cre
driver×GCaMP6 reporter transgenic mouse lines, each of which
expresses the GCaMP6 calcium sensor in distinct subpopulations
of excitatory or inhibitory cells of the neocortex (Madisen et al.,
2015; De Vries et al., 2020; Garrett et al., 2020). These cortical
cell subpopulations are believed to play distinct functional
roles in cortical computation (Kepecs and Fishell, 2014; Harris
and Shepherd, 2015). We test a Cux2-Cre driver line labeling
excitatory cells in layers 2, 3, and 4 of the cortex that allows
measurement of activity in superficial cortical neurons. We test a
Rbp4-Cre driver line that labels neurons in cortical layer 5, which
is the major subcortically projecting layer. The third excitatory
line we test is Slc17a7-Cre, which is a pan-excitatory line that
results in GCaMP6 expression in all excitatory neurons of the
cortex. Because GABAergic inhibitory cells are critical for local
circuit function in the cortex, we also tested two inhibitory lines
that label two of the major inhibitory cell subclasses of the cortex.
First, we test a Vip-Cre driver line which labels the vasoactive
intestinal polypeptide-expressing (Vip) inhibitory neurons in
the cortex. Second, we test a Sst-Cre driver line which labels
the somatostatin-expressing (Sst) subpopulation of inhibitory
neurons of cortex. To mitigate sources of variability in behavior
and facilitate comparisons across mice from these five transgenic
lines we used automated training procedures in this study.

MATERIALS AND METHODS

Mice
All experiments and procedures were performed in accordance
with protocols approved by the Allen Institute Animal
Care and Use Committee. Male and female transgenic
mice expressing GCaMP6 in various Cre-defined cell
populations were used in these experiments (Madisen et al.,
2015). The five genotypes used in this study were Cux2:
Cux2-CreERT2;Camk2a-tTA;Ai93(TITL-GCaMP6f), n = 4;
Rbp4: Rbp4-Cre_KL100;Camk2a-tTA;Ai93(TITL-GCaMP6f),
n = 12; Slc17a7: Slc17a7-IRES2-Cre;Camk2a-tTA;Ai93(TITL-
GCaMP6f), n = 23; Sst: Sst-IRES-Cre;Ai148(TIT2L-GC6f-ICL-
tTA2), n = 7; Vip: Vip-IRES-Cre;Ai148(TIT2L-GC6f-ICL-tTA2),
n = 14. Prior to surgery mice were singly housed and maintained
on a reverse 12-h light cycle (off at 9 am, on at 9 pm);
all experiments were performed during the dark cycle.
The set of mice used in these experiments are shown in
Supplementary Table 1.

Surgery
Some of the mice included in this study were later used in a set
of 2-photon calcium imaging experiments (Garrett et al., 2020)
and, as such, they all initially received a headpost and cranial
window surgery as previously described (De Vries et al., 2020;
Groblewski et al., 2020a). Briefly, surgery was performed on
healthy mice that ranged in age from 5 to 12 weeks. Mice were
deeply anesthetized with isoflurane prior to removing skin and
exposing the skull. A custom titanium headframe was cemented
to the skull and a circular piece of skull 5 mm in diameter was
removed, durotomy performed, and a glass coverslip stack was
cemented in place. Upon successful recovery from surgery mice
entered into behavioral training.

Behavior Training
Water Restriction and Habituation
Throughout training mice were water-restricted to motivate
learning and performance of the behavioral task (Guo et al.,
2014b). Mice had access to water only during behavioral training
sessions or when provided by a technician on non-training days.
During the first week of water restriction mice were habituated
to daily handling and increasing durations of head fixation in
the behavior enclosure over a 5-day period. The first day of
behavior training began after 10 days of water restriction. Mice
were trained 5 days per week (Monday–Friday) and were allowed
to earn unlimited water during the daily 1 h sessions; supplements
were provided in a home cage water dish if the earned volume
fell below 1.0 mL and/or body weight fell under 80–85% of initial
baseline weight. On non-training days mice were weighed and
received water provision to reach their target weight, but never
less than 1.0 mL per day.

Apparatus
Mice were trained in custom-designed, sound-attenuating
behavior enclosures equipped with a 24′′ gamma-corrected
LCD monitor (ASUS, #PA248Q). Mice were head-fixed on a
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behavior stage with 6.5′′ running wheel tilted upwards by 10–
15 degrees. The center of the visual monitor was placed 15 cm
from the eye and visual stimuli were spherically warped to
account for the variable distance from the eye toward the
periphery of the monitor. Water rewards were delivered using
a solenoid (NI Research, #161K011) to deliver a calibrated
volume of fluid through a blunted, 17 g hypodermic needle
(Hamilton) positioned approximately 2–3 mm away from
the animal’s mouth.

Change Detection Task
Overview
Mice were trained for 1 h/day, 5 days/week using a behavioral
program implementing a go/no-go change detection task
schematized in Figure 1. Briefly, mice were trained to lick a
reward spout when the identity of a flashed visual stimulus
changed identify. If mice responded correctly within a short,
post-change response window (115–715 ms) a water reward was
delivered. The volume of contingent rewards was 10 µL in Stages
1 and 2, and reduced to 7 µL after the first 3 sessions of Stage 3.
The four stages of the training protocol are shown below:

Stage Stimulus Stimulus
Presentation

Response
Window

(ms)

Contingent
Rewards

Duration
(min)

0 Square-wave
gratings

Static NA False 15

1 Square-wave
gratings

Static 1000 True 60

2 Square-wave
gratings

250 ms stimulus;
500 ms gray
period

600 True 60

3 Natural
Images

250 ms stimulus;
500 ms gray
period

600 True 60

On Day 1 of the automated training protocol mice received a
short, 15-min “open loop” session during which non-contingent
water rewards were delivered coincident with 90◦changes in
orientation of a full-field, static square-wave grating (Stage 0).
This session was intended to (1) introduce the mouse to the fluid
delivery system and, (2) provide the technician an opportunity
to identify the optimal lick spout position for each mouse.
Each session thereafter was run in “closed loop,” and progressed
through 3 phases of the operant task: (1) static, full-field square
wave gratings (oriented at 0◦ and 90◦, with the black/white
transition always centered on the screen and the phase chosen
randomly on every trial), (2) flashed, full-field square-wave
gratings (0◦ and 90◦, with phase as described in (1), and (3)
flashed full-field natural scenes (eight natural images used in the
Allen Brain Observatory1).

Progression through training stages
Starting with Stage 1, the advancement criteria required mice to
achieve a session maximum performance of at least d-prime = 2

1http://observatory.brain-map.org/visualcoding

(calculated over a rolling 100 trial window without trial count
correction) during two of the last 3 sessions. The fastest
progression from Stage 1 to Stage 3 was 4 training days.

Behavior session and trial structure
Each behavior session consisted of a continuous series of trials,
schematized in Supplementary Figure 1A. Briefly, prior to the
start of each trial a trial-type and change-time were selected.
Trial-type was chosen based on predetermined frequencies
such that “GO” and “CATCH” trials occurred with specified
probabilities. In stages 1 and 2, the catch probability was set
at 25%, but no more than three consecutive trials of a given
type were permitted, leading to an effective catch probability of
∼36%. In stage 3, the catch probability was initially set at 12.5%
(given that the 8 same-to-same changes represented 8/64 possible
image changes), which, combined with the maximum of 3
consecutive go/catch trial rule, led to an effective catch probability
of∼30%. However, later sessions implemented a matrix sampling
algorithm that ensured that each image transition was sampled
equally, pushing the actual catch probability to∼12.5%. Change-
times were selected from a truncated exponential distribution
ranging from 2.25 to 8.25 s (mean of 4.25 s) following the start
of a trial. Due to computational lag when aligning change-time
with a stimulus flash, the actual distribution of change times was
shifted to the right by one 750 ms flash cycle (with only a small
fraction of changes occurring at 2.25 s) resulting in a mean change
time of 4.2 s. In trials when a mouse licked prior to the stimulus
change the trial was reset, and a timeout period was imposed.
The number of times a trial could be reset before re-drawing the
timing parameter was limited to five. In all, this trial structure
leads to a sampling of “GO” and “CATCH” trials, that when
combined with mouse responding, yields “HIT,” “MISS,” “FALSE
ALARM,” and “CORRECT REJECTION” trials.

In addition to the four trial types described above, behavior
sessions contained a subset of “free reward” trials (“GO”
trials followed immediately by delivery of a non-contingent
reward). Behavior sessions across all phases began with 5 “free-
reward” trials. Additionally, in order to promote continued
task performance throughout the behavior session “free reward”
trials were delivered after 10 consecutive “MISS” trials. All non-
contingent rewards were 5 µL in volume.

Data Analysis
Analysis was performed using custom scripts written in Python
v3.7.5 (including Pandas v0.24.2, Numpy v1.16.4, Scipy v1.3.2
and Statsmodels v0.10.1) and GraphPad Prism (v8.0.1). Plots
were generated using Matplotlib v3.1.1 and Seaborn v0.9.0.

Behavioral performance was quantified with the signal
detection metrics of d-prime and criterion, which are both a
function of hit and false alarm rates.

Hit and False Alarm Rates
The hit rate was calculated as the fraction of go-trials in which
the mouse licked in a 0.115 to 0.715 s window following the
display-lag-compensated image display time. Catch trials were
defined as trials in which there was no image change. However,
for calculation of the false alarm rate, a response window was
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FIGURE 1 | Change detection task with natural images. (A) Behavioral task. Visual stimuli are shown for 250 ms with an intervening gray period of 500 ms. On GO
trials, the image identity changes and mice must lick within the 600 ms response window to receive a water reward. On CATCH trials, no image change occurs, and
licking is measured to quantify guessing behavior. (B) Example of a complete behavior session with trials aligned to the time of image change. Blue dots indicate
rewards and black dots indicate licks. Trial types and outcomes are illustrated in the 2 × 2 matrix. (C) Cumulative reaction time distribution on GO trials. Green lines
show individual mice (n = 56) with trials pooled across all included sessions, and the black line indicates the average of all mice.

defined following one of the flashes using the same statistics as
in the go trials. False alarm rates were calculated as the fraction
of catch-trials in which animal emitted a lick in this response
window. Unless otherwise noted, hit and false alarm rates were
corrected to account for trial counts using the following formula
(Macmillan and Creelman, 2004):

1/(2N) <= HR <= (1− 1/(2N)) (1)

1/(2N) <= FAR <= (1− 1/(2N)) (2)

Where HR and FAR represent the hit and false alarm rates, and N
represents the number of the respective trial type.

D-Prime (d’)
D-prime, which is a measure of the relative difference in response
probabilities across the two trial types, is defined as:

d-prime = Z(HR)− Z(FAR) (3)

in which Z represents the inverse cumulative normal
distribution function.

Criterion
Criterion, which is a measure of the underlying bias of the subject
to emit a response, is defined as:

C = −1/2[Z(HR)+ Z(FAR)] (4)

Criterion therefore varies from negative values for high
response biases (high hit and false alarm rates) to positive
numbers for low response biases (low hit and false alarm rates).
In general, our figures represent criterion with the sign inverted,
thus mapping states of low motivation to negative values and
states of high motivation to positive values.

Statistical Analysis
Statistical comparisons between multiple groups were performed
using both parametric (ANOVA) and non-parametric (Kruskal–
Wallis) tests with post hoc, pairwise comparisons corrected for
multiple comparisons. Independent pairwise comparisons were
made using t-tests and Wilcoxon signed-rank tests. Correlational
analyses were performed using Pearson correlation coefficients.

We used a bootstrap analysis to assess statistical differences
in d-prime values. Bootstrapping involved subsampling with
replacement, with sample size determined by the group with
the smallest value count. One thousand bootstrap iterations
were performed. Comparisons of bootstrapped distributions
were performed by calculating the total density of the joint
probability distribution on one side of the unity line, yielding
a probability, pboot, that null hypothesis is true (Saravanan
et al., 2019). Pairwise comparisons were deemed significant if
the fraction of overlap was less than the Bonferroni corrected
two-tailed alpha. The resolution of pboot was limited by the
number of bootstrap iterations (1000), providing a minimum
measurable value of 0.001.

RESULTS

Visual Change Detection Task With
Natural Scene Images
We trained mice (n = 60) to perform a visual change detection
task with natural scene images. In this go/no-go task, mice see
a continuous series of briefly presented images and they earn
water rewards by correctly reporting when the identity changes
(Figure 1). Responses are indicated by licking a water spout
within a 600 ms response window following the image change
(Figures 1A,B). On randomly interleaved ‘catch’ trials, no image
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change occurs and the mouse must withhold licking to avoid
a time-out (Figures 1A,B). Once trained, mice display short
latency reaction times with the majority of responses occurring
within the response window (Figure 1C).

In our behavioral apparatus, mice are head-fixed yet free
to run on a circular disk. Running is monitored but does not
influence task flow. Most, but not all, mice ran or walked during
the behavioral session, and these mice typically stopped running
when responding to stimulus changes and to consume the water
reward (Supplementary Figure 2).

Automated Behavior Training of
Transgenic Mice
We assessed training and performance of five transgenic
mouse lines expressing GCaMP6f in distinct subsets of
cortical cells [Cux2: Cux2-CreERT2;Camk2a-tTA;Ai93(TITL-
GCaMP6f); Rbp4:Rbp4-Cre_KL100;Camk2a-tTA;Ai93(TITL-G
CaMP6f); Slc17a7: Slc17a7-IRES2-Cre;Camk2a-tTA;Ai93(TITL-
GCaMP6f); Sst: Sst-IRES-Cre;Ai148(TIT2L-GC6f-ICL-tTA2);
Vip: Vip-IRES-Cre;Ai148(TIT2L-GC6f-ICL-tTA2)]. To train
these transgenic mice (Cux2, Rbp4, Slc17a7, Sst, Vip) in a
standardized manner, we developed an automated protocol in
which mice progress through a series of training stages with
parameters, performance requirements, and stage transitions
defined in software rather than relying on experimenter
intervention (Figure 2A).

The majority of mice (47/60) completed the full set of training
stages within 15 sessions, and 56/60 mice reached the final stage
within 40 sessions (Figure 2B). The average time to reach the
final training stage varied across genotypes (Figure 2C; Cux2,
4.0 ± 0.8; Rbp4, 4.9 ± 1.4; Slc 6.6 ± 3.5; Sst, 6.5 ± 2.6, Vip,
19.0 ± 10.9), and there was a significant main effect of genotype
on training times (H = 22.98, p = 0.0001). Post hoc, pairwise
comparisons showed Vip transgenic mice were slower to train
than the Slc (p = 0.0002), Rbp4 (p = 0.0005), and Cux2 groups
(p = 0.003). Thus, all genotypes were able to learn the task, but
the number of sessions to do so varied.

All subsequent data analysis is restricted to sessions in the
final training stage (stage 3) in which mice had peak hit rate and
d-prime values (both calculated over a rolling 100 trial window)
of at least 0.3 and 1.0, respectively, and had at least 50 correct
responses on hit trials. Of 1319 sessions in the final training stage,
1100 met these performance criteria. Of the 60 mice in the study,
56 mice had at least one included stage 3 session. Supplementary
Table 1 provides a detailed summary of the mice described in this
study, including the number of sessions analyzed.

Variation in Motivation
In typical behavior sessions, mice were very responsive early
but became less task-engaged later in the hour-long session.
During these periods of reduced task-engagement, mice licked
only infrequently, or ceased licking altogether, indicating that
motivation to perform the task decreased (Figure 3A).

We quantified changes in motivation using the ‘criterion’
parameter from signal detection theory (−0.5∗[z(HR)+ z(FA)]).
Criterion is a measure of the subject’s internal bias to respond.

Higher values correspond to more conservative response criteria
and correspondingly lower response rates. To aid visualizations
we represent criterion with the sign inverted, thus mapping states
of low motivation to lower values and states of high motivation to
higher values. To capture motivation changes over the course of
the behavioral session, we computed criterion in 10-min epochs.
On average, mice showed decreasing motivation over the course
of the 1-h session (Figures 3B,C), but we observed a range of
motivation levels across mice and genotypes (Figure 3D).

To compare mouse behavior during similar motivational
states, we subdivided behavioral sessions into epochs
labeled ‘over motivated’ (criterion > 1.25), ‘motivated’
(−1.25 ≤ criterion ≤ 1.25), and ‘under motivated’ (criterion
< -1.25) (Figure 3E). Over motivated states are characterized
by periods in which the mice have very high response rates for
both GO and CATCH trials, whereas under motivated states
are characterized by low rates of response for both these trials.
A small percentage of epochs (1.2%) were not assigned a criterion
value due to insufficient presentations of GO and/or CATCH
trials in 10-min epoch (Supplementary Table 1). Mice spent
the majority of their time in the ‘motivated’ state (Figure 3F),
however, there was a significant interaction between genotype
and state [F(8,102) = 4.87, p < 0.0001]. Follow-up, within-
genotype pairwise comparisons indicated that all but the Vip and
Sst groups spent significantly more time in the motivated state
than in the under-motivated state (p < 0.01 for comparisons in
Cux2, Rbp4, and Slc17a7 groups).

The consistent progression from over-motivation to under-
motivation likely reflects waning engagement due to decreasing
thirst in the session. Supporting this, licking reaction times
(pooled across mice) were shortest when mice were over-
motivated but longest when under-motivated (Figure 4A,
H = 6632.17, p < 0.0001; p < 0.001 for all pairwise comparisons).
Additionally, consumption lick counts (the number of licks
in a 5 s window following reward delivery, which is a
metric of response vigor) were highest when mice were
over-motivated but lowest when under-motivated (Figure 4B,
H = 5349.45, p < 0.0001; p < 0.001 for all pairwise comparisons)
(Berditchevskaia et al., 2016).

Behavioral Performance Varies With
Motivation
The probability of a behavioral response (averaged over all
images) varied with motivation levels, as expected from our
criterion-based definition (Figure 4C). When over-motivated,
both hit and false alarm rates were high. In the more optimal
motivational range, hit rates were high but false alarm rates were
low. Finally, when under-motivated, mice showed low hit and
false alarm rates.

To assess psychophysical performance for each motivational
state we computed d-prime values by pooling across all
trials from all mice in matched motivational states in order
to reduce the impact of epochs with low trial counts
(which would provide less accurate estimates of d-prime).
We found an inverted-U shape relationship between d-prime
and motivation level (Figure 4D), consistent with both classic
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FIGURE 2 | Automated training of five GCaMP6-expressing transgenic lines. (A) Top: Progression of training stages. Bottom: Training trajectory for one example
mouse (M328341, genotype: Rbp4). Max d-prime (in 100-trial rolling window without trial count correction) and median reaction time are shown for each training
day. Horizontal dashed lines represent the max d-prime required for advancement and the maximum reaction time following stimulus change which would result in
reward. (B) Training days in each stage (each row is one mouse) for first 15 days of training. Opacity of bar indicates training stages 1–3 in (A). Triangles on right
indicate mice that reached Stage 3 after 3 weeks of training. Some mice (n = 4) were removed from training early due to a health-related issue (designated with
white). (C) Average number of sessions required to reach Stage 2 (light shading) and Stage 3 (dark shading) for all groups. Non-parametric analysis showed a
significant main effect of group on time to Stage 3, with Vip mice exhibiting significantly longer training times than Slc17a7, Rbp4, and Cux2 mice. Error bars
represent the 95% bootstrapped confidence interval for all mice that reached stage 3 in each genotype.

(Yerkes and Dodson, 1908; Duffy, 1957) and recent studies
(Mcginley et al., 2015a). We performed a series of pairwise
hypothesis tests on the bootstrapped d-prime distributions and
found that d-prime was greater in the motivated state than
in both the under- and over-motivated states (pboot < 0.001).
Thus, periods of ‘optimal’ motivation corresponded to the
highest performance as measured with d-prime. Supplementary
Figure 3 illustrates how the relationship of d-prime and
motivation varies with different criterion thresholds for defining
motivational states.

We next computed d-prime values in the motivated state
separately for each genotype using the same bootstrap analysis
described above. Motivated d-prime values were not significantly
different across genotypes, except for the Sst group which
had a lower d-prime compared to each of the other groups
(Figure 4E, pboot < 0.001). Despite our efforts to include
both males and females in this study, sex was not evenly
matched across the groups (both the Cux2 and Sst groups
were all male, see Supplementary Table 1), therefore we

repeated the between-genotype analysis using only male mice
(n = 34). With analysis restricted to male mice only, d-prime
in the Sst group remained significantly lower than all other
groups (pboot < 0.001), with no other groups showing
significant differences.

Highly Correlated Perception Across
Transgenic Lines in Motivated State
In the final stage of training (stage 3), mice perform the visual
change detection task with a set of 8 natural scene images
(Figure 5A). In total, mice see 8 × 8 = 64 unique image-pair
transitions (8 of these are no-change transitions, which define
catch trials). On average, mice displayed a range of response
probabilities to the 64 unique image pairs, indicating some
transitions were more difficult than others (Figures 5B,C). Of the
56 mice with at least one expert session, four mice had fewer than
an average of 4 presentations of each of the 64 possible natural
image pairs (256 total trials) and were therefore excluded from
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FIGURE 3 | Motivation decreases over behavioral session. (A) Example behavioral sessions from two mice showing high task-engagement early in the session
followed by later disengagement. (B) Negative criterion (0.5*[z(HR) + z(FA)]) computed in 10-min bins for same mice in (A). Individual sessions are shown in gray and
the mean over all sessions (±SD) is shown in black. Note the sign inversion to map states of low engagement to negative numbers and vice-versa. (C) Criterion in
10-min bins for all sessions (gray) and mean (±SD) across all mice (black). (D) Across-session average of criterion values for all mice (each row represents a single
mouse). Rows are sorted by genotype and average criterion value. (E) Histogram of negative criterion values (10-min epochs, again note the sign inversion) for all
sessions. White lines indicate boundaries for defining three motivation states: ‘over-motivated’ (criterion > 1.25, 6.9%), ‘motivated’ (–1.25 ≤ criterion ≤ 1.25,
73.2%), and ‘under-motivated’ (criterion < –1.25, 18.6%). Epochs without at least one hit trial and one false alarm trial (1.2% of the total) were not assigned a
criterion value (and thus not included). (F) Fraction of session epochs spent in each engagement state. Error bars represent bootstrapped 95% confidence intervals.
All groups except Sst and Vip groups spent significantly more time in motivated versus under-motivated states.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 June 2020 | Volume 14 | Article 104

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-00104 June 20, 2020 Time: 19:30 # 8

Groblewski et al. Perception in Transgenic Mice

FIGURE 4 | Task performance varies across motivation states. (A) Reaction times are slower with lower motivation. In (A–D), data is pooled across all mice (n = 56)
and motivation state is defined as in Figure 3E. All error bars represent bootstrapped 95% confidence intervals. (B) Total number of water consumption licks is less
with lower motivation. Total licks are counted in a 5 s window following reward. (C) Hit and false alarm rates in each motivation state (defined as in Figure 3E). (D)
Inverted-U relationship between d-prime and motivational level. D-prime is higher in motivated compared to over- and under-motivated states. (E) D-prime in the
motivated state for each genotype. The Sst group exhibited a lower d-prime than each of the other genotypes in the motivated state. * Indicates significance using a
Bonferroni corrected p-value of 0.05/N_comparisons.

these and subsequent analyses. The matrix shown in Figure 5B
(and values plotted in Figure 5C) represents the grand average
across all genotypes (an average matrix was computed for each
mouse and then this was averaged over all mice). The pattern of
behavioral responses across the set of image transitions reflects
the mice’s perceptual landscape and this might differ across
transgenic lines. Thus, we next sought to determine how similar
was the pattern of behavioral responses across genotypes and
whether this was motivation-dependent.

The rank order of the response probabilities for the 64
transitions were largely conserved across genotypes (Figure 5D),
and each genotype’s pattern of behavioral responses correlated
strongly with the average of all mice (Figure 5E; r-values of
0.93–0.99, p-values < 0.001). Moreover, each transgenic line
strongly correlated with the others, indicated by significant
pairwise correlations between all possible pairs (Figure 5F;
r-values of 0.82–0.97, p-values < 0.001). To compare the
strength of these correlations across the three motivational
states, we performed a bootstrapping analysis to create response
matrices on the subsampled data. Figure 5G shows the mean
Pearson’s correlation coefficients for each pair of genotypes,
calculated across all bootstrap iterations. We found that response
correlations were highest in the optimally motivated state
compared to over- and under-motivated states for all genotype
combinations (Figure 5G, all p-values < 0.001).

DISCUSSION

We set out to characterize learning and behavioral performance
of multiple transgenic mouse lines on a visual change detection
task and to further understand how variation in motivation
influences performance once trained. Overall, our results show
that despite some differences in learning and motivation, the five

GCaMP6 transgenic mouse lines we tested have highly correlated
visual perception during optimally motivated states.

Standardized Behavior Training of
Transgenic Mice
An overarching goal of this work is to establish standardized
training protocols to implement a robust behavior pipeline for
characterization of cellular physiology using our Allen Brain
Observatory. The transgenic lines we tested allow measurement
of activity in specific subsets of excitatory cells (Cux2-CreERT2:
Layers 2/3, Rbp4-Cre_KL100: Layer 5, Slc17a7-IRES2-Cre: Layers
1-6), and distinct inhibitory cell classes (Sst-IRES-Cre, Vip-IRES-
Cre). As part of our development process it was important
to anticipate experimental throughput by quantifying learning
times and verifying robust task performance in these transgenic
lines. Our results described here extend the basic phenotypic
characterization of these transgenic lines (Daigle et al., 2018).

We trained all mice with an automated protocol that applied
consistent parameters and task progression rules. All transgenic
lines could be reliably trained in several weeks to perform the
task using our protocol. Vip mice required significantly longer
to reach the final stage of the task but performed at similar
levels once trained. Additionally, although Sst mice learned the
task quickly, they exhibited lower performance (d-prime) in the
motivated state.

The underlying causes of the differences in motivation,
learning, and performance in these transgenic lines is not
apparent from this study. Follow-up work is necessary to
determine whether these differences are related to potential
disruption of neuronal activity by GCaMP6 expression.
Alternatively, the cause could be due to developmental defects.
For instance, developmental disruption of Vip interneurons
is known to impair perceptual learning in mice (Batista-Brito
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FIGURE 5 | Similar perception across mice during motivated epochs. (A) Eight natural scene images used during Stage 3 of change detection task (see Figure 2A).
Number indicates label from De Vries et al., 2020. (B) Average response rates for all pairwise image transitions in the motivated state (averaged across all trials for
each mouse, then across all mice in a genotype, and finally across genotypes). Catch trials (same-to-same transitions) lie along the diagonal. (C) Average response
rate for each image-pair transition. X-axis is ordered by average response rate across all 64 transitions. Data is the same as shown in (B) with color values
conserved. (D) Mean response rate for each image-pair, separated by genotype. The color for each image pair is conserved from (B) and the rank order is
conserved from (C). Gray points show response rate for each transition for each mouse in a given genotype. (E) In the motivated state, each genotype’s pattern of
responding was strongly correlated with the average over all mice. (F) Response patterns in the motivated state are strongly correlated between all genotypes.
Diagonal terms (with p = 1.0) and above diagonal terms (with values equal to the below diagonal terms) are excluded from the display. (G) Bootstrapped correlations
of response patterns across genotypes are higher in the motivated compared to under- and over-motivated states. Absolute values are lower compared to (F) due to
subsampling to match small trial counts in the over-motivated state.
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et al., 2017). Another possibility is that the differences result
from off-target effects on other brain or body systems in which
GCaMP6 in non-selectively expressed in these transgenic
lines. Consistent with this idea is the previous finding that Sst
transgenic mice have an increased incidence of health-related
issues including a propensity for dermatitis and this could impact
their behavioral performance (Allen Institute for Brain Science,
2016). Differences in task training times have been noted in
other transgenic lines such as Vgat-ChR2 mice (Resulaj et al.,
2018), which express channelrhodopsin in inhibitory neurons.
Importantly, in our study, despite these differences in learning
and motivation, we found that perceptual decisions were very
consistent across different lines when comparing matched
motivational states.

Motivation Is Non-stationary
Even in well-trained subjects, psychophysical performance can
be non-stationary over a behavioral session, varying with
motivation, attention, confusion, and other factors (Andermann
et al., 2010; Carandini and Churchland, 2013; Mcginley
et al., 2015a; Berditchevskaia et al., 2016). Tasks using water
restriction, as in our study, are subject to motivational
changes due to decreasing thirst as water is consumed
during the session. Studies often only consider average
performance over the session or restrict session duration to
avoid major motivational changes. Here, all mice completed 1-
h sessions, independent of mouse performance and experimenter
intervention. Inspired by a recent study of motivation dynamics
in mice performing a go/no-go task (Berditchevskaia et al.,
2016), we use the signal detection theory metric, ‘criterion,’
to help categorize epochs in the session as over-motivated,
motivated, and under-motivated. Parsing behavior sessions
according to motivation level helps to compare behavior
and physiology across mice and transgenic lines under more
controlled conditions.

In most mice, motivation systematically decreased over each
behavioral session. This likely represents a decrease in thirst-
based motivation as water is consumed in the task. Consistent
with this, we observed changes in licking behavior, including
lick reaction time (lick latency) and consumption lick count
(response vigor), which have been linked to motivational changes
(Berditchevskaia et al., 2016). Interestingly, recent work suggests
a brain-wide network is involved in thirst regulated motivation
(Allen et al., 2019). Thus, characterizing changes in thirst-based
motivation will likely be important for interpreting neural activity
measurements in tasks involving water reward.

We used a metric from signal detection theory, ‘criterion’
(Green and Swets, 1966), to estimate the motivational states of
mice in our task. Future work can develop improved methods
for identifying and quantifying behavioral states including
generalized linear models and hidden Markov models (Wiltschko
et al., 2015; Calhoun et al., 2019). These methods have the
potential to provide a more powerful description of motivation,
task-engagement, and other latent variables, and might also
reduce the need for the temporal binning approach used here.
In addition, they could help to explore how task contingencies
and reinforcement structures affect motivation state and could

provide insight into the factors that shape task learning,
behavioral strategy, and ultimate performance levels.

It will be important in future work to relate motivation
to other behavioral and physiological states. Pupillometry
measurements can reflect internal states including levels of
arousal and task-engagement (Mcginley et al., 2015b; Vinck et al.,
2015). In addition, animal movements, including spontaneous
actions and fidgets (Musall et al., 2019; Stringer et al., 2019), can
be captured with whole body or face cameras and analysis of these
behavioral data streams might provide additional quantitative
correlates of motivation.

Similar Perception Across Transgenic
Mice
We used our behavioral task to assess natural image change
detection in transgenic mice. Expert mice can differentiate each
of the unique combinations of natural images tested, although
some image pair transitions are more difficult to distinguish than
others, consistent with a target/distractor paradigm in mice (Yu
et al., 2018). The mouse lines we tested here show correlated
behavioral responses, and this correlation is very high when
mice are compared under matched motivation states. Thus,
these transgenic lines show similar patterns of perception despite
some differences in learning rates, motivation dynamics, and
d-prime values.

In forthcoming physiological experiments, we will measure
neural activity in these mice to characterize cellular correlates
of change perception, task-engagement, short-term working
memory, and temporal expectation. In an initial study of
layer 2/3 excitatory and Vip inhibitory cells in visual cortex,
we found that excitatory cells provide selective image coding
in the task, whereas Vip cells undergo dramatic changes in
activity dynamics with learning (Garrett et al., 2020). Large-scale
systematic mapping of activity in different cell classes across the
brain will provide insights into how these interactions mediate
neural processing to guide behavior and learning.
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