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Given that HIV evolution and latent reservoir establishment occur
continually within-host, and that latently infected cells can persist
long-term, the HIV reservoir should comprise a genetically hetero-
geneous archive recapitulating within-host HIV evolution. How-
ever, this has yet to be conclusively demonstrated, in part due to
the challenges of reconstructing within-host reservoir establish-
ment dynamics over long timescales. We developed a phyloge-
netic framework to reconstruct the integration dates of individual
latent HIV lineages. The framework first involves inference and
rooting of a maximum-likelihood phylogeny relating plasma HIV
RNA sequences serially sampled before the initiation of suppres-
sive antiretroviral therapy, along with putative latent sequences
sampled thereafter. A linear model relating root-to-tip distances of
plasma HIV RNA sequences to their sampling dates is used to
convert root-to-tip distances of putative latent lineages to their
establishment (integration) dates. Reconstruction of the ages of
putative latent sequences sampled from chronically HIV-infected
individuals up to 10 y following initiation of suppressive therapy
revealed a genetically heterogeneous reservoir that recapitulated
HIV’s within-host evolutionary history. Reservoir sequences were
interspersed throughout multiple within-host lineages, with the
oldest dating to >20 y before sampling; historic genetic bottleneck
events were also recorded therein. Notably, plasma HIV RNA se-
quences isolated from a viremia blip in an individual receiving
otherwise suppressive therapy were highly genetically diverse
and spanned a 20-y age range, suggestive of spontaneous in vivo
HIV reactivation from a large latently infected cell pool. Our frame-
work for reservoir dating provides a potentially powerful addition
to the HIV persistence research toolkit.
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HIV, like all retroviruses, integrates its genome into that of
the infected host cell. Although actively infected cells typi-

cally die as a result of viral cytopathic effects or immune-
mediated elimination, a minority [broadly estimated as one in
every million resting CD4+ T cells (1, 2)] harbor integrated HIV
DNA in a state of reduced transcriptional activity (or quies-
cence) over long periods (3–5). Termed latently infected cells or
latent HIV reservoirs, these represent the major barrier to a cure
as they can persist for years and can reactivate at any time to
produce infectious virions (5–10). It is for this reason that
combination antiretroviral therapies (cART), which do not act
upon latent HIV reservoirs, need to be maintained for life.
Characterization of latent HIV sequences provides informa-

tion about reservoir stability, distribution, and dynamics (11),
which can in turn inform HIV elimination strategies. It is now
established that a majority of sexually acquired HIV infections
are initiated by a single transmitted/founder variant, from which
descendant viral populations rapidly reaccumulate genetic di-
versity (12–20). Concomitantly, establishment of latent HIV
reservoirs begins within hours or days following infection and
continues as long as the virus is actively replicating within the
host (21, 22). Given that latent HIV genomes can persist for

decades, either in the original cell or clonal descendants thereof
(23, 24), the reservoir should constitute a genetically heteroge-
neous archive of within-host HIV evolution, even after years of
cART (25–27). However, while numerous studies have con-
firmed that the HIV reservoir is genetically diverse (11, 28–35),
our knowledge of the within-host ancestor–descendant rela-
tionships of these sequences remains limited, because few studies
(ref. 36 being a notable exception) have interpreted reservoir
diversity in the context of HIV’s within-host evolutionary history.
In particular, it remains unclear whether HIV sequences sam-
pled from the reservoir during long-term suppressive cART truly
recapitulate within-host HIV evolution or whether dynamic
processes such as homeostatic proliferation (33), clonal expan-
sion (11, 37–41), and/or preferential elimination of certain la-
tently HIV-infected cells skew reservoir sequence composition
over time. These knowledge gaps persist due to the challenges of
studying within-host HIV dynamics over long timescales, com-
bined with a lack of methods to infer latent HIV integration
dates. While phylogenetic principles have been used to identify
viral reservoirs (25), and techniques have been developed to
detect latent lineages (42) and to quantify their turnover (43),
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latent HIV deposition times have generally been estimated by
assessing genetic similarity of these sequences to pre-cART
plasma HIV RNA sequences (e.g., refs. 30 and 36). However,
this approach is limited by the ability to previously sample similar
sequences within-host. To our knowledge, no studies have di-
rectly leveraged information about within-host HIV evolutionary
rates to infer latent HIV sequence ages.
As evolution of a given HIV lineage effectively ceases upon

integration (and only resumes once a new round of virus repli-
cation ensues), latent HIV sequences will display a characteristic
discordance between their sampling date and their “true” (older)
age based on their genetic divergence from the transmitted/
founder virus. Inference of the latter distance, along with a host-
specific evolutionary rate, would thus allow a reservoir’s “true”
age to be inferred from its sequence. Within-host ancestor–
descendant relationships can be phylogenetically reconstructed
using serially sampled HIV sequences (44, 45); moreover, by
“fixing” tree tips at their respective sampling dates, phylogenies
can be rescaled chronologically, allowing rates of evolution to be
estimated directly (46). As the rate of evolution remains fairly
consistent among actively replicating within-host HIV lineages,
the divergence of descendant lineages from the transmitted/
founder virus can be approximated, at least over the initial years
of infection, by a “strict” molecular clock model (36, 47, 48).
Based on these principles, we developed a phylogenetic frame-
work that recovers the integration date of latent HIV lineages by
reconstructing within-host HIV evolutionary history from virus
sequences sampled pre-cART.

Results
Reconstructing Integration Dates Phylogenetically. Phylogenetic in-
ference of HIV evolutionary rates from time-stamped between-host
HIV sequence datasets has been used to date key events in the
pandemic’s history (49, 50), to reconstruct putative transmission
histories (44, 51, 52), and to infer unknown sequence ages (53). We
adapt these techniques to the within-host context with the goal of
estimating latent HIV sequence ages (Fig. 1). We begin by inferring a
maximum-likelihood phylogeny (54) from plasma HIV RNA se-
quences longitudinally sampled pre-cART (“training data”) along
with sequences whose ages are unknown (“censored data,” for ex-
ample proviral DNA sequences subsequently sampled during sup-
pressive cART) (Fig. 1A). We then identify the root location that
optimizes the relationship between evolutionary distance and sam-
pling time in the training data (Fig. 1B) and calibrate a strict mo-
lecular clock by fitting a linear model that relates their root-to-tip
evolutionary distances to their sampling times, given by D= μT + a,
where response variable D denotes the genetic distance from the
root, predictor variable T denotes the sample collection date, μ de-
notes the evolutionary rate, and a denotes the y intercept (Fig. 1C).
We then test for the presence of a molecular clock (i.e., evidence that
sequence divergence increases over time) by comparing the model
against the null model of zero slope (where D is constant over time).
Linear models need to fulfill two criteria to pass quality control: first,
their Akaike information criterion (AIC) (55) needs to be at least
10 units lower than that of the null model, and second, the 95%CI of
the model-estimated root date needs to contain or precede the first
sampling date. For linear models that pass model selection, the es-
tablishment (i.e., integration) date of each censored sequence x is
estimated by TðxÞ= ðDðxÞ− aÞ=μ (Fig. 1D). The uncertainty in TðxÞ
is given by «x = t0.025,n−2«μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 1

n+ ðDðxÞ− �DÞ2=ðμ2P ðT − �TÞ2Þ
q

,
where t0.025,n−2 is derived from the t distribution, « is the error of the
linear model, n is the number of training sequences, and �D and �T are
the mean genetic distance and collection date of the training se-
quences, respectively (56).

Framework Proof of Concept. To test the concept, we simulated
1,000 phylogenies with 100 tips each under a strict molecular
clock, censored the sampling dates for 50% of sequences at
random, and inferred linear models from the remainder (rep-
resentative dataset in Fig. 2 A–C). All linear models yielded

ΔAIC values above the predefined threshold (mean ΔAIC 187);
however, 39/1,000 (4%) returned root date estimates whose 95%
CIs were later than the first training time point and were thus
rejected, yielding a 96% success rate. Linear models fit the
training data very well: the overall scaled mean absolute error
(MAE), calculated as the grand mean of the absolute error be-
tween predicted and true sampling dates of the training data,
scaled by the overall training data timespan, was 0.034 (i.e.,
3.4%). That is, for datasets spanning a 1-y period, the linear
model recovered training data sampling dates to within an av-
erage of 12 d. Dates of censored sequences were similarly re-
covered with minimal error: The overall scaled mean absolute
difference (MAD, calculated as the grand mean of the absolute
difference between predicted and true sampling dates of cen-
sored sequences, scaled by the total training data timespan) was
0.037, with no evidence of distributional asymmetry using a
nonparametric binomial test (57) (all 961 simulations returned P
values below the significance cutoff; see Materials and Methods)
(Fig. 2D).
To test the framework’s performance on real HIV sequence

datasets sampled at various depths, frequencies, and timespans,
we applied it to 424 longitudinal partial HIV RNA env sequences
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Fig. 1. Framework illustration. (A) Hypothetical pVL and sampling history of
an HIV-infected individual who initiated cART in chronic infection. Throughout
all figures, circles denote plasma HIV RNA, diamonds denote HIV DNA, filled
symbols denote training data (plasma HIV RNA sequences used for model
calibration), and open symbols denote censored data (sequences destined for
molecular dating). Training data are colored based on collection date, while
censored data are shown in black. Yellow shading denotes cART. Here, plasma
HIV RNA sequences collected at baseline and 1.7 and 4.2 y (training data; filled
colored circles) are used to infer integration dates of proviral DNA sequences
sampled during suppressive cART in year 7 (censored data; open black di-
amond). (B) Maximum-likelihood within-host phylogeny relating training and
censored sequences, where the root represents the inferred MRCA (i.e., the
date of the transmitted/founder event). Scale in nucleotide substitutions per
site. (C) The thick gray dotted diagonal represents the linear model relating
root-to-tip distances of the training data to their sampling dates. The x in-
tercept (here, 1 y before baseline sampling) represents the inferred root date.
The linear model is used to convert root-to-tip distances of censored sequences
to their establishment (i.e., integration) dates. For example, the latent se-
quence at the top right, whose divergence from the root is 0.09, is inferred to
have integrated at the beginning of year 4 (dotted red line). Light gray lines
trace the ancestor–descendant relationships of HIV lineages. (D) Histogram
summarizing inferred integration dates of censored sequences. Arrow denotes
baseline sampling.
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Fig. 2. Framework proof of concept using simulated and published HIV sequences. (A) Representative rooted tree relating simulated longitudinal within-
host plasma HIV RNA sequences with 50% of tips randomly assigned as training data (circles colored by sampling time point) or censored for molecular dating
(open black circles). (B) Resulting linear model with ancestor traces overlaid. (C) Inferred dates of censored sequences; arrow indicates baseline sampling date.
(D) Density plots of normalized error distributions (expressed as the absolute difference between predicted and true sampling dates of the censored se-
quences, scaled by the total dataset timespan, where −1 and 1 represent −100% and 100%, respectively) from 100 (of 961) successful simulations selected at
random. (E–G) Same as A–C, but for within-host plasma HIV RNA sequences from LANL participant 13654 where 50% of tips were randomly assigned as
training data. (H) Density plots of normalized error distributions for all six successful LANL RNA datasets. (I–K) Same as A–C, but for LANL participant 821 with
HIV RNA and DNA sequences treated as training and censored, respectively. (L) Density plots of normalized differences between HIV DNA predicted and
sampling dates for the six successful LANL RNA/DNA datasets.
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retrieved from the Los Alamos National Laboratory HIV se-
quence database (LANL) (58) from eight individuals with known
infection dates (median 40 sequences per individual, collected at
a median of 4.5 time points over a median 2.2 y) whose within-
host sequence diversity was consistent with a molecular clock (SI
Appendix, Table S1). After censoring 50% of sequences at ran-
dom from each dataset, linear models could still be calibrated for
six of them (representative data shown in Fig. 2 E–G; summary
in SI Appendix, Table S1). In part because real datasets were on
average smaller and spanned shorter time periods than simu-
lated data, scaled prediction errors were higher. Nevertheless,
the model predicted censored dates to within an average of 15%
(SD 6.3%) of the total timespan of each dataset, where pre-
diction errors reflected overall model fit to the training data
(Pearson’s correlation between model MAE and MAD was R =
0.98, P = 0.007), with no significant distributional asymmetry
(Fig. 2H and SI Appendix, Table S1). These observations dem-
onstrate that the framework can be applied to sparse data (e.g.,
for individual 13333, a linear model was calibrated from only
19 training sequences sampled over 1.4 y).
We then applied the framework to seven published datasets

(58) featuring plasma RNA and proviral DNA sequences sampled
at various times pre- and post-treatment (median 142 sequences
per individual collected at a median 11 time points over a median
5.8 y), although none featured HIV DNA sampled during long-
term suppressive cART (SI Appendix, Table S1). Thus, while the
majority of HIV DNA sequences should represent contemporary
within-host strains, we hypothesized that a minority would repre-
sent latent genomes (59). To test this, plasma HIV RNA se-
quences were used as training data to reconstruct proviral DNA
archival dates, with the expectation that datasets containing latent
genomes would yield left-skewed date difference distributions due
to latent genome archival dates preceding their sampling dates. Of
the seven datasets, six (including three with only three training
time points) yielded successful linear models. (Representative
data are shown in Fig. 2 I–K and a summary is given in SI Ap-
pendix, Table S1.) Overall, HIV DNA dates were predicted to
within an average of 16% (SD 5.9%) of the total training data
timespan where MAD again correlated strongly with overall
model MAE (Pearson’s R = 0.98, P = 0.00048; SI Appendix, Table
S1). Moreover, significantly left-skewed date difference distribu-
tions were noted in two individuals, consistent with the presence of
latent lineages (SI Appendix, Fig. S1 and Table S1). These results
demonstrate that HIV sequence ages can be reconstructed from a
wide range of datasets from individuals with various clinical his-
tories and that the framework can detect the expected presence of
latent lineages.

Dating the Latent HIV Reservoir. As the framework is designed to
date HIV sequences within (or released from) HIV reservoirs,
we applied it to reconstruct integration dates of HIV sequences
isolated from two individuals who had maintained prolonged
plasma viral load (pVL) suppression on cART. Participant 1 was
diagnosed with HIV in August 1996 and did not initiate a regi-
men that suppressed pVL to <50 copies HIV RNA per mL until
August 2006 (Fig. 3A). Viremia rebounded in the fall of
2007 after an unsuccessful regimen change, but suppression was
reachieved in April 2008 and sustained to the present day with
the exception of one “blip” to 76 copies per mL in September
2015. Using single-genome amplification, we collected 102 HIV
RNA nef sequences from 14 pre-cART plasma specimens
spanning August 1996 to June 2006 as training data. We also
collected 42 nef sequences sampled at four time points post-
cART for molecular dating; these included proviral DNA se-
quences retrieved from whole blood collected in July 2011 and
peripheral blood mononuclear cells (PBMC) in June 2016 (5 and
10 y post-cART, respectively) and HIV RNA sequences sampled
during the September 2007 pVL rebound and the September
2015 viremia blip. These data included eight instances where
identical HIV RNA sequences were isolated from the same or
temporally adjacent plasma samples and eight instances where

identical sequences were isolated from putative reservoirs (in-
cluding two instances where the same sequence was isolated
from the plasma viremia event in 2007 and PBMC sampled in
2016) (SI Appendix, Fig. S2A).
As identical HIV sequences are not phylogenetically in-

formative, a rooted maximum-likelihood phylogeny was inferred
from 93 unique HIV RNA (training data) and 34 unique putative
reservoir sequences (censored data). The characteristic genetic
bottlenecks that typify within-host HIV evolution (15, 16, 20) are
clearly visible in the “ladder-like” tree shape (48, 60) (Fig. 3B)
and in the temporally ordered plasma HIV RNA nef amino acid
alignments (SI Appendix, Fig. S2B). Training data root-to-tip
patristic distances also correlated strongly with sampling times
(Pearson R = 0.92, P < 9.8 × 10−38), indicative of a molecular
clock. Consistent with the reservoir as a genetically diverse ar-
chive of within-host HIV evolution [where it would be expected
that reservoir sequences would be dispersed throughout a phy-
logeny of viruses sampled over time from an individual (25)],
censored sequences were embedded within multiple within-host
lineages and exhibited overall diversity comparable to that of
pre-cART plasma HIV RNA sequences sampled over a decade
(mean patristic distances of 0.12 vs. 0.095 expected substitutions
per base, respectively). The linear model fit the training data
well, particularly in the early years (overall ΔAIC = 172; MAE =
1.1 y), yielding an estimated nef mutation rate of 3.9 × 10−5

substitutions per base per d and an estimated root date of August
1995 (Fig. 3C). Evolutionary rate and root date reconstructions
were confirmed using established Bayesian methods (grand
mean rate 4.1 × 10−5 [95% highest posterior density (HPD) 3.1 ×
10−5–5.2 × 10−5] substitutions per base per d; grand mean root
date December 1995 [95% HPD July 1995–May 1996]).
Further supporting the reservoir as a within-host HIV evolu-

tionary archive, unique proviral DNA sequences sampled in
2016, after nearly 10 y of suppressive cART, dated to between
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D

Fig. 3. Reservoir dating: participant 1. (A) Plasma HIV RNA sequences from
14 pre-cART time points spanning August 1996 to June 2006 were used as
training data (colored circles) to infer the integration dates of censored se-
quences sampled at four time points between 2007 and 2016, including
proviral DNA sequences sampled in 2011 and 2016 (open black diamonds)
and plasma HIV RNA sequences from viremic episodes in 2007 and 2015
(open black circles). Yellow shading denotes cART. (B) Rooted tree relating
training and censored sequences. (C) Linear model (gray dotted diagonal)
with ancestor traces overlaid. (D) Inferred integration dates of censored
sequences, colored by sampling date. Arrow denotes baseline sampling date.
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1997 and 2007, making them an average of 14 y old (Fig. 3D).
Moreover, consistent with multiple ancestral HIV lineages con-
tributing to viremia recrudescence upon therapy discontinuation,
four of the five HIV RNA sequences isolated from the 2007 vi-
remia rebound dated to distinct pre-cART time points (one to
January 2002 and the others to early 2006). The single HIV RNA
sequence isolated from the 2015 plasma viremia blip dated to
August 2006, around the time of cART initiation, suggesting the
blip originated from spontaneous reactivation of a latent HIV
lineage seeded just before therapy. While the linear model
returned 2009 integration dates for two sequences, in both cases
their 95% CIs overlapped with the last period of uncontrolled
viremia (SI Appendix, Fig. S3). Overall these results suggest that
HIV evolution was not ongoing during suppressive cART in this
participant, at least not in blood.
Participant 2 was diagnosed with HIV in April 1995 (Fig. 4A).

In July 2000 he initiated an incompletely suppressive dual ART
regimen that was maintained until August 2006, when he initi-
ated cART. Plasma viremia was suppressed to <50 copies per
mL by December 2006 and maintained until May 2011, after
which intermittent viremia blips occurred, the highest of which
was in March 2013 (1,063 copies per mL). We collected 47
plasma HIV RNA nef sequences from four pre-ART time points
between February 1997 to December 1999 and 100 plasma nef
sequences from 12 time points between April 2001 and August
2006 while on dual ART, for use as training data. An additional
30 nef sequences sampled up to 10 y post-cART, including
plasma sequences from the March 2013 viremia blip and PBMC-
derived HIV DNA sequences sampled in August 2016, were
isolated for molecular dating. We noted 16 cases where identical

HIV sequences were isolated from the same or different time
points, including one case where a sequence isolated from the
2013 plasma viremia blip exactly matched one isolated from
plasma HIV RNA in 2005 (SI Appendix, Fig. S4A).
The phylogeny inferred from 119 unique plasma HIV RNA

and 18 putative reservoir sequences revealed two initial viral
lineages that underwent a severe genetic bottleneck following
dual ART (Fig. 4B and SI Appendix, Fig. S4B). Again, training
data root-to-tip distances correlated strongly with sampling times
(e.g., Pearson R = 0.61, P = 3.4 × 10−5 for pre-ART period) and
putative reservoir sequences were dispersed throughout all
lineages. These included one ancestral subclade branching close
to the root that included five unique sequences isolated from
both reservoir samplings, whose most recent common ancestor
(MRCA) gave rise to the clade that disappeared from circulation
after dual ART. Two linear models were trained, one for the
ART-naive period (ΔAIC = 16; MAE = 0.85 y) which yielded an
estimated mutation rate of 1.1 × 10−5 substitutions per base per
d and an estimated root date of February 1993 and the second
for the dual-therapy period (ΔAIC = 14; MAE = 3.0 y; estimated
mutation rate 3.0 × 10−6 substitutions per base per d) (Fig. 4C).
Evolutionary rate and root date estimates were again consistent
with those estimated using Bayesian methods (grand mean rate
8.8 × 10−6 [95% HPD 6.8 × 10−6–1.1 × 10−5] substitutions per
base per d; grand mean root date February 1994 [95% HPD
January 1993–March 1994]).
Reservoir sequences were dated using the linear model

inferred from the lineages in which they resided, yielding in-
tegration dates that preceded collection dates by up to 21 y (Fig.
4D). Two observations are notable. First, the five sequences in
the most ancestral subclade, which included sequences sampled
from the 2013 viremia blip as well as from proviral DNA in 2016,
dated to between December 1994 and May 1996, before the
participant’s first plasma sampling. Detection of archival se-
quences in viremia blips is consistent with the reservoir harboring
reactivation-competent viral lineages that can date back to
transmission. Second, sequences from the 2013 viremia blip were
genetically diverse and dated to between 1994 and 2010, sug-
gesting that spontaneous in vivo reactivation of numerous an-
cestral HIV lineages led to this viremia episode.

Framework Is Robust to Minimal Training Data. Training linear
models from ∼100 HIV sequences sampled over a decade is not
feasible in most cases, so we tested model robustness to sampling
depth and frequency. We began by evaluating the framework’s
ability to retrieve known plasma HIV RNA dates using pro-
gressively sparser training data (“RNA censoring validation”). To
do this, we randomly subsampled training time points from par-
ticipant 1’s data to generate 1,096 new training datasets (featuring
all 91 combinations comprising two training time points, 100
datasets each comprising between 3 and 11 training time points,
all 91 combinations comprising 12 training time points and all 14
combinations comprising 13 training time points), where the re-
mainder were censored. As all datasets contained the same se-
quences, a single phylogeny was inferred where the root location
(and thus the resulting linear model) differed for each dataset,
depending on which sequences were designated “training” vs.
“censored.” Overall MAE distributions (here, expressed as the
difference between known and model-predicted sampling dates
for all sequences) as well as their respective concordance coeffi-
cients (61) are shown in Fig. 5 A–C. To provide context on max-
imal model performance, the full (14 time points) dataset yielded
an overall MAE of 1.3 y (Fig. 5B) and a concordance coefficient of
0.90 (Fig. 5C).
These results demonstrated that the framework could be re-

liably applied to as few as three training data time points, and
sometimes even two. For example, 86% of linear models trained
on three time points passed calibration (Fig. 5A) and yielded a
median MAE only 14% more than the full dataset (1.4 vs. 1.3 y,
respectively; Fig. 5B) and a median concordance coefficient only
4.4% lower than the full dataset (0.86 vs. 0.90 respectively; Fig.
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Fig. 4. Reservoir dating: participant 2. (A) Plasma HIV RNA sequences from
four pre-ART time points between February 1997 and December 1999, and
an additional 12 time points between April 2001 and August 2006 during
incompletely suppressive dual ART (circles colored by sampling time point)
were used as training data to infer the integration dates of censored se-
quences sampled 7 and 10 y post-cART, including HIV RNA sequences from a
viremia episode in 2013 (black open circles) and proviral DNA sampled in
2016 (black open diamonds). Pink and yellow shading denote dual ART and
cART, respectively. (B) Rooted tree relating training and censored sequences.
(C) Linear models for the pre-ART period (thick gray diagonal, L1) and dual
ART period (hatched gray diagonal, L2), with HIV ancestor traces overlaid.
Censored sequences are dated using the model inferred from the lineages in
which they reside. (D) Inferred integration dates of censored sequences,
colored by sampling date. Arrow denotes baseline sampling.
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5C). Remarkably, linear models trained on only two time points
(and an average of only 13 training sequences) were still suc-
cessful in 31% of cases. In general, however, models trained on
more time points, where the first was as early as possible and
where sampling spanned the widest temporal range, were more
likely be successful (Fig. 5 D–F). For example, all models where
the first training time point was before 1998 (i.e., within ∼3 y of
the estimated root date) and the last was in 2000 or later were
successful (Fig. 5F). Our observation that failed models returned
a 2.1-fold higher grand mean MAE than passing ones further
corroborates our model assessment criteria (Materials and
Methods and Fig. 5 D and E).
The framework’s ability to reconstruct sequences of unknown

age from sparse training data (“RNA subsampling validation”)
was similarly robust (SI Appendix, Fig. S5). The above-described
1,096 temporally subsampled training datasets were used to re-
construct integration dates of putative reservoir sequences; here,
however, unused plasma HIV RNA sequences were removed
such that phylogenies inferred from fewer training data would be
progressively sparser. Again, reservoir establishment dates were
reliably retrieved. For example, 84% of linear models trained on
only three time points passed calibration (SI Appendix, Fig. S5A)
and yielded reconstructed sequence ages with a median MAD of

only 1.5 y and a median concordance coefficient of 0.87 from
those estimated using the full training dataset (SI Appendix, Fig.
S5 B and C). For context, 1.5 y represents 7.5% of the total
(20-y) follow-up period for this participant. Overall, results in-
dicate that our framework is robust to limited sampling.

Framework Is Robust to Rooting Strategy. Rooting phylogenies is
inherently difficult. To validate our primary rooting strategy
(RTT; see Materials and Methods), we outgroup-rooted all
datasets on the HIV-1 subtype B reference strain HXB2 (OGR).
Outgroup rooting of the eight LANL plasma HIV RNA datasets
identified two that did not subsequently exhibit clock-like signal;
thus, for the remaining six we censored 50% of the sequences at
random and used the remainder as training data. While only
three of the resulting linear models passed, these yielded dates
highly concordant with RTT-recovered ones (0.98 overall; Fig.
6A). Outgroup rooting the seven LANL HIV RNA/DNA data-
sets, which were generally larger than the HIV RNA datasets,
yielded five successful linear models (compared with six of seven
by RTT), which returned dates highly concordant with RTT-
estimated ones (0.97 overall; Fig. 6B). For participants 1 and
2, OGR yielded slightly earlier MRCA dates than RTT (April
1995 and April 1990, respectively; SI Appendix, Fig. S6). This is
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Fig. 5. Framework robustness to training data sampling depth and frequency: RNA censoring validation. This figure summarizes the framework’s ability to
recover known plasma HIV RNA sampling dates with progressively fewer training data (censoring validation). (A) The proportion of linear models passing
validation (solid line) and the number of sequences used for model training (floating box plots) are shown for the n = 1,096 subsampled as well as the full
(14 time points) dataset. Throughout, box width is scaled to dataset size, box plot horizontal indicates the median, edges indicate interquartile ranges,
whiskers denote values within 150% of the quartiles, and circles denote outliers. (B and C) MAE and concordance coefficient distributions (between recovered
and known sampling dates), respectively, stratified by number of training time points. (D) Model ΔAIC for all 1,097 datasets, where color denotes the number
of training time points and shape denotes whether the model passed or failed. A dotted vertical line denotes ΔAIC = 10. (E) Graphic relating model success
(black, pass; orange, fail due to ΔAIC <10; teal, fail due to root date criterion), MAE, and date of the earliest training time point for all 1,097 datasets. (F)
Graphic relating model success with respect to earliest and latest training sampling time points.
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likely because, while RTT is somewhat biased toward placing the
root on a branch relating the earliest samples (which is unlikely
to be long), OGR root placement has a more uniform probability
distribution along the tree (as the outgroup is relatively geneti-
cally distant). Folding on a longer branch will thus place the root
further back in time relative to the earliest samples on its tips.
Nevertheless, OGR-estimated latent HIV dates were highly
concordant with RTT-estimated ones (0.96 overall; Fig. 6C).
OGR models were also generally robust (SI Appendix, Figs.

S7 and S8). In the RNA censoring validations, OGR models
required slightly more training time points (e.g., whereas 86% of
RTT models passed validation, only 73% of OGR ones did so; SI
Appendix, Fig. S7 A and E) and returned higher error (e.g., when
trained on the full dataset, MAE was 1.9 y for OGR compared
with 1.3 y for RTT) (SI Appendix, Fig. S7 B and F), yielding
median concordance coefficients of 0.79 vs. 0.90, respectively (SI
Appendix, Fig. S7 C and G). OGR models also yielded lower
ΔAIC values than RTT ones (SI Appendix, Fig. S7 D and H).
Nevertheless, successful OGR models yielded comparable error
distributions regardless of training dataset size. For example, the
median MAE of OGR models trained on only three time points
was only 2.7% higher (1.95 vs. 1.89 y, respectively), and the
median concordance coefficient only 4.5% lower, than that of
the full dataset (0.76 vs. 0.79) (SI Appendix, Fig. S7 F and G). In
the RNA subsampling validations, OGR performed nearly as
well as RTT (SI Appendix, Fig. S8). For example, compared with
dates recovered using the full training dataset, the median MAD
of latent HIV ages recovered using only three training time
points was 1.8 y for OGR and 1.5 y for RTT (SI Appendix, Fig. S8
B and F), yielding median concordance coefficients of 0.85 and
0.87, respectively (SI Appendix, Fig. S8 C and G). These results
indicate that the framework is robust to rooting strategy.

Additional Validations. Since relatively few phylogenetic studies
have focused on nef, we wished to confirm that evolution in this
region is representative of the rest of the HIV genome. To do
this we analyzed a published dataset of 16 nearly full genome
HIV sequences sampled from an ART-naive individual over
∼3.5 y (62). We confirmed that, for each within-host HIV se-
quence, the number of differences from the baseline consensus
within nef correlated strongly with that in the remainder of the
HIV genome (Pearson R = 0.96, P = 2.0 × 10−9). Moreover, a
partition-homogeneity test applied to nef vs. env sequences
yielded P = 0.44, indicating that we cannot reject the null hy-
pothesis that these regions evolved under the same evolutionary
process. These observations support within-host variation in nef
as being representative of the HIV genome.
Finally it is possible that, even during untreated HIV infection,

a minority of plasma HIV RNA sequences may have been re-

cently released from the reservoir. Such sequences would display
reduced relative evolutionary rates and could reduce model fit.
However, tests for such sequences within participant 1’s training
data (Materials and Methods) identified only one such outlier,
and removing it from the analysis yielded latent HIV ages that
were 99% concordant with original estimates (SI Appendix, Fig.
S9). These observations indicate that such sequences are rela-
tively uncommon during untreated HIV infection and that their
presence does not substantially affect framework performance.

Discussion
The ability to infer latent HIV integration dates would greatly
enhance our understanding of reservoir longevity and dynamics.
We developed a simple phylogenetic framework to do this and
began by demonstrating its ability to recover known sampling
dates on a variety of within-host datasets with acceptable error
rates (e.g., in participant 1’s HIV RNA training data spanning a
10-y period, the model recovered known sampling dates to within
an average of 1.3 y of their actual values; Fig. 5B). Subsequent
application of the framework to date HIV sequences recovered
after up to ∼10 y on cART supported several long-held notions.
Results confirm proviral DNA in PBMC as a genetically het-
erogeneous archive recapitulating within-host HIV evolutionary
events dating back to transmission (Figs. 3 and 4) (36). Isolation
of 18-y-old HIV sequences from a viremia blip on otherwise
suppressive cART (Fig. 4D) supports the idea that such events
can be explained by antigen-driven reactivation of latently in-
fected cells (63) and extends a report of a long-lived (>17 y)
defective HIV sequence (64) by demonstrating that replication-
competent viral lineages can similarly persist long-term before
spontaneously reactivating. Isolation of HIV RNA sequences
ranging from 3 to 18 y old from this same viremia blip extends a
report that in vivo treatment with latency reversal agents (65) can
activate diverse latent HIV lineages by further suggesting that
natural stimuli can do the same. This observation also supports a
model where latently HIV-infected cells reactivate relatively
frequently [although specific rates remain a matter of debate (66,
67)]. Our detection of plasma RNA sequences during participant
1’s treatment interruption that exactly matched HIV DNA se-
quences isolated from their reservoir also corroborates a pre-
vious report (68). Of note, the fact that we failed to identify a
single HIV sequence whose date estimate’s 95% CI unambigu-
ously fell within the period of complete viremia suppression also
supports the notion that residual HIV replication on cART, at
least as measured in blood, is absent or negligible in this indi-
vidual (26, 31, 36, 69–71).
While ours is not the first study to infer reservoir temporal

origins via analysis of pre-cART HIV sequence variation, previous
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studies have generally inferred phylogenies solely on the basis of
sequence homology (e.g., ref. 30) and have “dated” latent lineages
to the period when similar sequences circulated in plasma [a re-
cent elegant study by Brodin et al. (36) significantly advanced the
field by inferring host-specific pre-cART evolutionary rates from
longitudinal HIV sequences, yet latent reservoir establishment
dates were still inferred via genetic similarity to pre-cART se-
quences]. While reasonable and appropriate, such approaches are
limited by their reliance on retrospective sampling of plasma HIV
RNA sequences similar to those retrieved from the reservoir,
which is not always possible, particularly for individuals who are
not diagnosed until later in infection. Recovering latent HIV se-
quence ages via calculation of a host-specific evolutionary rate
overcomes this limitation, allowing the inference of HIV reservoir
ages dating back to transmission (72) even if sampling does not
extend that far back (e.g., Fig. 4). Our method is also fast. While
unknown sequence dates can be recovered using Bayesian ap-
proaches (53), these require an additional parameter for each
unknown date, significantly increasing computational require-
ments such that only a small number of sequences can be dated at
a time. Our framework can recover all unknown sequence dates
simultaneously using a desktop computer and yielded root date
and rate estimates concordant with Bayesian estimates. Our
framework is also robust to rooting strategy. RTT, which places
the tree root at the location that maximizes the relationship be-
tween the training data root-to-tip distances and sampling dates,
will inherently yield better-fitting linear models than OGR. Nev-
ertheless, OGR performed nearly as well as RTT at reconstructing
unknown HIV sequence ages (Fig. 6), even on sparse training data
(SI Appendix, Figs. S7 and S8). Data requirements are also rela-
tively modest. We dated latent HIV lineages in an individual who
did not achieve pVL suppression on cART until a decade after
infection, using as few as two training time points (although more
were preferable). Framework application to minimal training data
should generally be feasible for individuals who initiate cART early,
a prediction that is consistent with our previous work on recon-
structing HIV infection dates from sequence data (44, 45, 72).
Some limitations merit mention. The framework assumes that

within-host HIV evolution can be adequately modeled using a
strict molecular clock, which may not be ideal over prolonged
timeframes (14). While we addressed variable within-host evo-
lutionary rates in participant 2 by inferring a linear model for
each treatment era, adaptation of the framework to work under
alternative clock models is warranted. Our framework also as-
sumes that latent lineages remain unchanged until sampling (that
is, our model does not allow viral lineages to undergo multiple
latent periods). As rates of within-host HIV evolution are gene-
specific, training and censored sequences must be derived from
the same HIV region: While our previous work suggests that the
framework should be adaptable to any HIV gene (72), only nef
and env were validated here. To ensure that HIV sequences
represented true within-host lineages we used single-genome
amplification; however, only a limited portion of the HIV ge-
nome was analyzed and integration sites were not mapped. As
such, we cannot confirm whether the studied HIV DNA se-
quences reside within intact proviruses, nor can we conclusively
state that identical sequences derive from latently infected,
clonally expanded cell populations. Moreover, as proviral DNA
was amplified from PBMC, cellular origin of HIV lineages re-
mains unknown. Finally, as latent HIV ages were only estimated
for two participants who initiated cART late, we cannot gener-
alize too broadly. For example, while our observation that HIV
sequences sampled during long-term cART recapitulated pre-
therapy HIV RNA diversity was consistent with Brodin et al.
(36), these sequences did not predominantly date to the period
shortly before cART as reported in their study. Whether this is
attributable to modest participant numbers, methodological
differences [e.g., Brodin et al. (36) used next-generation se-
quencing and inferred reservoir ages via genetic similarity], or
substantial interindividual diversity in latent HIV reservoir dy-
namics and composition merits further investigation.

Despite these limitations, our framework can potentially ad-
dress key knowledge gaps. For example, framework application
to recrudescent plasma HIV RNA sequences following sponta-
neous or therapeutic latency reversal could advance our un-
derstanding of the relationship between reservoir age, lineage
origin, and reactivation potential. The framework could be ex-
panded to infer reservoir tissue or cellular origin by adapting
phylogeography methods (73–75) to a within-host context. It
could be used to investigate the relationship between reservoir
age and HIV genomic integrity (provided the viral region used
for dating is intact) or genomic integration site (e.g., by using the
LTR for model calibration) and should be scalable to next-
generation sequence data (44). In conclusion, our framework
for reservoir dating corroborates several long-held notions re-
garding the genetic composition and longevity of the latent res-
ervoir and represents a versatile and potentially powerful
addition to the HIV persistence research toolkit.

Materials and Methods
Simulations. Birth–death models have been used to study speciation (76) and
epidemics (77) and to model the proliferation of virus lineages within-host
(78). We generated 1,000 maximum likelihood phylogenies with 100 tips each
under a birth–death model (79) with serial sampling using the sim.bdsky.stt
function in the R package TreeSim (80). The model was parameterized by
fitting it to data from McCloskey et al. (72). We used BEAST v2.3.2 (81) to
estimate the posterior distribution defined by the serial model with a birth–
death skyline serial tree prior (77), a strict molecular clock, and an HKY85
model of nucleotide substitution (82). The lineage birth rate λ was estimated
as 5.12 × 10−2 per d, the death rate δ as 5.01 × 10−2 per d, and the sampling
probability s as 5.24 × 10−3. We used NELSI (83) to introduce temporal variation
in individual branch lengths by assigning rates of evolution to these trees by
drawing values from a Gaussian distribution with a mean rate μ = 1.96 × 10−4

substitutions per generation and SD σ = 1.42 × 10−5. To model uncertainty in
phylogenetic reconstruction we simulated sequence evolution along each tree
with INDELible v1.03 (84) under an HKY85 substitution model where param-
eters were set to empirical estimates derived from published within-host HIV
datasets (stationary distributions 0.42, 0.15, 0.15, and 0.28 for A, C, G, and T,
respectively; transition bias parameter 8.5) (72).

Published Datasets. Two datasets from the LANL were assembled for model
evaluation (SI Appendix, Table S1) (58). The first comprised 424 longitudinal
plasma HIV RNA partial env sequences from seven individuals from ref. 72
and one from ref. 62, selected based on three predefined criteria: individuals
were treatment-naive and had two or more clonal or single-genome se-
quences per time point where the baseline sample was within 186 d of in-
fection or seroconversion and where at least one subsequent time point
was ≥6 mo later. We also required that the overall within-host phylogeny
display molecular clock signal (discussed below). The second dataset com-
prised 361 plasma HIV RNA-derived and 545 PBMC-derived partial env se-
quences, all clonal or single-genome-amplified, from seven individuals for
whom at least three RNA time points were available, where the earliest HIV
RNA time point was at or before the earliest HIV DNA time point (SI Ap-
pendix, Table S1). Infection date did not need to be known and the dataset
comprised both treatment-naive (14, 85) and treated (86) persons.

Participant Recruitment and Sampling. The framework was applied to two
participants recruited from the British Columbia Centre for Excellence in HIV/
AIDS for whom longitudinal archived plasma (and in one case, a single archived
whole-blood specimen), dating back to 1996, were available. Participants pro-
videdblood in summer2016 fromwhich PBMCwere isolatedby standarddensity
gradient separation (Histopaque-1077; Sigma), counted (TC20 automated cell
counter; Bio-Rad), and cryopreserved at −150 °C in 90% FBS:10% DMSO. This
study was approved by the Providence Health Care/University of British Co-
lumbia and Simon Fraser University research ethics boards (harmonized pro-
tocol H15-03077) and both participants gave written informed consent.

Single-Genome HIV Sequencing. HIV RNA was extracted from 0.5 mL plasma
using the NucliSENS EasyMag system (Biomerieux) and genomic DNA was
extracted from 200 uL whole blood or 5 million PBMC using the Invitrogen
genomic DNA isolation kit. Nef was selected for framework application due to
its relatively high within-host diversity and richness in phylogenetic signal.
Single-genome amplification was performed by limiting dilution using high-
fidelity enzymes and HIV sequence-specific primers optimized for amplifica-
tion of multiple HIV-1 group M subtypes. For HIV RNA extracts, cDNA was
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generated using Expand Reverse Transcriptase (Roche). Next, cDNA as well as
genomic DNA extracts were endpoint-diluted such that ∼25–30% of the
resulting nested PCR reactions, performed using the Expand High Fidelity PCR
system (Roche), would yield an amplicon. Primers used for cDNA generation/
first round PCR were Nef8683F_pan (forward; 5-TAGCAGTAGCTGRGKGRACA-
GATAG-3) and Nef9536R_pan (reverse; 5-TACAGGCAAAAAGCAGCTGCTTAT-
ATGYAG-3); primers used for second round PCR were Nef8746F_pan (forward;
5-TCCACATACCTASAAGAATMAGACARG-3) and Nef9474R (reverse; 5-CAG-
GCCACRCCTCCCTGGAAASKCCC-3). Amplicons were sequenced on an ABI
3130xl or 3730xl automated DNA sequencer using BigDye v3.1 chemistry
(Applied Biosystems). Chromatograms were base-called using Sequencher
v5.0 (Gene Codes). Sequences exhibiting nucleotide mixtures or gross defects
(e.g., large deletions), hypermutated sequences [identified using Hypermut
2.0 (87)], and within-host recombinants [identified using rdp4 Beta 95 (88)]
were discarded. Unique sequences have been deposited in GenBank (acces-
sion nos. MG822917–MG823179).

Alignments, Phylogenetic Inference, Model Construction, and Evaluation. HIV
sequences were aligned using MUSCLE v3.8.31 (89) and manually edited with
AliView v1.18 (90). Where identical sequences were observed, the earliest
was retained. We reconstructed maximum likelihood phylogenies using
RAxML v8.2.10 (54) with 100 bootstraps under the generalized time re-
versible model and rooted these at the inferred MRCA as follows. Our pri-
mary rooting method involved a modification of root-to-tip regression (RTT)
(91), where we exhaustively reroot the tree to identify the root location that
maximizes the correlation between the root-to-tip distances and collection
dates of the training data. We also outgroup rooted (OGR) on the HIV-
1 subtype B reference strain HXB2 (GenBank accession no. K03455); here,
the node intersecting the branch leading to the outgroup provides the root
location. The linear and null model equations (Results) were computed using
the R function lm (92). Two criteria were required to advance linear models
for molecular dating: The null model’s AIC (55) needed to be at least 10 units
higher than that of the linear model [ΔAIC > 10 criterion, a conservative
threshold (93) that in our experiments corresponds to P = 0.00053 when using
a log-likelihood ratio test] and the 95% CI of the linear model-estimated root
date needed to contain or precede the first sampling date. Model error was
quantified using two metrics. The discordance between model-predicted and
training data sampling dates was expressed as MAE, while the discordance
between model-predicted and censored data sampling dates was expressed as
MAD. We make this distinction because, for latent HIV sequences, model-
predicted dates will legitimately precede sampling. To facilitate comparison
between heterogenous validation datasets, MAE and MAD were normalized
by scaling values to the total timeframe of the training data. Training se-
quences that did not conform to a molecular clock (SI Appendix, Fig. S9) were
identified by computing the relative evolutionary rate (94) of each pair of
sequences with unique collection dates and identifying those whose relative
rates deviated from the mean by ≥2 SD in at least 10% of replicates.

Verification of Root Date Estimates Using Bayesian Methods. Linear model-
derived evolutionary rate and root date estimates were validated using
BEAST v1.8.4 (95). Posterior distributions for the root date were estimated
using a SRD06 substitution model (96), a lognormal uncorrelated relaxed
molecular clock (97), and a coalescent Gaussian Markov random field Bayesian
skyride tree prior (98) in four parallel Markov chain Monte Carlo chains with
108 iterations each. After discarding the first 10% as burn-in, chains were
combined with LogCombiner v2.4.2 (81) and analyzed in Tracer v1.6 to ensure
convergence and effective sample size values >200 for all parameters.

Comparison of nef to the Rest of the Genome. We analyzed a published
longitudinal within-host near-whole genome HIV sequence dataset from an
untreated individual (GenBank accession no. DQ853436-65) (62), removed
14 sequences that exhibited evidence for recombination (88), and aligned
the remaining 16 to HXB2 using MAFFT v7.313 (99). We used Pearson’s
correlation to evaluate the relationship between the number of nucleotide
differences between each sequence and the consensus of the earliest time
point within nef vs. the rest of the HIV genome (ignoring gaps). We also
used the partition-homogeneity test implemented in PAUP* v4.0a (100, 101)
with 1,000 replicates to compare evolution in nef vs. env.

Statistical Analyses. Statistical calculations were performed using R v3.3.3. CIs
were calculated using the inverse.predict function of the chemCal package in
R. Distributional asymmetry in reconstructed dates was tested using a two-
tailed nonparametric binomial test followed by a Bonferroni correction
(57). Plots were generated using ggplot2 and ggtree (102) packages in R.
Divergence times for ancestor traces were estimated using the estimate.
dates function of the ape package in R (103, 104).
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