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Purpose: To identify mutations in crystallin genes in Chinese families with congenital cataracts.

Methods: Forty-two unrelated families with non-syndromic congenital cataracts were enrolled in this study. The cod-
ing exons and adjacent intronic regions of crystallin genes, including CRYAA, CRYAB, CRYBAI, CRYBA4, CRYBBI,
CRYBB2, CRYBB3, CRYGC, CRYGD and CRYGS, were analyzed with Sanger sequencing. Novel variants were further
evaluated in 112 ethnically matched controls. To confirm the novel mutations, short tandem repeat (STR) haplotypes were
constructed to check the cosegregation with congenital cataract. The pathogenic potential of the novel mutations were
assessed using bioinformatics tools, including Sorting Intolerant From Tolerant v5.1.1 (SIFT), Polymorphism Phenotyp-
ing v2 (PolyPhen-2), and Human Splicing Finder. The pathogenicity of all the mutations was evaluated according to the
guidelines of the American College of Medical Genetics (ACMG) and InterVar software.

Results: Seven previously reported mutations in crystallin genes identified in ten unrelated families were associated
with the congenital nuclear cataracts. Four novel mutations in crystallin genes, including ¢.35G>T (p.R12L) in CRYAA,
¢.463C>A (p.Q155K) in CRYBB2,1VS1 ¢.10-1G>A in CRYGC, and ¢.346delT (p.F116Sfsx29) in CRYGD, were identified
in four unrelated families with congenital cataracts. These mutations cosegregated with all affected individuals in each
family were not observed in the unaffected family members or in the 112 unrelated controls. All four novel mutations
were categorized as disease “likely pathogenic” except IVS1 ¢.10—1G>A in CRYGC “pathogenic” using InterVar soft-
ware in accordance with the ACMG standard. Mutations in crystallin genes were responsible for 33.33% of the Chinese

families with congenital cataracts in this cohort.

Conclusions: In this study, we identified four novel mutations in crystallin genes in Chinese families with congenital
cataracts. The results expand the mutational spectrum of crystallin genes, which may be helpful for the molecular
diagnosis of congenital cataracts in the era of precision medicine.

BACKGROUND

Congenital cataracts (CCs) are defined as an opacity of the
lens of the eyes at birth or during early childhood, which are
the principal cause of treatable pediatric visual impairment
[1]. The prevalence of congenital cataracts has been estimated
between 1 and 15/10,000 children [2]. Approximately one
third of congenital cataracts are genetically determined. The
most frequent mode of inheritance is autosomal dominant
(AD) although autosomal recessive (AR) and X-linked forms
have also been reported. To date, more than 30 genes have
been identified in congenital cataracts. These genes include
crystallin genes, lens-specific connexins genes, major
intrinsic protein or aquaporine genes, cytoskeletal structural
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proteins genes, paired like homeodomain transcription factor
3 (PITX3; Gene 1D 5309,0MIM 602669) , V-MAF avian
musculoaponeurotic fibrosarcoma oncogene homolog (MAF;
Gene ID 4094, OMIM 177075) and heat shock transcription
factor 4 (HSF4; Gene ID 3299, OMIM 602438) [3].

The water-soluble lens crystallins are divided into a, 3,
and vy according to the order of their elution on gel exclusion
chromatography, which account for nearly 90% of the total
lens proteins [4]. Our survey of subsets of these genes in the
Chinese population suggests that more than 50% of the muta-
tions in crystallin genes are associated with inherited AD
and/or AR cataract, where CRYAA4 (Gene ID 1409, OMIM
123580), CRYAB (Gene ID 3316, OMIM 602179), CRYBA1/3
(Gene ID 1411, OMIM 123610), CRYBA2 (Gene ID 1412,
OMIM 600836), CRYBA4 (Gene 1D 1413, OMIM 123631),
CRYBBI (Gene ID 1414, OMIM 600929), CRYBB2 (Gene
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ID: 1415, OMIM: 123620), CRYBB3 (Gene ID 1417, OMIM
123630), CRYGB (Gene 1D 1419, OMIM 123670), CRYGC
(Gene 1D 1420, OMIM 123680), CRYGD (Gene 1D 1421,
OMIM: 123690) and CRYGS (Gene ID 1427, OMIM 123730)
were involved. In this study, 42 unrelated families with CCs
were collected from southeast China. Four novel mutations
and seven previously reported mutations in crystallin genes
responsible for CCs were identified in the genetic study.

METHODS

Subjects and DNA specimens: The research followed the
tenets of the Declaration of Helsinki. Informed consent was
obtained from the subjects. If participants were under the
age of 16, consent was obtained from their parents or legal
guardians. The experiments were approved by the Ethics
Committee of Fujian Medical University, and the study also
adhered to the ARVO statement on human subjects.

Forty-two probands with congenital cataracts and 225
related individuals from southeast China were enrolled in a
genetic screening program. Clinical and ophthalmological
examinations were performed on the affected individuals,
as well as on the unaffected family members. Phenotype
was documented with slit-lamp photography. One hundred
twelve samples from ethnically matched control individuals
were obtained before the study. 5 ml peripheral blood was
drawn from each subjects and preserved at -20 °C prior to
use. Genomic DNA was extracted from whole blood using the
Wizard Genomic DNA Purification Kit (Promega, Beijing,
China) according to the manufacturer’s instructions [5,6].

Mutation screening: Mutation screening methods were
based on the hot-spot regions of cataract-causing mutations
that cover about 80% of mutations in inherited cataract the
same as our previous study [5]. Briefly, all the probands of 42
families with CCs were tested for mutations in the common
18 genes that cause CC, including CRYAA, CRYAB, CRYBAI,
CRYBA4, CRYBBI, CRYBB2, CRYBB3, CRYGC, CRYGD,
CRYGS, GJAS (Gene ID 2703, OMIM 600897), GJA3 (Gene
ID 2700, OMIM 121015), HSF4, MIP (Gene ID 4284, OMIM
154050), BFSP2 (Gene 1D 8419, OMIM: 603212), EPHA?2
(Gene ID 1969, OMIM 176946), FYCO! (Gene 1D 79443,
OMIM 607182), and PITX3. The selected hot-spot coding
exons and splice junctions of these genes were amplified with
PCR from genomic DNA. The PCR primers and conditions
for crystallin genes are listed in Table 1. Thermal cycling was
performed with denaturing at 94 °C for 5 min, followed by
30 cycles of 94 °C for 30 s, 58-61 °C for 30 s and 72 °C for 45
s, with a final extension at 72 °C for 5 min and chilling to 4
°C. PCR products were purified and directly sequenced on an
ABI 3730XL Automated Sequencer (PE Biosystems, Foster
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City, CA), using the same PCR primers. When mutations of
crystallin genes were identified in probands, intrafamilial
segregation analysis was performed. The identified novel
mutations in crystallin genes were also tested in 112 normal
unrelated individuals from the same ethnic background.

Haplotyping analysis: To further validate the present novel
mutations, the genotyping was analyzed using two or three
selected microsatellite markers flanking each corresponding
pathogenic gene in available family members the same as in
our previous study [5,6]. Briefly, PCR products from each
DNA sample were separated with gel electrophoresis with
a fluorescence-based on the ABI 3730 automated sequencer
(Applied Biosystems) using ROX-500 as the internal lane size
standard. The amplified DNA fragment lengths were assigned
to allelic sizes with GeneMarker Version 2.4.0 software (Soft-
Genetics, State College, PA). Pedigree and haplotype data
were managed using Cyrillic (version 2.1) software.

Bioinformatics analysis: Mutations were described according
to the recommendation of the Human Genomic Variation
Society (HGVS). To predict the effects of novel mutations,
Polymorphism Phenotyping v2 (PolyPhen-2) [7] and Sorting
Intolerant From Tolerant v5.1.1 (SIFT) [8] were used for the
missense mutations on the encoded proteins, and Human
Splicing Finderv3.1 (HSF) [9] was employed for the intronic
variants in the splicing site changes. InterVar from the stan-
dards and guidelines of the American College of Medical
Genetics and Genomics (ACMG) was used to evaluate the
pathogenicity of all the mutations [10,11].

RESULTS

Clinical finding: In the study, 42 probands were recruited
from 30 autosomal dominant families, eight families without
history, and four isolated cases. All the patients were
diagnosed with bilateral cataracts in childhood. No other
ophthalmic or systemic diseases presented in any of the
participants. Of the probands, 33.33% (12 unrelated families
and two isolated cases) were identified mutations in crys-
tallin genes. Among them, four mutations were not previ-
ously reported in the CAT-11, CAT-27, CAT-33, and CAT-41
families (Figure 1). The inheritance pattern of the 12 fami-
lies is autosomal dominant. Based on clinical descriptions
provided by the referring clinician at the time of enrollment,
the CAT-27 and CAT-41 families have a primary diagnosis
of congenital nuclear cataracts, while the CAT-11 family has
congenital cortical and coliform cataracts, and the CAT-33
family has congenital total cataracts.

Mutation analysis: Eleven mutations were identified in 14
unrelated families using Sanger sequencing of the coding
region and the splicing sites of the crystallin genes (Figure
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2 and Table 2). No variants in other screening regions of
the 18 genes were detected in these families. The clinical
significances of all the identified mutations were generated
by InterVar software based on the criteria recommended by
the American College of Medical Genetics and Genomics /
Association for Molecular Pathology (ACMG/AMP) guide-
lines [11]. The process is automatically performed first, and

© 2019 Molecular Vision

then, manual adjustment to reclassify the mutations for the
criteria that InterVar recommends follows. These 11 muta-
tions match the criterion of pathogenic moderate 1 (PM1) as
all are in hot-spot regions. All the mutations except a triple
mutation (CRYBB? c.(433C>T, 440A>G; 449C>T) were found
only in patients, not in healthy relatives or the 112 controls
from the same ethnic background. The mutations were also
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D22s51167 3

Disease Haplotype
D2S325 4

> D2S2208 3

2 D2S2382 1

4
3
1

CAT-27

Disease Haplotype
1 12 D21S1411 3
’ > D2181890 4

I4

1 A3

A

CAT-41
J}_‘ Disease Haplotype
» 2 D2S325 3

PR 5 D2S2208 1

> » |+® , D2s2382 2
? 7 2 1

g

=0

1 112 I3 I:5 6 1 12 I3 4 I1:5 6
2 411 32 5 35 413 3 2 514 12 3 6 3 3 31 7 7
3 314 23 2 31 314 1 3 213 23 1 3 3 2 1 ? 7
2 112 22 2 12 112 2 2 112 22 212 1 1 21 ? 7
III 1 2 -3 4 M1 III 2 IM:3 ([

5 2 5 2 3 4
2 2 2 3 4 3
2 1 2 2 2 1

3 3 ? 7
1 3 ? 07
2 1 ??

Figure 1. Haplotypes of crystallin genes in each family. All the pathogenic haplotypes (red) indicate segregation of the haplotypes in affected
individuals in each family but not in the unaffected family members. The pathogenic haplotypes are annotated beside the pedigrees.
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absent in databases of probably benign variation, indicating
that they match the criterion of PM2 (absent from controls
in this study; Exome Sequencing Project, 1000 Genomes,
or ExAC). Ten mutations were cosegregated with CCs in
each affected family member (Figure 1 and Figure 2 show
the four novel mutations), indicating that they match the
criterion for PP1 (cosegregation with disease in multiple
affected family members in a gene definitively known to
cause the disease). All the missense and splice site mutations
were predicted to satisfy the criteria of PP3 (multiple lines of
computational evidence support a deleterious effect on the
gene or gene product (conservation, evolutionary, splicing
impact, etc.)) by SIFT, PolyPhen-2, and InterVar software.
All the previous reported mutations match the criterion of
PP5 (reputable source recently reports variant as pathogenic,
but the evidence is not available to the laboratory to perform
an independent evaluation).

Two splice site mutations, including IVS3 c.215+1G>A
in CRYBAI (the CAT-14 family and the CAT-32 family) and
IVS1 ¢.10-1G>A in CRYGC (the CAT-33 family), alter the
wild-type (WT) donor site, and most likely affect splicing,
which make these mutations match the criterion of PVS1
(null variant (nonsense, frameshift, canonical + two splice

© 2019 Molecular Vision

sites, initiation codon, or single or multiexon deletion) in a
gene where loss of function (LOF) is a known mechanism
of disease). All the splice site mutations were categorized as
disease “pathogenic” based on the criteria PS1, PM1, PM2,
PP1, and PP3.

In the CAT-21 family, the affected individuals carry a
heterozygous ¢.272-274GAGdel deletion in CRYBAI, which
results in the glycine deletion at position 91. In the CAT-41
family, affected individuals carry heterozygous single
base-pair deletion exon 3 causing a frame shift (c.346delT,
p.F116Sfsx29) and a stop codon 29 amino acids downstream
if a mutant CRYGD protein can be produced. The frame-shift
mutations (CRYBA1:p.G91del, and CRYGD:p.F116Sfsx29)
belong to PM4 (protein length changes due to in-frame dele-
tions/insertions in a non-repeat region or stop-loss variants)
according to the ACMG guidelines.

A complex three missense mutation in CRYBB2 previ-
ously reported twice was identified in the CAT-24 and
CAT-54 families and a sporadic case in the CAT-53 family.
This complex mutation was first reported by Hansen [12].
All the other six missense mutations here were predicted to
be “probably damaging” by PolyPhen-2 and “deleterious” by

CAT-27/CRYAA
c.G35T/p.R12L

cC T T T G C a
L\ G C G C &
T T C 4 A4 G C T C a4 C C C T c T T T GG C &

CAT-11/CRYBB2

CAT-33/CRYGC
IVS1 c.10-1G>A

G A T C a C C T
G T C c C T

CAT-41/CRYGD

C. C463A/p Q155K c.346delT/p.F116Sfsx29.
T N € c Tac & ¢ Tacc ¢ G A C C G C T T C C G C T T C
T 6 6cC T a n e c 6 e T e e e e otoToroe Figure 2. The four novel muta-

Vot W Wl

tions in crystallin genes identified
with direct sequencing. The black
arrows indicate the mutations in
the probands, and the wild-type
can be seen in the corresponding
sequences from the normal control.
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SIFT. These predictions indicated that the six missense vari- categorized as disease “likely pathogenic,” except two splice

ants perhaps impair protein function.

site mutations were “pathogenic.” More details can be seen
According to the ACMG guidelines and InterVar

software [11], all 11 mutations in the crystallin genes were  in Table 2.

CRYAA: R12 CRYAA: R12L

CRYBB2: Q155 CRYBB2: Q155K

CRYGD: F1165fsx29

Figure 3. The structural changes in the novel mutations. The molecular surface is colored according to the electrostatic potential with Swiss-
PdbViewer, with red-white-blue corresponding to acidic-neutral-basic potential. A: Surface change in CRYAA:p.R12L. B: Surface change
in CRYBB2:Q155K. C: Surface change in CRYGD:p.F116Sfsx29. The yellow dotted circle represents the region of significant alteration.
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DISCUSSION

In this study, we conducted a mutational screening of known
pathogenic genes in a cohort of Chinese patients with
congenital cataracts. Moreover, the causative mutations in
crystallin genes were identified and summarized. Eleven
mutations, including four novel mutations and seven previ-
ously reported mutations in crystallin genes, in 14 probands
were identified and categorized as “likely pathogenic” except
two splice site mutations that were “pathogenic” according
to the ACMG guidelines, which contributed to 33.33% of the
genetic etiology of congenital cataracts. This result is consis-
tent with another study in the Chinese population, which was
eight of the 25 families (32%) [13].

Mutations in crystallin genes account for the majority
of hereditary congenital cataracts [14]. Three major classes
of crystallins have been found in the vertebrate eye lens.
In the molecular structure of crystallin proteins, there are
a-crystallin protein (40%), B-crystallin protein (35%),
and y-crystallin protein (25%). The three novel mutations,
¢.35G>T (p. R12L) in CRYAA, c.463C>A (p. Q155K) in
CRYBB2, and c.346delT (p. F116Sfsx29) in CRYGD), cause
changes in amino acids, which may eventually result in
structural changes in the a-crystallin, B-crystallin, and
gamma-crystallin D proteins, respectively. Swiss-PdbViewer
predicted that the molecular surface may be changed by
the mutations (Figure 3). The ratio of the crystallin protein
composition and its spatial sequence in the maintenance of
crystallin transparency is very important. The mutations in
crystallin genes may not only affect the protein structure,
which is closely packed, but also reduce the solubility of
crystallin proteins to form opacities [15,16]. Thus, using the
primers of crystallin genes in Table 1 followed by intrafa-
milial cosegregation, bioinformatics analyses, and inter-
pretation of the variants according to the ACMG guidelines
might be a cost-effective paradigm in the genetic diagnosis
of congenital cataracts in Chinese.

In summary, we identified four novel mutations and
seven previously reported mutations in crystallin genes
associated with congenital cataracts in a cohort of Chinese
families, exhibiting that the mutations in crystallin genes
are responsible for 33.33% (14 out of 42 families with CCs)
of families with CCs in this cohort. This report extends the
mutation spectrum of crystallin genes in the Chinese popula-
tion, which may be helpful for the molecular diagnosis of CCs
in the era of precision medicine.

© 2019 Molecular Vision
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