
BACKGROUND

Congenital cataracts (CCs) are defined as an opacity of the 
lens of the eyes at birth or during early childhood, which are 
the principal cause of treatable pediatric visual impairment 
[1]. The prevalence of congenital cataracts has been estimated 
between 1 and 15/10,000 children [2]. Approximately one 
third of congenital cataracts are genetically determined. The 
most frequent mode of inheritance is autosomal dominant 
(AD) although autosomal recessive (AR) and X-linked forms 
have also been reported. To date, more than 30 genes have 
been identified in congenital cataracts. These genes include 
crystallin genes, lens-specific connexins genes, major 
intrinsic protein or aquaporine genes, cytoskeletal structural 

proteins genes, paired like homeodomain transcription factor 
3 (PITX3; Gene ID 5309,OMIM 602669) , V-MAF avian 
musculoaponeurotic fibrosarcoma oncogene homolog (MAF; 
Gene ID 4094, OMIM 177075) and heat shock transcription 
factor 4 (HSF4; Gene ID 3299, OMIM 602438) [3].

The water-soluble lens crystallins are divided into α, β, 
and γ according to the order of their elution on gel exclusion 
chromatography, which account for nearly 90% of the total 
lens proteins [4]. Our survey of subsets of these genes in the 
Chinese population suggests that more than 50% of the muta-
tions in crystallin genes are associated with inherited AD 
and/or AR cataract, where CRYAA (Gene ID 1409, OMIM 
123580), CRYAB (Gene ID 3316, OMIM 602179), CRYBA1/3 
(Gene ID 1411, OMIM 123610), CRYBA2 (Gene ID 1412, 
OMIM 600836), CRYBA4 (Gene ID 1413, OMIM 123631), 
CRYBB1 (Gene ID 1414, OMIM 600929), CRYBB2 (Gene 
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Purpose: To identify mutations in crystallin genes in Chinese families with congenital cataracts.
Methods: Forty-two unrelated families with non-syndromic congenital cataracts were enrolled in this study. The cod-
ing exons and adjacent intronic regions of crystallin genes, including CRYAA, CRYAB, CRYBA1, CRYBA4, CRYBB1, 
CRYBB2, CRYBB3, CRYGC, CRYGD and CRYGS, were analyzed with Sanger sequencing. Novel variants were further 
evaluated in 112 ethnically matched controls. To confirm the novel mutations, short tandem repeat (STR) haplotypes were 
constructed to check the cosegregation with congenital cataract. The pathogenic potential of the novel mutations were 
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with the congenital nuclear cataracts. Four novel mutations in crystallin genes, including c.35G>T (p.R12L) in CRYAA, 
c.463C>A (p.Q155K) in CRYBB2, IVS1 c.10–1G>A in CRYGC, and c.346delT (p.F116Sfsx29) in CRYGD, were identified 
in four unrelated families with congenital cataracts. These mutations cosegregated with all affected individuals in each 
family were not observed in the unaffected family members or in the 112 unrelated controls. All four novel mutations 
were categorized as disease “likely pathogenic” except IVS1 c.10–1G>A in CRYGC “pathogenic” using InterVar soft-
ware in accordance with the ACMG standard. Mutations in crystallin genes were responsible for 33.33% of the Chinese 
families with congenital cataracts in this cohort.
Conclusions: In this study, we identified four novel mutations in crystallin genes in Chinese families with congenital 
cataracts. The results expand the mutational spectrum of crystallin genes, which may be helpful for the molecular 
diagnosis of congenital cataracts in the era of precision medicine.
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ID: 1415, OMIM: 123620), CRYBB3 (Gene ID 1417, OMIM 
123630), CRYGB (Gene ID 1419, OMIM 123670), CRYGC 
(Gene ID 1420, OMIM 123680), CRYGD (Gene ID 1421, 
OMIM: 123690) and CRYGS (Gene ID 1427, OMIM 123730) 
were involved. In this study, 42 unrelated families with CCs 
were collected from southeast China. Four novel mutations 
and seven previously reported mutations in crystallin genes 
responsible for CCs were identified in the genetic study.

METHODS

Subjects and DNA specimens: The research followed the 
tenets of the Declaration of Helsinki. Informed consent was 
obtained from the subjects. If participants were under the 
age of 16, consent was obtained from their parents or legal 
guardians. The experiments were approved by the Ethics 
Committee of Fujian Medical University, and the study also 
adhered to the ARVO statement on human subjects.

Forty-two probands with congenital cataracts and 225 
related individuals from southeast China were enrolled in a 
genetic screening program. Clinical and ophthalmological 
examinations were performed on the affected individuals, 
as well as on the unaffected family members. Phenotype 
was documented with slit-lamp photography. One hundred 
twelve samples from ethnically matched control individuals 
were obtained before the study. 5 ml peripheral blood was 
drawn from each subjects and preserved at -20 °C prior to 
use. Genomic DNA was extracted from whole blood using the 
Wizard Genomic DNA Purification Kit (Promega, Beijing, 
China) according to the manufacturer’s instructions [5,6].

Mutation screening: Mutation screening methods were 
based on the hot-spot regions of cataract-causing mutations 
that cover about 80% of mutations in inherited cataract the 
same as our previous study [5]. Briefly, all the probands of 42 
families with CCs were tested for mutations in the common 
18 genes that cause CC, including CRYAA, CRYAB, CRYBA1, 
CRYBA4, CRYBB1, CRYBB2, CRYBB3, CRYGC, CRYGD, 
CRYGS, GJA8 (Gene ID 2703, OMIM 600897), GJA3 (Gene 
ID 2700, OMIM 121015), HSF4, MIP (Gene ID 4284, OMIM 
154050), BFSP2 (Gene ID 8419, OMIM: 603212), EPHA2 
(Gene ID 1969, OMIM 176946), FYCO1 (Gene ID 79443, 
OMIM 607182), and PITX3. The selected hot-spot coding 
exons and splice junctions of these genes were amplified with 
PCR from genomic DNA. The PCR primers and conditions 
for crystallin genes are listed in Table 1. Thermal cycling was 
performed with denaturing at 94 °C for 5 min, followed by 
30 cycles of 94 °C for 30 s, 58-61 °C for 30 s and 72 °C for 45 
s, with a final extension at 72 °C for 5 min and chilling to 4 
°C. PCR products were purified and directly sequenced on an 
ABI 3730XL Automated Sequencer (PE Biosystems, Foster 

City, CA), using the same PCR primers. When mutations of 
crystallin genes were identified in probands, intrafamilial 
segregation analysis was performed. The identified novel 
mutations in crystallin genes were also tested in 112 normal 
unrelated individuals from the same ethnic background.

Haplotyping analysis: To further validate the present novel 
mutations, the genotyping was analyzed using two or three 
selected microsatellite markers flanking each corresponding 
pathogenic gene in available family members the same as in 
our previous study [5,6]. Briefly, PCR products from each 
DNA sample were separated with gel electrophoresis with 
a fluorescence-based on the ABI 3730 automated sequencer 
(Applied Biosystems) using ROX-500 as the internal lane size 
standard. The amplified DNA fragment lengths were assigned 
to allelic sizes with GeneMarker Version 2.4.0 software (Soft-
Genetics, State College, PA). Pedigree and haplotype data 
were managed using Cyrillic (version 2.1) software.

Bioinformatics analysis: Mutations were described according 
to the recommendation of the Human Genomic Variation 
Society (HGVS). To predict the effects of novel mutations, 
Polymorphism Phenotyping v2 (PolyPhen-2) [7] and Sorting 
Intolerant From Tolerant v5.1.1 (SIFT) [8] were used for the 
missense mutations on the encoded proteins, and Human 
Splicing Finderv3.1 (HSF) [9] was employed for the intronic 
variants in the splicing site changes. InterVar from the stan-
dards and guidelines of the American College of Medical 
Genetics and Genomics (ACMG) was used to evaluate the 
pathogenicity of all the mutations [10,11].

RESULTS

Clinical finding: In the study, 42 probands were recruited 
from 30 autosomal dominant families, eight families without 
history, and four isolated cases. All the patients were 
diagnosed with bilateral cataracts in childhood. No other 
ophthalmic or systemic diseases presented in any of the 
participants. Of the probands, 33.33% (12 unrelated families 
and two isolated cases) were identified mutations in crys-
tallin genes. Among them, four mutations were not previ-
ously reported in the CAT-11, CAT-27, CAT-33, and CAT-41 
families (Figure 1). The inheritance pattern of the 12 fami-
lies is autosomal dominant. Based on clinical descriptions 
provided by the referring clinician at the time of enrollment, 
the CAT-27 and CAT-41 families have a primary diagnosis 
of congenital nuclear cataracts, while the CAT-11 family has 
congenital cortical and coliform cataracts, and the CAT-33 
family has congenital total cataracts.

Mutation analysis: Eleven mutations were identified in 14 
unrelated families using Sanger sequencing of the coding 
region and the splicing sites of the crystallin genes (Figure 
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2 and Table 2). No variants in other screening regions of 
the 18 genes were detected in these families. The clinical 
significances of all the identified mutations were generated 
by InterVar software based on the criteria recommended by 
the American College of Medical Genetics and Genomics / 
Association for Molecular Pathology (ACMG/AMP) guide-
lines [11]. The process is automatically performed first, and 

then, manual adjustment to reclassify the mutations for the 
criteria that InterVar recommends follows. These 11 muta-
tions match the criterion of pathogenic moderate 1 (PM1) as 
all are in hot-spot regions. All the mutations except a triple 
mutation (CRYBB2 c.(433C>T; 440A>G; 449C>T) were found 
only in patients, not in healthy relatives or the 112 controls 
from the same ethnic background. The mutations were also 

Figure 1. Haplotypes of crystallin genes in each family. All the pathogenic haplotypes (red) indicate segregation of the haplotypes in affected 
individuals in each family but not in the unaffected family members. The pathogenic haplotypes are annotated beside the pedigrees.
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absent in databases of probably benign variation, indicating 
that they match the criterion of PM2 (absent from controls 
in this study; Exome Sequencing Project, 1000 Genomes, 
or ExAC). Ten mutations were cosegregated with CCs in 
each affected family member (Figure 1 and Figure 2 show 
the four novel mutations), indicating that they match the 
criterion for PP1 (cosegregation with disease in multiple 
affected family members in a gene definitively known to 
cause the disease). All the missense and splice site mutations 
were predicted to satisfy the criteria of PP3 (multiple lines of 
computational evidence support a deleterious effect on the 
gene or gene product (conservation, evolutionary, splicing 
impact, etc.)) by SIFT, PolyPhen-2, and InterVar software. 
All the previous reported mutations match the criterion of 
PP5 (reputable source recently reports variant as pathogenic, 
but the evidence is not available to the laboratory to perform 
an independent evaluation).

Two splice site mutations, including IVS3 c.215+1G>A 
in CRYBA1 (the CAT-14 family and the CAT-32 family) and 
IVS1 c.10–1G>A in CRYGC (the CAT-33 family), alter the 
wild-type (WT) donor site, and most likely affect splicing, 
which make these mutations match the criterion of PVS1 
(null variant (nonsense, frameshift, canonical ± two splice 

sites, initiation codon, or single or multiexon deletion) in a 
gene where loss of function (LOF) is a known mechanism 
of disease). All the splice site mutations were categorized as 
disease “pathogenic” based on the criteria PS1, PM1, PM2, 
PP1, and PP3.

In the CAT-21 family, the affected individuals carry a 
heterozygous c.272–274GAGdel deletion in CRYBA1, which 
results in the glycine deletion at position 91. In the CAT-41 
family, affected individuals carry heterozygous single 
base-pair deletion exon 3 causing a frame shift (c.346delT, 
p.F116Sfsx29) and a stop codon 29 amino acids downstream 
if a mutant CRYGD protein can be produced. The frame-shift 
mutations (CRYBA1:p.G91del, and CRYGD:p.F116Sfsx29) 
belong to PM4 (protein length changes due to in-frame dele-
tions/insertions in a non-repeat region or stop-loss variants) 
according to the ACMG guidelines.

A complex three missense mutation in CRYBB2 previ-
ously reported twice was identified in the CAT-24 and 
CAT-54 families and a sporadic case in the CAT-53 family. 
This complex mutation was first reported by Hansen [12]. 
All the other six missense mutations here were predicted to 
be “probably damaging” by PolyPhen-2 and “deleterious” by 

Figure 2. The four novel muta-
tions in crystallin genes identified 
with direct sequencing. The black 
arrows indicate the mutations in 
the probands, and the wild-type 
can be seen in the corresponding 
sequences from the normal control.
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SIFT. These predictions indicated that the six missense vari-

ants perhaps impair protein function.

According to the ACMG guidelines and InterVar 

software [11], all 11 mutations in the crystallin genes were 

categorized as disease “likely pathogenic,” except two splice 

site mutations were “pathogenic.” More details can be seen 

in Table 2.

Figure 3. The structural changes in the novel mutations. The molecular surface is colored according to the electrostatic potential with Swiss-
PdbViewer, with red-white-blue corresponding to acidic-neutral-basic potential. A: Surface change in CRYAA:p.R12L. B: Surface change 
in CRYBB2:Q155K. C: Surface change in CRYGD:p.F116Sfsx29. The yellow dotted circle represents the region of significant alteration.
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DISCUSSION

In this study, we conducted a mutational screening of known 
pathogenic genes in a cohort of Chinese patients with 
congenital cataracts. Moreover, the causative mutations in 
crystallin genes were identified and summarized. Eleven 
mutations, including four novel mutations and seven previ-
ously reported mutations in crystallin genes, in 14 probands 
were identified and categorized as “likely pathogenic” except 
two splice site mutations that were “pathogenic” according 
to the ACMG guidelines, which contributed to 33.33% of the 
genetic etiology of congenital cataracts. This result is consis-
tent with another study in the Chinese population, which was 
eight of the 25 families (32%) [13].

Mutations in crystallin genes account for the majority 
of hereditary congenital cataracts [14]. Three major classes 
of crystallins have been found in the vertebrate eye lens. 
In the molecular structure of crystallin proteins, there are 
α-crystallin protein (40%), β-crystallin protein (35%), 
and γ-crystallin protein (25%). The three novel mutations, 
c.35G>T (p. R12L) in CRYAA, c.463C>A (p. Q155K) in 
CRYBB2, and c.346delT (p. F116Sfsx29) in CRYGD), cause 
changes in amino acids, which may eventually result in 
structural changes in the α-crystallin, β-crystallin, and 
gamma-crystallin D proteins, respectively. Swiss-PdbViewer 
predicted that the molecular surface may be changed by 
the mutations (Figure 3). The ratio of the crystallin protein 
composition and its spatial sequence in the maintenance of 
crystallin transparency is very important. The mutations in 
crystallin genes may not only affect the protein structure, 
which is closely packed, but also reduce the solubility of 
crystallin proteins to form opacities [15,16]. Thus, using the 
primers of crystallin genes in Table 1 followed by intrafa-
milial cosegregation, bioinformatics analyses, and inter-
pretation of the variants according to the ACMG guidelines 
might be a cost-effective paradigm in the genetic diagnosis 
of congenital cataracts in Chinese.

In summary, we identified four novel mutations and 
seven previously reported mutations in crystallin genes 
associated with congenital cataracts in a cohort of Chinese 
families, exhibiting that the mutations in crystallin genes 
are responsible for 33.33% (14 out of 42 families with CCs) 
of families with CCs in this cohort. This report extends the 
mutation spectrum of crystallin genes in the Chinese popula-
tion, which may be helpful for the molecular diagnosis of CCs 
in the era of precision medicine.
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