
cancers

Article

The Role of Patient- and Treatment-Related Factors and Early
Functional Imaging in Late Radiation-Induced Xerostomia in
Oropharyngeal Cancer Patients

Simona Marzi 1 , Alessia Farneti 2,*, Laura Marucci 2, Pasqualina D’Urso 2, Antonello Vidiri 3, Emma Gangemi 3

and Giuseppe Sanguineti 2

����������
�������

Citation: Marzi, S.; Farneti, A.;

Marucci, L.; D’Urso, P.; Vidiri, A.;

Gangemi, E.; Sanguineti, G. The Role

of Patient- and Treatment-Related

Factors and Early Functional Imaging

in Late Radiation-Induced

Xerostomia in Oropharyngeal Cancer

Patients. Cancers 2021, 13, 6296.

https://doi.org/10.3390/

cancers13246296

Academic Editor: Wollenberg Barbara

Received: 30 October 2021

Accepted: 10 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Medical Physics Laboratory, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53,
00144 Rome, Italy; simona.marzi@ifo.gov.it

2 Department of Radiotherapy, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53,
00144 Rome, Italy; laura.marucci@ifo.gov.it (L.M.); pasqualina.durso@ifo.gov.it (P.D.);
giuseppe.sanguineti@ifo.gov.it (G.S.)

3 Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute,
Via Elio Chianesi 53, 00144 Rome, Italy; antonello.vidiri@ifo.gov.it (A.V.); emmagan86@gmail.com (E.G.)

* Correspondence: alessia.farneti@ifo.gov.it; Tel.: +39-5266-3052

Simple Summary: In the present prospective study, we assessed the role of various Magnetic
Resonance Imaging biomarkers combined with self-assessed xerostomia questionnaires and patient-
and treatment-related factors, in predicting xerostomia at 12 months after chemoradiotherapy for
oropharyngeal squamous cell carcinoma. We hypothesized that the integration of pre-treatment
imaging biomarkers, which addresses the tissue heterogeneity and individual variations among
patients, could improve the accuracy of conventional prediction models that are based only on dose
information, ultimately providing a better understanding of the pathophysiological mechanisms
underlying radiation induced salivary dysfunction. The implementation of multifactorial models,
driven by machine learning algorithms, may improve prediction accuracy of radiation-induced
toxicity and tailor individual treatment options for patients.

Abstract: The advent of quantitative imaging in personalized radiotherapy (RT) has offered the
opportunity for a better understanding of individual variations in intrinsic radiosensitivity. We
aimed to assess the role of magnetic resonance imaging (MRI) biomarkers, patient-related factors, and
treatment-related factors in predicting xerostomia 12 months after RT (XER12) in patients affected by
oropharyngeal squamous cell carcinoma (OSCC). Patients with locally advanced OSCC underwent
diffusion-weighted imaging (DWI) and dynamic-contrast enhanced MRI at baseline; DWI was
repeated at the 10th fraction of RT. The Radiation Therapy Oncology Group (RTOG) toxicity scale was
used to evaluate salivary gland toxicity. Xerostomia-related questionnaires (XQs) were administered
weekly during and after RT. RTOG toxicity ≥ grade 2 at XER12 was considered as endpoint to build
prediction models. A Decision Tree classification learner was applied to build the prediction models
following a five-fold cross-validation. Of the 89 patients enrolled, 63 were eligible for analysis. Thirty-
six (57.1%) and 21 (33.3%) patients developed grade 1 and grade 2 XER12, respectively. Including
only baseline variables, the model based on DCE-MRI and V65 (%) (volume of both glands receiving
doses ≥ 65 Gy) had a fair accuracy (77%, 95% CI: 66.5–85.4%). The model based on V65 (%) and
XQ-Intmid (integral of acute XQ scores from the start to the middle of RT) reached the best accuracy
(81%, 95% CI: 71–88.7%). In conclusion, non-invasive biomarkers from DCE-MRI, in combination
with dosimetric variables and self-assessed acute XQ scores during treatment may help predict grade
2 XER12 with a fair to good accuracy.
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1. Introduction

Xerostomia is one of the most prevalent side effects of RT (RT) for head and neck
squamous cell carcinoma [1]. Persisting toxicity, even when non-life threatening, may
appreciably impact the patient’s quality of life [2]. Despite technical improvements in RT
planning and delivery, moderate to severe chronic xerostomia is observed in approximately
40% of patients undergoing intensity-modulated RT, due to technical limitations at restrict-
ing the dose to the parotids while adequately covering the primary tumour or the neck
nodes [1,3,4].

Several studies have investigated the role of the average dose delivered to one or
both parotids in predicting persistent dry mouth [5], finding a significant direct correlation
between the planned dose and the severity of xerostomia following RT [6]. From these
studies, a limiting mean dose of ≈25 Gy to both glands is advised to prevent chronic
salivary dysfunction, which is rarely achieved considering the high doses (≈70 Gy) that
are typically prescribed to the macroscopic disease [7].

Measurements of salivary output and scores from validated self-assessed xerostomia
questionnaires (XQs) demonstrated to be useful for evaluating early and long side effects
of RT and correlated with both submandibular and parotid dose [8].

More recently, a number of studies have investigated a variety of pre-treatment
indices related to specific tissue signatures, such as fat concentration, cell density, and
vascular perfusion, using either computed tomography (CT) or magnetic resonance imag-
ing (MRI) [9,10]. These studies aimed to improve the accuracy of conventional prediction
models based only on dosimetric variables [11], providing deeper insights into the complex
mechanisms underlying radiation-induced salivary dysfunction [12].

The advent of quantitative imaging in personalized radiotherapy (RT) has offered
the opportunity for a more comprehensive and non-invasive anatomical and functional
characterization of tissues and for a better understanding of individual variations in
intrinsic radiosensitivity [13,14]. Quantitative imaging also offers the opportunity to assess
tissue heterogeneity and explore its association with different patterns of radiosensitivity
within the organ. It was reported that different regions of the parotid gland could respond
differently to radiation-induced damage and may have a different impact on xerostomia
recovery [15]. In addition, it is still being investigated whether the mean dose and/or high
doses delivered to a small portion of the gland could be harmful and have an impact on
acute and late xerostomia [16].

All these investigational studies emphasized the importance of integrating image-
based biomarkers of normal tissues with both patient- and treatment-related factors, in
attempts to improve the limited predictive power of previous models of radiation-induced
toxicity [17] and ultimately to personalize the patient management [13–15,18].

The aim of the present prospective study, funded by the Italian Association for Cancer
Research (AIRC, project No. 17028), is to investigate the role of MRI biomarkers combined
with self-assessed XQs and patient- and treatment-related factors, in predicting xerostomia
at 12 months after chemoradiotherapy (XER12) for oropharyngeal squamous cell carcinoma
(OSCC).

2. Materials and Methods
2.1. Patient Population and Treatment

After completing an informed consent form, patients were accrued into a prospective,
single-institution cohort study approved by the local Institutional Review Board (approval
number RS716/15).

The inclusion criteria were: age ≥ 18 years; pathologically confirmed squamous
cell carcinoma of the oropharynx; and stage III or IV OSSC without distant metastases
according to the 7th edition of AJCC [19]. The exclusion criteria were: any contraindication
to MRI and/or chemoradiotherapy; previous surgery, chemotherapy or RT to the head and
the neck; Zubrod performance status 2 or higher.
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Patients received intensity-modulated RT (IMRT) and concomitant chemotherapy
with cisplatin (100 mg/m2 for three cycles every 21 days or 40 mg/m2 weekly for 6 cycles).
A dose of 70 Gy to areas of macroscopic disease, including primary tumour and pathologic
lymph nodes, 63 Gy to regions at high risk of microscopic disease, and 58.1 Gy to regions at
intermediate risk of microscopic disease was prescribed in 35 fractions [20]. A simultaneous
integrated boost technique was applied using seven 6-MV photon beams.

The cumulative dose-volume histograms (DVHs) of each separate and combined
parotid gland were extracted from the treatment planning system (Eclipse, Varian Medical
System, Palo Alto, Santa Clara, CA, USA). T2-weighted images were also loaded in Eclipse
and used for organ delineation (see Section 2.2). The DVHs were re-extracted from a
second CT scan performed at the end of the second week of RT. The original treatment plan
was transferred to the second CT scan, keeping the original beam configuration, fluence
maps and monitor units. A rigid co-registration strategy between CT scans was applied
using anatomical landmarks—typically C2—as a reference. Even though submandibular
glands were not constrained during the planning process, the mean dose to both glands
(Dmean,SMG) at baseline was included in the analysis to explore its potential role to predict
xerostomia.

2.2. MRI Protocol

MRI scans were acquired with a 1.5T system (Optima™ MR450w, GE Healthcare,
Milwaukee, WI, United States) with a head and neck RF coil combination. Three serial
scans were performed for each patient: at baseline, after the 10th fraction of RT, and 8 weeks
after ceasing RT.

Before treatment, both intravoxel incoherent motion diffusion-weighted imaging
(IVIM-DWI) and dynamic-contrast enhanced MRI (DCE-MRI) sequences were included in
the protocol; however, only IVIM-DWI was performed at the 10th fraction to limit the use
of contrast medium. In each scan, T2-weighted images (field of view, 26–28 cm; acquisition
matrix, 288 × 256; slice thickness, 4 mm) were acquired in both coronal and axial planes.
IVIM-DWI was performed using multiple b values (b = 0, 25, 50, 75, 100, 150, 300, 500,
and 800 s/mm2, field of view 26 × 28 cm; acquisition matrix, 128 × 128; slice thickness,
4 mm; scanning time, 6 min 13 s). An optimized DCE-MRI based on a 3D fast-spoiled
gradient echo sequence was acquired (flip angle, 30◦; field of view, 28 cm; acquisition
matrix, 128 × 128; slice thickness, 4 mm; spacing between slices, 2 mm; 60 dynamic phases;
temporal resolution, 5 s; scanning time, 5 min). After three phases, a bolus of gadolinium-
based contrast agent was intravenously administered at a rate of 3 mL/s.

Following RT, MRI was performed every 6 months for the first 2 years, and once per
year thereafter.

2.3. Anatomical and Functional MRI Quantification

For image visualization and gland segmentation the free open source 3D Slicer Soft-
ware (version 4.11) was used [21]. Each parotid gland was manually outlined on T2-
weighted images acquired at baseline, at the 10th fraction, and at 8 weeks after treatment in
order to estimate the relative (compared to baseline) organ shrinkage both during (∆Vol10fr)
and after treatment (∆Volpost). Both superficial and deep lobes were included in the entire
gland delineation.

After rigid propagation, the baseline contours were also used to perform quantitative
analyses on perfusion maps. The parameters were: Ktrans, representing the transfer constant
between plasma and the extravascular extracellular space (EES), and Kep, representing
the transfer constant between EES and plasma and ve, which represents the fractional
EES volume [22]. The model-free parameter IAUGC, defined as the initial area under the
gadolinium concentration curve, was calculated from the bolus arrival to the first 90 s. In
order to address the heterogeneity of organ vascularization and its potential association to
xerostomia, the medians were analysed in combination with the percentiles (P) P10, P25,
P75, and P90 and with the skewness, kurtosis, energy, and entropy values.
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The perfusion-free tissue diffusion coefficient Dt (in mm2/s) was derived from data
at b values of 300, 500, and 800 s/mm2; whereas, the conventional ADC was derived
from data at b values of 0, 500, and 800 s/mm2, using a mono-exponential function. The
Levenberg–Marquardt algorithm was used to perform the fits.

Full details regarding the data extraction from DCE-MRI and DWI is reported in the
Supplementary Materials.

2.4. Xerostomia Evaluation

The self-assessed xerostomia questionnaire (XQ) is a validated tool developed by
Eisbruch et al. comprising eight questions aimed at evaluating different aspects and
implications of xerostomia [23]. A score ranging from 0 (no symptoms) to 10 (most severe
symptoms) is assigned to each answer. The XQ was administered at baseline, weekly
during treatment, and at 3, 6-, 12-, 18-, and 24-months post-RT.

The curve of total XQ scores from all eight questions versus the week of treatment
was plotted for each patient and fitted by a second-degree polynomial function to calculate
summary indicators representative of the XQ score progress during treatment. Specifically,
the gradient of the XQ score curve after one week of RT (XQ-Grad1), the gradient of the
XQ score curve after four weeks of RT (XQ-Grad2), and the integral of the XQ score curve
from the beginning to the middle of the treatment course, i.e., after the 15th fraction of
RT, (XQ-Intmid) was extracted and included in the subsequent analyses. XQ-Grad1 and
XQ-Grad2 indicate the rapidity of the XQ score increase in the first and second half of
the RT course, respectively, whereas the integral XQ-Intmid provides a measure of the
cumulative XQ scores over the first half of the RT course.

The Radiation Therapy Oncology Group (RTOG) toxicity scale was used to score
salivary gland toxicity [24]. The scale was applied prior to initiating RT, weekly during
treatment, and at 3, 6, 12, 18, and 24 months after RT.

2.5. Statistics

The presence of RTOG toxicity grade ≥2 at 12 months after RT (XER12) was considered
as an endpoint to build the prediction models. These models were developed considering
both (1) only pre-treatment variables, and (2) both pre- and in-treatment variables.

After standardizing the dataset by the z-score normalization method [25], a Decision
Tree classification learner was applied to build the prediction models. Considering the
small sample size, a five-fold cross-validation was carried out to reduce the effect of
overfitting [26]. The ADASYN (Adaptive Synthetic Sampling) algorithm was applied to
improve group balance by synthetically creating new data from the minority class through
linear interpolation between existing minority group data [27]. Only predictive models
showing AUC > 0.6 were taken into consideration. To compare the prediction accuracies
between models, the mid-p-value McNemar test was applied. Full description of the model
building is available as Supplementary Materials.

A p level of <0.05 was considered statistically significant. All statistical analyses were
performed in MATLAB (R2020b).

3. Results

This prospective study enrolled 89 patients between January 2016 and June 2019. Of
the 89 patients, 18 died of progressive disease before the 12-month xerostomia assessment,
and 8 declined to complete the follow-up questionnaires. The remaining cohort of 63 pa-
tients (126 parotids) were included in the study. Patient and tumour characteristics are
summarized in Table 1. The case classified as unknown had a very small primary tumour,
which was not visible at the diagnosis and was identified over the course of the subsequent
workup as oropharyngeal squamous cell carcinoma.
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Table 1. Selected patient and tumour characteristics.

Characteristic Parameter

Patient number 63
Sex (M/F) 50 (79%)/13 (21%)

Age (years)
Mean (range) 66.6 (48–86)

HPV status (−/+) 19 (30%)/44 (70%)
Primary tumour site

Tonsil 32 (50.8%)
Base of Tongue 29 (46.0%)

Soft Palate 1 (1.6%)
Unknown 1 (1.6%)

T stage
HPV− HPV+

T0 0 1
T1 3 4
T2 5 16
T3 2 6
T4 0 17

T4a 9 0
N stage

HPV− HPV+
N0 3 4
N1 3 17
N2 6 23
N3 7 0

All included patients received both RT and concomitant chemotherapy as planned, ex-
cept for seven patients who did not receive chemotherapy. Patients undergoing chemother-
apy did not show a different proportion of grade 2 XER12, compared to those not receiving
chemotherapy (p = 0.12). The difference in chemotherapy schedules (3 cycles every 21 days
versus 6 cycles per week) between patients with XER12 < grade 2 and XER12 = grade 2 was
not significant (p = 0.76).

The prevalence rates of xerostomia at 12 months were 57.1% and 33.3% for grades
1 and 2, respectively. Of note, none of the patients with persisting toxicity had baseline
xerostomia. The boxplots of self-assessed total XQ scores at selected time points during
and after treatment (Figure 1) show a gradual decrease in XQ scores after RT, which is
consistent with previous findings of partial relief of acute symptoms after RT [28].

The summary statistics of all selected imaging parameters, patient-related parameters
(BMI, patient weight, parotid volume/shrinkage), and dosimetric data are reported in Ta-
bles S1–S12. Perfusion parameters were not available for four patients due to the inclusion
of only a small portion of the parotids inside the volume covered within the DCE-MRI
sequence.
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Figure 1. Box-and-whisker plots of self-assessed xerostomia-related questionnaire (XQ) scores versus
time, during and after radiotherapy.

3.1. Dose-Volume Points and Xerostomia

At baseline, several parotid dose-volume points differed significantly between patients
with XER12 < grade 2 and XER12 = grade 2 (see Table S6 and Figure S1). The median
(interquartile range; IQR) values of Dmean were 35.8 (6) Gy and 41.0 (7.8) Gy for patients
with XER12 < grade 2 and XER12 = grade 2, respectively (p = 0.005). The volume percentage
of both glands receiving doses ≥ 65 Gy (V65) were better able to differentiate between
patients with and without toxicity (p < 0.001).

The second CT scan was acquired at fraction 11 ± 2.5. To derive parotid DVHs at
the 10th fraction, DVH interpolation (between the baseline DVH and a second DVH re-
evaluated after the 10th fraction) was applied in 15 patients, whereas DVH extrapolation
(between the baseline DVH and a second DVH re-evaluated before the 10th fraction) was
applied in six patients. Dmean at the 10th fraction increased slightly relatively to pre-
treatment values (Wilcoxon test, p = 0.132), and the median (IQR) was 36.7 (8.2) Gy and
39.9 (9.3) Gy for patients with XER12 < grade 2 and XER12 = grade 2, respectively (p = 0.05).
A number of dose variables derived at this time point significantly differentiated between
patients with and without grade 2 XER12 but were not superior to pre-treatment ones
(Table S7).

At baseline, the median (IQR) values of Dmean,SMG were 62.5 (4.6) Gy and 64.2 (3.1)
Gy for patients with XER12 < grade 2 and XER12 = grade 2, respectively (p = 0.004).

3.2. Prediction Models of Xerostomia

The most significant predictors for grade 2 XER12 following univariate analysis are
shown in Table 2. Box-and-whisker plots of the selected variables and the Spearman’s
coefficient Rho between these variables are reported in Figure S2 and Table S12, respectively.
Among categorical variables (sex, HPV status, tumour site, T stage, and N stage), only N
stage was able to significantly discriminate between patients with XER12< and =grade 2
(Chi-squared p = 0.034, Table S11). However, N stage had a statistically significant impact
on the dose to parotids, both Dmean and V65 (p = 0.038 and p = 0.02, respectively) and on the
dose to submandibular glands Dmean,SMG (p = 0.008). Therefore, to reduce redundancy we
did not incorporate N stage in the model building, including dosimetric variables related
to both parotids and submandibular glands as alternatives.
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Table 2. Selected predictors for Xerostomia Grade ≥2 after 12 months of RT.

XER12 < 2 XER12 = 2

Median IQR Median IQR p Value

Ktrans P10 (min−1) 0.28 0.20 0.21 0.13 0.026
ve P25 0.15 0.08 0.13 0.05 0.049

Dmean (Gy) 35.8 6.0 41.0 7.8 0.004
V65(%) 6.5 8.6 10.1 12.3 <0.001

Dmean,SMG (Gy) 62.5 4.6 64.2 3.13 0.004
XQ-Intmid 51.5 41.5 82.9 78.4 0.023

Abbreviations: RTOG, Radiation Therapy Oncology Group; P10/P25, 10th/25th percentiles; Ktrans, transfer constant between plasma
and extravascular extracellular space (EES) (min−1); ve, fractional volume of EES (fractional units); pre-treatment Dmean to both parotid
glands; V65 (%), percentage of parotid volume receiving a dose ≥ 65 Gy; pre-treatment Dmean,SMG to both submandibular glands;
XQ-Intmid = integral of acute XQ scores acute xerostomia-related questionnaire scores from the start to mid treatment time (dimensional);
p values refer to Mann–Whitney test.

Seven models incorporating only baseline variables and nine models incorporating
variables assessed both at baseline and during treatment were obtained, whose predictive
performances are reported in Table 3, respectively.

Taking into account only variables at baseline, the Model 3 based on P25 of ve and
V65 (%) had the highest receiver operating characteristic curve AUC (0.79) and accuracy
(77%); when variables evaluated during treatment were also included, the Model 8 based
on V65 (%) and XQ-Intmid (the integral of acute XQ scores from the start to the middle
of treatment) had the best AUC (0.80) and accuracy (81%). The predictive performance
of this model (Model 8), although it includes only two variables, was comparable with
those of Model 10 (p = 0.82), Model 12 (p = 1) and Model 13 (p = 0.84), which had similar
accuracies but were based on three or four predictors. Model 8 did not show a significant
difference relative to Model 3 (p = 0.86). The comparison between prediction accuracies
of all the models is reported in Table S13. Models 5 and 6, based on Dmean,SMG, showed a
significantly lower accuracies, compared to Model 3 (p = 0.04 in both comparisons) and
Model 8 (p = 0.07 with a trend towards significance and p = 0.02, respectively).

3.3. Illustrative Cases

Some illustrative cases are shown in Figures 2 and 3, where imaging and parotid
dose-volume histograms of patients experiencing grade 1 and grade 2 XER12 are displayed
in comparison. In Figure 2, the dose delivered to parotids was similar and the disparity in
late xerostomia may be attributed to the differences in gland perfusion at baseline and to
the gap in acute XQ scores during treatment (see Figure S3). Conversely, the two patients
in Figure 3 had comparable parotid gland perfusion, but received very different doses to
parotids, which led to a large disparity in acute XQ scores and, as a result, to a disparity in
late xerostomia.
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Table 3. Predictive Performance of the models including variables at baseline.

Variables at Baseline AUC * Accuracy (%) Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%)

Model 1
ve P25
Dmean

0.68 68.3 66.7 69.1 51.5 80.8
[0.57–0.77] [57.2–78.0] [50.5–80.4] [52.9–82.4] [39.2–63.6] [72.4–87.1]

Model 2 Ktrans P10 Dmean
0.61 59.5 64.3 57.1 42.5 76.5

[0.50–0.70] [48.2–70.1] [48.0–78.5] [41.0–72.3] [32.8–52.8] [66.7–84.0]

Model 3
ve P25

V65(%)
0.79 77.0 83.3 73.8 61.1 90.0

[0.69–0.86] [66.5–85.4] [68.6–93.0] [58.0–86.1] [48.1–72.6] [81.7–94.8]

Model 4 Ktrans P10 V65(%)
0.70 67.4 78.6 61.9 50.4 85.4

[0.60–0.80] [56.3–77.2] [63.2–89.7] [45.6–76.4] [40.1–60.6] [75.8–91.6]

Model 5
ve P25

Dmean, SMG

0.67 64.2 73.8 59.5 47.3 82.2
[0.56–0.76] [53.0–74.4] [58.0–86.1] [43.3–74.4] [37.4–57.5] [72.4–89.0]

Model 6 Ktrans P10 Dmean, SMG
0.64 65.1 61.9 66.7 47.8 78.0

[0.53–0.74] [53.9–75.2] [45.6–76.4] [50.5–80.4] [35.9–59.9] [69.6–84.7]

Model 7
0.71 71.4 71.4 71.4 55.2 83.5ve P25

V65(%)
Dmean, SMG

[0.63–0.81] [60.5–80.8] [55.4–84.3] [55.4–84.3] [42.4–67.3] [75.2–89.5]

Variables at Baseline and during RT AUC * Accuracy (%) Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%)

Model 8
V65(%)

XQ-Intmid

0.80 81.0 76.2 83.3 69.3 87.7
[0.71–0.88] [71.0–88.7] [60.6–88.0] [68.6–93.0] [52.9–81.9] [80.3–92.5]

Model 9
Dmean

XQ-Intmid

0.63 61.1 69.1 57.1 44.2 78.9
[0.52–0.72] [49.8–71.5] [52.9–82.4] [41.0–72.3] [34.6–54.3] [69.0–86.3]

Model 10
0.79 78.6 78.6 78.6 64.4 88.2ve P25

V65(%)
XQ-Intmid

[0.69–0.86] [68.3–86.8] [63.2–89.7] [63.2–89.7] [49.8–76.7] [80.3–93.1]

Model 11
Ktrans P10 V65(%)

XQ-Intmid

0.73 72.2 73.8 71.4 56.3 84.5
[0.63–0.81] [61.4–81.4] [58.0–86.1] [55.4–84.3] [43.6–68.3] [76.1–90.4]

Model 12
0.80 77.8 85.7 73.8 62.0 91.2ve P25

Ktrans P10 V65(%)
XQ-Intmid

[0.70–0.87] [67.4–86.1] [71.5–94.6] [58.0–86.1] [49.2–73.4] [82.8–95.7]

Model 13

0.79 78.6 78.6 78.6 64.7 88.0ve P25
V65(%)

Dmean, SMG
XQ-Intmid

[0.69–0.87] [68.3–86.8] [63.2–89.7] [63.2–89.7] [50.1–76.9] [80.1–93.1]

Model 14
0.63 60.3 71.4 54.8 44.1 79.3ve P25

Ktrans P10 Dmean
XQ-Intmid

[0.53–0.72] [49.1–70.8] [55.4–84.3] [38.7–70.2] [34.9–53.6] [68.9–87.0]

Model 15

0.71 73.0 66.7 76.2 58.3 82.1ve P25
Ktrans P10 Dmean

V65(%)
XQ-Intmid

[0.61–0.81] [62.2–82.1] [50.5–80.4] [60.6–88.0] [43.9–71.4] [74.3–87.9]

Model 16

0.74 71.4 81.0 66.7 54.8 87.5ve P25
Ktrans P10 Dmean

V65(%)
Dmean, SMG
XQ-Intmid

[0.63–0.83] [60.5–80.8] [65.9–91.4] [50.5–80.4] [43.6–65.6] [78.4–93.1]

* Confidence Interval for the model AUC estimates calculated with bias corrected and accelerated percentile bootstrap method; the
prediction model performance was estimated on the internal test set after a stratified 5-fold cross-validation. In squared brackets the 95%
confidence interval is reported. Abbreviations as in Table 2.
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Figure 2. Sections of parotid glands in a 68-year-old man affected by a tonsil carcinoma (Patient 48) on axial CT image with
overlaid isodose levels and parotid contours (a); the corresponding axial T2-weighted image (b) and map of Ktrans (c) which
indicates highly vascularized glands. Analogously, sections of parotid glands in a 75-year-old woman affected by a soft
palate carcinoma (Patient 17) on axial CT image with overlaid isodose levels and parotid contours (e); the corresponding
axial T2-weighted image (f) and map of Ktrans (g) which shows moderately perfused glands. Ktrans histograms (d) and
dose-volume histograms (h) of both parotids, for Patient 48 and 17 in comparison. Patient 48, who developed grade 1 XER12,
had much more vascularized parotids glands than Patient 17, who experienced grade 2 XER12 (median Ktrans = 0.93 versus
0.19 min−1). He received little lower doses to parotids (Dmean/V65 = 33.3 Gy/0.4% versus 38.1 Gy/8.5%) but showed much
lower in-treatment XQ scores, compared to patient 17 (XQ-Intmid = 33.2 versus 82.9, respectively).

Patient 31 and patient 43, who experienced grade 1 and grade 2 XER12, respectively,
had parotids glands with quite similar perfusion levels (median Ktrans = 0.36 versus
0.40 min−1). However, they received very different doses to parotid glands: Dmean/V65
was 30.2 Gy/1.2% versus 44.7 Gy/21.2%, respectively. As a result, Patient 43 with grade
2 XER12 showed higher in-treatment XQ scores, compared to patient 31 (XQ-Intmid = 127
versus 42, respectively), which led to a disparity in late toxicity.
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Figure 3. Sections of parotid glands in a 47-year-old woman affected by a base of the tongue carcinoma (Patient 43) on axial
CT image with overlaid isodose levels and parotid contours (a); the corresponding axial T2-weighted image (b) and map of
Ktrans (c). Analogously, sections of parotid glands in a 69-year-old man affected by a base of the tongue carcinoma (Patient
31) on axial CT image with overlaid isodose levels and parotid contours (e); the corresponding axial T2-weighted image (f)
and map of Ktrans (g). Ktrans histograms (d) and dose-volume histograms (h) of both parotids, in comparison.

4. Discussion

In the present study, we hypothesized that the integration of pre-treatment functional
MRI biomarkers with self-assessed XQ scores, and dosimetric- and patient-related factors
could improve the accuracy of conventional prediction models that are based only on dose
information [11], simultaneously providing a better description of the pathophysiological
mechanisms underlying radiation-induced salivary dysfunction [10,12,15,29].

After some exploratory tests to quickly train the most common machine learning
algorithms [30], we found that, on our dataset, the Decision Tree classifier provided
comparable or better accuracies in most of the different combination of selected predictors.
Sixteen different models were obtained that included either (1) only pre-treatment variables
or (2) pre-treatment variables and variables determined during treatment. The first class
of models confirmed the significant role of the planned mean parotid dose, as already
demonstrated by several studies [15], but also emphasized the detrimental effect of the high
doses delivered to small gland parts, specifically through the parameter V65 (%) at baseline.
These results are consistent with a recent study reporting that a high dose delivered to a
small gland sub-volume may have a more detrimental impact on injury than a low-dose
bath [16], whereas the addition of Dmean,SMG did not significantly improve the predictive
performance of the models, compared to those including only parotid dosimetric variables.
This may be due to the fact that, despite the significant differences found in Dmean,SMG
between patients with XER12< and =grade 2, submandibular glands received doses well
above the mean dose threshold of <39 Gy, which has been suggested to limit radiation-
induced damage [8]. In contrast, the partial recovery of parotid glands functionality after
treatment may have contributed to their central role in predicting late xerostomia [28].

It should be noted that models including fewer predictors had comparable or better
performances than more complex models based on a larger number of predictors; in fact,
the selection of a lower number of variables helps reduce redundancy and irrelevance, and
to avoid the problem of overfitting [30].
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Because the planned and actual parotid dose may differ due to anatomical modifi-
cations of the patient throughout the course of RT [31,32], we re-evaluated DVHs from a
second CT scan acquired at the 10th fraction to quantify this potential confounding factor.
Even though some dose variables at this time point were significantly related to grade 2
XER12, they were not superior to pre-treatment ones and were not selected for the model
building.

Several parameters derived from DCE-MRI maps were useful for predicting grade
2 XER12. The histogram-based approach and the extraction of percentiles increased the
ability to find associations between DCE-MRI parameters and xerostomia, compared to
more simplistic mean values. Notably, patients with hypoperfused parotids were found
to be more likely to experience greater toxicity. Our findings are indirectly supported by
the study of van Dijk et al., who investigated the relationship between late xerostomia and
fatty parotid components at MRI and found a direct relationship between signal intensity
(P90) from T1-weigthed MRI and XER12 [8]. Concurrently, a negative correlation between
gland vascularization and BMI [33] and a positive association between BMI and parotid
fat content in healthy adults have been documented [34]. BMI may also partly explain
why patients with grade 2 XER12 had lower ve values, compared to patients with grade <2
XER12, considering that a larger fatty component may cause a reduction in the EES.

In-treatment parameters may contain important information on individual responses
to treatment—particularly in week 3—thereby allowing for treatment personalization [35].
This was confirmed by the second class of models that we proposed, which incorporated
in-treatment variables. In fact, Model 8, which was based on both V65 (%) and XQ-Intmid,
had the best AUC (0.80) and accuracy (0.81) and highlighted the importance of self-assessed
acute XQ scores in predicting late xerostomia. As mentioned, patients may perceive dry
mouth differently, despite their salivary production [5], and observer-based grades may
differ from the patients’ subjective scores [8,36].

The AUCs of our long-term xerostomia prediction models were similar to those
reported in the recent literature based on CT, PET, or MR imaging biomarkers [15], despite
the fact that a direct comparison was challenging due to differences in the nature of the
investigation (retrospective vs. prospective), follow-up time, patient-specific and dose
factors studied, patient population, and statistical methods used.

Presently, the relationship between radiation-induced parotid atrophy and late xe-
rostomia remains controversial; some studies indicate a correlation between the gland
shrinkage and the degree of reduction in saliva production after RT [37], while others show
that patients with less shrinkage at mid-treatment were more likely to experience a worse
outcome [38]. Based on our data, the volumes of parotids at each time point (at baseline, at
10th fraction, at 8 weeks post-RT) and their changes relative to baseline did not significantly
differ between the two patient groups, even though patients with smaller parotid glands,
particularly at the 10th fraction, were more likely to experience grade 2 XER12 with a trend
toward statistical significance [11].

It has been reported that early quantification of parotid density variations, based
on Hounsfield Units (HU) measurements from CT scans, could represent more robust
and sensitive biomarkers of acinar cell reduction or acute xerostomia, instead of vol-
ume shrinkage [39,40]. Similarly, we assumed that early variations in ADC, and Dt in
particular—which is a perfusion-free diffusion coefficient [41]—could be more strongly
related to modifications in cellular microstructure and cell death than to volume changes,
as previously suggested [42]. However, neither ADC nor Dt—nor their variations during
treatment—differed significantly between patients with XER12 < grade 2 and XER12 = grade
2. At the same time, our data indicated that both diffusion coefficients increased signif-
icantly during treatment, and their variations were strongly associated with Dmean (Gy)
for several dose-volume points (see the Supplementary Materials), according to previous
literature [33,43,44].

The study has some limitations. The performance of the models may be underesti-
mated by the fact that they were evaluated on the internal test set after a stratified 5-fold
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cross-validation, which may not be representative of the entire data set due to the small
sample size. We did not include ADC/Dt histogram analysis, though it was suggested
by others [45] that early changes in the highest ADC percentiles correlated to Grade 2
xerostomia and could be clinically useful. Future investigations will include the role of Dt
histogram analysis in particular, with the aim of improving the sensitivity of the classifi-
cation model. Moreover, our study did not investigate the radiation effect in relation to
the local dose delivery and to the involvement of specific regions of the gland that may be
more radiosensitive [28,46]. Nevertheless, the incorporation of voxel-dose parameters does
not appear to significantly improve the model’s predictive ability relative to conventional
dosimetric parameters [28]. Moreover, Sari et al. recently reported that that Dmean to
parotid stem cells (located inside the Stenson duct perimeter) had a comparable ability to
predict xerostomia than did Dmean to entire parotids [47]. Lastly, the performance of the
proposed models was not validated in an independent external cohort, which would have
allowed them to demonstrate their robustness and transportability to other settings.

5. Conclusions

Non-invasive MRI biomarkers from DCE-MRI, together with dosimetric variables
(both at intermediate and high doses) and self-assessed acute XQ scores during treatment,
were significantly associated with xerostomia and may help predict grade 2 XER12 with a
fair to good accuracy. These findings may aid physicians in the identification of specific
risk factors and, consequently, improve patient management.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13246296/s1, Materials and Method: DCE-MRI and DWI Quantification; Statistical
tests and model building, Table S1: DCE-MRI parameters sorted by RTOG classification, Table S2:
DWI parameters sorted by RTOG classification, Table S3: Body mass index (BMI) and patient
weight sorted by RTOG classification, Table S4: Volume of both glands. as single organ. sorted
by RTOG classification, Table S5: Quantitative parameters derived from Acute Xerostomia-related
Questionnaire (XQ) scores sorted by RTOG classification, Table S6 Dose–volume data of both glands.
as single organ at baseline. sorted by RTOG classification, Table S7: Dose–volume data of both glands.
as single organ at 10th fraction. sorted by RTOG classification, Table S8: Summary statistics of the
diffusion parameters and their variations during treatment, Table S9: Spearman’s Rho values between
ADC/Dt variations and dose-volume data of both glands, as single organ at baseline, Table S10:
Spearman’s Rho values between ADC/Dt variations and dose-volume data of both glands at 10th
fraction, Table S11: Chi—squared test between Nstage and XER12, Table S12 Spearman’s coefficient
Rho between selected (continuous) variables for XER12 prediction model, Table S13: Comparison
between prediction accuracies of the models, Figure S1: The average of the distribution of cumulative
dose–volume histograms (DVHs) of both parotids, Figure S2: Box-and-whisker plots of the most
significant predictors for XER12 = grade 2, Figure S3. Plots of acute XQ-score versus week of RT in
two representative cases.
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