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Abstract: Semaphorins (SEMAs) are axon guidance factors that participate in axonal connections and
nerve system development. However, the functional roles of SEMAs in tumorigenesis are still largely
uncovered. By using in silico data analysis, we found that SEMA6C was downregulated in pancreatic
cancer, and its reduction was correlated with worse survival rates. RNA sequencing revealed that
cell cycle-related genes, especially cyclin D1, were significantly altered after blockage of SEMA6C by
neutralizing antibodies or ectopic expressions of SEMA6C. Mechanistic investigation demonstrated
that SEMA6C acts as a tumor suppressor in pancreatic cancer by inhibiting the AKT/GSK3 signaling
axis, resulting in a decrease in cyclin D1 expression and cellular proliferation. The enhancement
of cyclin D1 expression and cyclin-dependent kinase activation in SEMA6C-low cancer created
a druggable target of CDK4/6 inhibitors. We also elucidated the mechanism underlying SEMA6C
downregulation in pancreatic cancer and demonstrated a novel regulatory role of miR-124-3p in
suppressing SEMA6C. This study provides new insights of SEMA6C-mediated anti-cancer action
and suggests the treatment of SEMA6C-downregulated cancer by CDK4/6 inhibitors.

Keywords: SEMA6C; CDK4/6; pancreatic cancer

1. Introduction

Semaphorins (SEMAs) are a family of proteins, originally identified as axon guidance
factors, that play crucial roles in the maintenance of axonal connections and the migration
of neuronal cells [1–3]. This axon guidance family is divided into five classes according to
structural similarity, including secretory class 3, transmembrane classes 4–6, and membrane-
anchored class 7. Among the transmembrane SEMAs, members in classes 4–5 are frequently
reported to aid in cancer development, such as SEMA4A in the angiogenesis of breast
cancer [4], SEMA4B in the proliferation of head and neck cancer [5], SEMA4C in colon
cancer motility [6], and SEMA4D in the immune regulation of lung cancer [7]. SEMA5A has
also been shown to modulate motility and metastasis of gastric and pancreatic cancers [8].
However, the importance of class 6 SEMAs in tumorigenesis is still largely unclear.

Previous studies have demonstrated that the expression of SEMA6A is associated with
better survival in lung cancer and brain tumors [9–11], while the expression of SEMA6B is
linked with increased incidence of thyroid tumors [12]. However, the underlying mech-
anisms by which class 6 SEMAs affect cancer cell behavior have seldom been addressed.
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SEMA6C was cloned as a novel class 6 SEMA and was named SEMAY at that time [13].
Subsequent investigations suggested a role of SEMA6C in controlling nerve growth cone
distribution, spinal cord development, and skeletal muscle innervation [14–16].

Recently, SEMA6C has also been proposed to participate in the regulation of retinal
development and ovarian function [17,18]; however, information on whether SEMA6C
plays any role in the regulation of tumor growth has never been reported. In this study, we
found that SEMA6C is a potential tumor suppressor in pancreatic cancer. Bioinformatics
analysis and immunohistochemical staining showed the downregulation of SEMA6C in
pancreatic tumor tissues. We revealed that SEMA6C suppressed cell proliferation via the
AKT/GSK3/β-catenin/cyclin D1 axis, where the major associated partners of cyclin D1 that
elicit its biological functions include cyclin-dependent kinase 4/6 (CDK4/6) [19]. Recent
studies demonstrated that the CDK4/6 inhibitors exhibit potent growth-inhibitory activity
in various cancers in vitro and in animal studies. Furthermore, a number of CDK4/6
inhibitors are under different phases of clinical trials [20,21]. Recently, several CDK4/6
inhibitors have been approved for the treatment of breast cancer in clinical settings [22]. We
also tested the therapeutic effect of CDK4/6 inhibitors in SEMA6C-low pancreatic cancer,
which exhibited increased cyclin D1 expression.

Furthermore, we explored the mechanism of SEMA6C downregulation in pancreatic
cancer and found that miR-124-3p, a highly expressed oncogenic miRNA in pancreatic
cancer, could suppress SEMA6C expression. Treatment of the miR-124-3p inhibitor induced
an increase in SEMA6C expression and reduced the proliferation of pancreatic cancer cells.
The anti-cancer function of SEMA6C revealed in the present study might provide additional
clues for pancreatic cancer therapy.

2. Results
2.1. Semaphorin 6C Is Downregulated in Pancreatic Cancer and Is Associated with Reduced
Patient Survival

We first checked the expression of the members of the SEMA6 family in the Oncomine
database and found a downregulation of SEMA6C in pancreatic cancer (Figure 1A). In
addition, the survival rate of SEMA6C-low pancreatic cancer patients was significantly
worse than that of SEMA6C-high patients (p < 0.001, Figure 1B). To validate the finding
obtained from mRNA expression data, we examined SEMA6C protein levels in a set
of pancreatic tumor tissues and found a decrease in SEMA6C in some pancreatic tumors
(Figure 1C). Consistent with mRNA results, the overall survival and metastasis-free survival
of the SEMA6C-low patients were worse (Figure 1D,E). These data suggested that SEMA6C
could be a tumor suppressor gene in pancreatic cancer.

2.2. RNA Sequencing Reveals the Alteration of Cell Cycle Progression in SEMA6C-Low
Pancreatic Cancer

To characterize SEMA6C-low pancreatic cancer, we applied AmiGO to analyze the
TCGA dataset for comprehensive survey and found enrichment in cell cycle dysregulation
pathways, including cell division, cell cycle, and nuclear division (Figure 2A). Bioinfor-
matics analyses using GSEA demonstrated the enrichment of gene signatures with DNA
replication (Figure 2B). To validate these findings, we ectopically expressed SEMA6C in
MIA PaCa-2 pancreatic cancer cells that had very low levels of endogenous SEMA6C
expression and compared the expression profiles by using next-generation sequencing
to identify the altered pathways. As shown in Figure 2C, several significantly changed
pathways after SEMA6C overexpression were mitotic cell cycle, cellular response to DNA
damage stimulus, and the regulation of cell cycles, consistent with the results of the TCGA
dataset. In addition, NetworkAnalyst analysis of our RNA sequencing data revealed the
enrichment of the cell proliferation-related network (Figure 2D). These results prompted us
to study the effect of SEMA6C on the proliferation of pancreatic cancer cells.
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Figure 1. Relation between SEMA6C expression and pancreatic cancer formation. SEMA6C mRNA 
expression (A) and its association with survival (B) in pancreatic cancer datasets were analyzed. 
SEMA6C protein expression (C) in the tissue array mentioned above and its relation to overall sur-
vival (D) as well as disease-free survival (E) as shown. For Figure 1B, SEMA6C grouping was based 
on its median expression (SEMA6C-high n = 31; SEMA6C-low n = 56). For Figure 1D,E, SEMA6C 
grouping was also based on its mean expression (SEMA6C-high n = 42; SEMA6C-low n = 44). *** p 
< 0.001. 
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Figure 1. Relation between SEMA6C expression and pancreatic cancer formation. SEMA6C mRNA
expression (A) and its association with survival (B) in pancreatic cancer datasets were analyzed.
SEMA6C protein expression (C) in the tissue array mentioned above and its relation to overall
survival (D) as well as disease-free survival (E) as shown. For Figure 1B, SEMA6C grouping was
based on its median expression (SEMA6C-high n = 31; SEMA6C-low n = 56). For Figure 1D,E,
SEMA6C grouping was also based on its mean expression (SEMA6C-high n = 42; SEMA6C-low
n = 44). *** p < 0.001.
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verify our conclusion, we selected additional human pancreatic cancer cell lines including 
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Figure 2. RNA sequencing reveals the alteration of cell cycle progression in SEMA6C-low pancreatic
cancer. RNA sequencing results from TCGA (A,B) or the present study (C,D) were analyzed for
SEMA6C-associated pathway (A,C), gene set (B), and network (D).
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2.3. SEMA6C Inhibited the Growth of Pancreatic Cancer Cells

As SMEA6C is a transmembrane protein, we applied a neutralizing antibody to block
its function. The antibody was specifically bound to the human pancreatic cancer cell line
MIA PaCa-2 and the mouse pancreatic cancer cell line KPC (Figure 3A,E). Treatment with
anti-SEMA6C antibodies enhanced the proliferation of pancreatic cancer cells, consistent
with the anti-cancer function of SEMA6C in this cancer (Figure 3B,F). Additionally, the trans-
forming activities assessed by colony formation also dramatically increased (Figure 3C,G),
although anti-SEMA6C antibodies did not affect cell viability (Figure 3D,H). To verify our
conclusion, we selected additional human pancreatic cancer cell lines including BxPC-3
(KRAS wildtype, TP53 mutant) and Capan-2 (KRAS mutant, TP53 mutant, RNF43 mutant)
for an SEMA6C overexpression study. Flow cytometry analysis confirmed the increase in
cell surface SEMA6C in MIA PaCa-2, BxPC-3, and Capan-2 cells (Figure 3I,M,Q). A reduc-
tion in cell proliferation was observed after SEMA6C expression, consistent with its tumor-
suppressive role (Figure 3J,N,R). Moreover, colony-forming activity was also inhibited
(Figure 3K,O,S), although SEMA6C overexpression did not affect cell death (Figure 3L,P,T).
These results suggest that SEMA6C suppressed the proliferation of pancreatic cancer cells
without promoting cell death.
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Figure 3. SEMA6C influences pancreatic cancer proliferation. Human pancreatic cancer cell lines
MIA PaCa-2 (A–D, I–L), BxPC-3 (M–P), Capan-2 (Q–T) and mouse pancreatic cancer cell line KPC
(E–H) were subjected to SEMA6C antibody-mediated blockage (A–H) or SEMA6C overexpression
(I–T) and its effect on cell proliferation (B,F,J,N,R), colony formation (C,G,K,O,S) and apoptosis
(D,H,L,P,T) was analyzed. * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.4. SEMA6C Affects Cell Proliferation via the AKT/GSK3/β-Catenin/Cyclin D1 Axis

Previous studies have demonstrated that SEMA6C inhibits AKT activation in mouse
ovary cells [18,23]. We investigated the involvement of AKT in the SEMA6C-inhibited
growth of pancreatic cancer cells. SEMA6C blockage by using neutralizing antibodies
increased AKT phosphorylation in human MIA PaCa-2 and mouse KPC cells (Figure 4A).
Phosphorylation of GSK3, a downstream target of AKT, was also enhanced, resulting in
increased β-catenin expression (Figure 4A). In contrast, SEMA6C overexpression in three
pancreatic cancer cells suppressed AKT/GSK3 activity and β-catenin expression (Figure 4B).
Cyclin D1 is a transcriptional target for β-catenin to control cell cycle progression [24].
Consistently, the cyclin D1 protein was upregulated upon SEMA6C blockage, while it was
decreased after SEMA6C overexpression. Our data also showed the increment of cyclin D1
mRNA by SEMA6C neutralizing antibodies in MIA PaCa-2 and KPC cells, suggesting that
SEMA6C blockage enhanced cyclin D1 via transcriptional activation (Figure 4C,E). The
inhibition of AKT activity by a specific inhibitor reversed the upregulation of cyclin D1 by
SEMA6C antibody treatment (Figure 4D,F). These results suggest that SEMA6C modulates
cyclin D1 expression and proliferation via the AKT/GSK3/β-catenin axis in pancreatic
cancer cells.
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Figure 4. SEMA6C affects cell proliferation via AKT/GSK3/β-catenin/cyclin D1 axis. Human
pancreatic cancer cell lines MIA PaCa-2, BxPC-3, and Capan-2 and mouse pancreatic cancer cell line
KPC were subjected to SEMA6C antibody-mediated blockage or SEMA6C overexpression, and its
effect on target expressions at protein level (A,B) or mRNA level (C–F) was shown.
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2.5. CDK4/6 Inhibitor Palbociclib Suppresses Proliferation in SEMA6C-Low Pancreatic Cancer

To search for therapeutic targets in pancreatic cancer with SEMA6C downregulation,
we applied L1000CDS2 analysis and found that cell cycle-related inhibitors, including
those against topoisomerase or CDK4/6, may be potential drugs for the treatment of
SEMA6C-low pancreatic tumors (Figure 5A). The identification of CDK4/6 inhibitors is
not surprising, because we have demonstrated the upregulation of cyclin D1, the major
cyclin complexes with CDK4 and CDK6, after SEMA6C blockage. Our data showed that
the CDK4/6 inhibitor, Palbociclib, indeed decreased the proliferation of MIA PaCa-2 and
KPC cells in a dose-dependent manner (Figure 5B,C), suggesting the therapeutic potential
of a CDK4/6 inhibitor for SEMA6C-low pancreatic cancer.
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cer. TCGA-based and L1000CDS2-predicted SEMA6C-mimicking therapeutics are shown (A) and
CDK4/6 inhibitor was selected for in vitro validation of proliferation in MIA PaCa-2 (B) and KPC
(C). * represents p < 0.05; † represents p < 0.01.

2.6. miR-124-3p Inhibitor Suppresses Pancreatic Cancer Proliferation via SEMA6C Upregulation

We next addressed the mechanism of SEMA6C downregulation in pancreatic tumors.
Post-transcriptional regulation of SEMA6C by miRNA was considered. By bioinformatics
prediction using miRDB, TargetScan, and miRWalk, miR-124-3p was found to be a common
SEMA6C-targeting miRNA. This miRNA complexes perfectly with the position 280–286 of
3′UTR of SEMA6C mRNA (Figure 6A). In addition, high miR-124-3p expression was associ-
ated with poor prognosis in pancreatic cancer (Figure 6B). For mechanistic study, we focused
on MIA PaCa-2 cells, which expressed high levels of miR-124-3p (Supplementary Figure S1).
Treatment of miR-124-3p inhibitors restored SEMA6C expression and inhibited the prolifer-
ation of MIA PaCa-2 cells (Figure 6C,D), while the increase in cellular growth by SEMA6C
antibody blockage was also reversed by miR-124-3p inhibitors. These results suggest that
miR-124-3p is a critical upstream regulator of SEMA6C in pancreatic cancer cells.
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Figure 6. The miR-124-3p inhibitor suppresses pancreatic cancer proliferation via SEMA6C upregulation.
miRNAs targeting SEMA6C were identified by overlapping predicted miRNAs from miRDB, TargetScan,
and miRWalk. The targeting of SEMA6C by miR-124-3p (A) and the prognosis prediction by this miRNA
in pancreatic cancer (B) are shown. The effect of miR-124-3p inhibitors on SEMA6C expression (C) and
proliferation (D) in MIA PaCa-2 was analyzed. * represents p < 0.05, ** represents p < 0.01.

3. Discussion

Recently, the potential roles of SEMA genes in neoplasia development have been
reviewed [9,25,26]. However, the functions of SEMAs in tumorigenesis are complex and
are tumor type-specific. For example, SEMA5A was found to be upregulated in pancreatic
cancer and was correlated with tumor growth, invasion, and metastasis [27]. However,
the secreted form of SEMA5A suppressed the proliferation of pancreatic cancer cells [28]
while also displaying tumor-promoting activities in gastric cancer [29]. Conversely, this
SEMA was suggested to act as a tumor suppressor in lung cancer [30]. Among the members
of the SEMA6 family, SEMA6B and SEMA6D have been implicated in cancer formation.
SEMA6B promotes the progression of glioma via activating its cognate receptor plexin
A4 [31]. Similarly, SEMA6D is increased in gastric cancer and its expression is linked
with tumor angiogenesis and metastasis [32,33]. However, the expression and function of
SEMA6C are currently unclear.

In the present study, we demonstrated that SEMA6C suppressed the proliferation
of human and mouse pancreatic cancer cells. Additionally, we revealed that AKT/GSK3
signaling is the major downstream pathway inhibited by SEMA6C to elicit its anti-cancer
activity. In SEMA6C-downregulated pancreatic cancer, the enhancement of AKT activity
induced the accumulation of nuclear β-catenin to promote the expression of cyclin D1 and
stimulated cell growth. The mammalian cell cycle is controlled by different cyclin-CDK
complexes, which could phosphorylate the retinoblastoma protein to relieve its inhibitory
action on DNA replication and cell division [34]. In the past decades, the development of
CDK inhibitors has been an active area in cancer research. Pan-CDK inhibitors targeting
various CDKs showed potent anti-cancer activity; however, they also exhibited significant
adverse effects in patients. Thus, selective CDK inhibitors are more suitable for clinical
applications. The progression of the cell cycle in the early G1 phase is mainly regulated by
cyclin D1/CDK4/6.
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Our finding that SEMA6C-low pancreatic cancer showed increased cyclin D1 expres-
sion motivated us to test whether CDK4/6 inhibitors may have therapeutic benefits on
pancreatic cancer with the downregulation of SEMA6C. Indeed, Palbociclib, also known as
PD 0332991, a clinically approved CDK4/6 inhibitor, suppresses SEMA6C-low cancer cells
more effectively, suggesting a druggable target in these cancers. By performing L1000CDS2

analysis, we also identified topoisomerase inhibitors as potential drugs for the treatment of
SEMA6C-low pancreatic cancer. Recently, a topoisomerase I inhibitor, pegylated liposomal
irinotecan, has been approved for use in patients with metastatic pancreatic ductal adeno-
carcinoma [35]. The selection of patients by using SEMA6C as a marker may lead to more
precise cancer therapy.

Another important finding of this study is the elucidation of the mechanism of
SEMA6C downregulation in pancreatic cancer. MiRNAs are short noncoding RNAs that
may modulate the expression of genes via translational inhibition or mRNA proteolysis [36].
The involvement of miRNAs in pancreatic cancer has been well documented recently [37].
For example, anti-cancer miR-203 directly targets SEMA6A to trigger apoptotic cell death
in oral cancer cells [38]. In addition, miR-506 and miR-23a-3p have been shown to suppress
SEMA6D in osteosarcoma and colon cancer, respectively [39,40]. Our identification of
SEMA6C targeting by miR-124-3p demonstrates a novel regulatory miRNA in pancreatic
cancer. Moreover, we also found that a high expression of miR-124-3p is linked with worse
survival rates in pancreatic cancer patients.

The SEMA6C-staining analysis of tissue array showed a tendency for better survival
rates in SEMA6C-high patients. The results did not reach statistical significance due to the
limited case number. While SEMA6C-low pancreatic cancer patients had lower survival
rates at the end point of the analyses, the difference was minor. We then searched for
possible reasons. If we focused on paired normal–cancerous tissues, the downregulation
of SEMA6C at the protein level during pancreatic tumorigenesis is more obvious (n = 6
pairs, Supplementary Figure S2). This suggests that high SEMA6C expression is still a
good predictor for better prognosis in pancreatic cancer patients. In addition, the SEMA6C
protein is always downregulated during pancreatic tumorigenesis. Therefore, we concluded
that SEMA6C plays a tumor-suppressive role in pancreatic cancer.

Collectively, this study provides new insights as to how SEMA6C modulates the
proliferation of pancreatic cancer cells.

4. Materials and Methods
4.1. Oncomine and PROGgene Analyses

Oncomine (https://www.oncomine.org/resource/login.html) (last accessed on 21
September 2018) and PROGgene (http://www.compbio.iupui.edu/proggene) (last ac-
cessed on 21 September 2018) analyses were performed to investigate the expression
alteration and prognosis prediction by SEMAs in 20 cancer types. The default setting was
applied, and the result was collected before October 2018.

4.2. cBioPortal, AmiGO, Geneset Enrichment Analysis (GSEA), and Network Analyst Analyses

cBioPortal (https://www.cbioportal.org/) [41] (last accessed on 21 September 2018)
analyses were performed to identify expression patterns, prognostic prediction, clinical
association, and coexpressed gene signature for SEMA6C in pancreatic cancer. Briefly,
a TCGA pancreatic cancer dataset was analyzed for SEMA6C coexpressed genes, which
were then ranked according to Spearman’s correlation. The top 500 positively or negatively
correlated genes were extracted as SEMA6C coexpressed gene signatures, then AmiGO,
GSEA, and NetworkAnalyst analyses were performed to identify enriched pathways in
SEMA6C-low pancreatic cancer.

4.3. RNA Sequencing

A sequencing library was constructed with a TruSeq Stranded mRNA Library Prep
Kit (Illumina; San Diego, CA, USA) following the manufacturer’s instructions. mRNA
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was purified from 1 µg RNA by oligo(dT)-coupled magnetic beads and first-strand cDNA
was synthesized using random primers and reverse transcriptase. After the generation
of double-strand cDNA and adenylation on 3′ ends of DNA fragments, adaptors were
ligated and purified with the AMPure XP system (Beckman Coulter; Brea, CA, USA). The
quality of the libraries was assessed on Bioanalyzer 2100 (Agilent; Santa Clara, CA, USA)
and real-time PCR. Qualified libraries were sequenced using NovaSeq 6000 (Illumina) with
150 bp paired-end reads generated by Genomics (New Taipei, Taiwan). Filtered reads were
aligned to reference genomes with Bowtie2 (version 2.3.4.1). Transcript quantification was
performed with RSEM (version 1.2.28). The identification of differentially expressed genes
was performed with EBSeq (version 1.16.0).

4.4. L1000CDS2 Analysis

L1000CDS2 (https://maayanlab.cloud/l1000cds2/#/index) [42] (last accessed on 21
September 2018) was applied to identify counteracting drugs for SEMA6C-low pancreatic
cancer from TCGA, and the predicted drugs were presented as frequency.

4.5. Cell Culture and Treatment

Human pancreatic cancer lines MIA PaCa-2 (BCRC; Hsinchu, Taiwan) and Capan-
2 (ATCC; Manassas, VA, USA) were cultured in DMEM (HyClone; Logan, UT, USA)
with 10% fetal calf serum (FBS) and 1X penicillin-streptomycin (HyClone), as described
previously [43,44]. Human pancreatic cancer cell line BxPC-3 (BCRC; Hsinchu, Taiwan) and
mouse pancreatic cancer cell line KPC (provided by Dr. Kuang-Hung Cheng from Institute
of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan) were cultured
in RPMI (HyClone) with the same supplements. For antibody treatment, cells were treated
with 2 µg/mL rabbit control IgG (10201, LEADGENE; Tainan, Taiwan) or SEMA6C antibody
(GTX118489, GeneTex; Hsinchu, Taiwan) for 24 h. For drug treatment, cancer cells were
treated with CDK4/6 inhibitor Palbociclib (Sigma; Burlington, MA, USA) at the indicated
concentration for 24 h, and the cells were harvested for analysis. For plasmid transfection,
cells were transfected with 2 µg PCMV3 vector control (CV020, Sino Biological; Beijing,
China) or SEMA6C-overexpressing plasmid (HG23441-NF, Sino Biological), together with
3 µL HyFect (LEADGENE) for 48 h. For miRNA transfection, 200 nM control miRNA
inhibitors or miR-124-3p inhibitors (GenePharma; Shanghai, China) were applied, and the
cancer cells were collected 48 h after transfection.

4.6. Antibody Internalization Assay

Antibody internalization assay was performed as described previously [45,46] with
minor modifications. Briefly, cells at the concentration of 5000 per ml were seeded onto
96-well plates. After 24 h, control IgG or SEMA6C antibody was added. One hour post-
antibody addition, cells were washed with PBS, fixed with 4% paraformaldehyde (PFA) for
10 min, and permeabilized with 0.05% Tween 20 PBS for 10 min. An internalized antibody
was detected by a polymer-conjugated secondary antibody (NICHIREI, Tokyo, Japan) and
then by 3, 3′, 5, 5′-tetramethylbenzidine (TMB; Sigma). The reaction was stopped by 2N
H2SO4, and the end product was measured at O.D. 450 nm by FlexStation 3 (Molecular
Probes; Waltham, MA, USA).

4.7. Flow Cytometry

Cells were fixed with 4% PFA for 10 min, stained with primary antibody in 1%
BSA-PBS for 1 h, and then stained with a secondary antibody for another 1 h. Stained cells
were subjected to analyses with FASCalibur’s flow cytometer, and the data were analyzed
by FlowJo software (BD; Franklin Lakes, NJ, USA).

4.8. Proliferation and Colony Formation Assays

Cell proliferation was analyzed by a trypan blue exclusion test, and colony formation
was performed as described previously [47]; briefly, 10,000 cells of indicated condition were
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seeded onto 6-well plates and cultured in the wells for seven days. Formed colonies were
fixed with methanol, stained with methyl blue, and destained with ddH2O. Colonies were
counted under a microscope (IX71, OLYMPUS; Tokyo, Japan).

4.9. Cell Death Assay

Cell death was analyzed with propidium iodide uptake at a concentration of 50 µg/mL
at the end of treatment. Stained dead cells were counted under a microscope.

4.10. Immunofluorescence

Cells were fixed with 4% PFA for 10 min and stained with a primary antibody in 1%
BSA-PBS overnight at 4 ◦C. Cells were incubated with a fluorescent secondary antibody
for 1 h and 5 µg/mL DAPI (Sigma) for 5 min. Signals were detected with a fluorescent
microscope (IX71, OLYMPUS) and analyzed with ImageJ software.

4.11. Western Blotting

Cells were lyzed in CelLytic M (Sigma) with 1 mM Na3VO4, 5 µg/mL aprotinin and
1 mM phenylmethanesulfonylfluoride (PMSF) for 20 min at 4 ◦C. After centrifugation at
12,000 rpm for 15 min at 4 ◦C, supernatants were harvested and protein concentrations
were quantified with Bradford reagent (Bio-Rad; Hercules, CA, USA). Equal amounts of
protein from each sample were mixed with 5× sample dye (0.1% bromophenol blue, 8%
dithiothreitol, 10% SDS, 50% glycerol, and 250 mM Tris-HCl pH 6.8), heated at 95 ◦C for
5 min, and subjected to gel electrophoresis. After transfer at 100V for 1.5 h, polyvinylidene
difluoride membranes were blocked with 5% BSA for 1 h and then incubated with the
primary antibody. After incubation with the secondary antibody, the membranes were
washed extensively, and the signals were detected by ECL (PerkinElmer; Waltham, MA,
USA) and analyzed with UVP (Analytik Jena; Jena, Germany). The results were quantified
with ImageJ software. Antibodies used in this study included those against phospho-AKT
(Ser473) (9271, Cell Signaling; Danvers, MA, USA), AKT (GTX121937, GeneTex), phospho-
GSK3α/β (Ser21/9) (8566, Cell Signaling), GSK3α/β (5676, Cell Signaling), β-catenin (9587,
Cell Signaling), cyclin D1 (GTX108624, GeneTex), and GAPDH (GTX627408, GeneTex).

4.12. RNA Extraction and Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Cells were lyzed in Trizol (Invitrogen; Waltham, MA, USA), and RNA was extracted ac-
cording to manufacturer’s instructions. RNA concentration was determined by a nanopho-
tometer (Implen; Munich, Germany), and 2 µg RNA was reversely transcribed into cDNA
using ReverTra Ace set (PURIGO; Taipei, Taiwan) according to manufacturer’s instruc-
tions. PCR was performed with MyCycler (Bio-Rad) under the conditions of 98 ◦C for
20 s, 65 ◦C for 1 min, and 72 ◦C for 1 min for a total of 35 cycles. The PCR product was
subjected to electrophoresis with 1% agarose gel (VWR; Radnor, PA, USA) under 100 V
for 15 min and stained with 7500×-diluted EtB“Out” (Sigma) for 20 min. The signals
were analyzed with AlphaImager (Alpha Innotech, San Leandro, CA, USA) and ImageJ
software. The PCR primer sequences were as follows: hCCND1-F, GCTGCGAAGTG-
GAAACCATC; hCCND1-R, CCTCCTTCTGCACACATTTGAA; hGAPDH-F, AGAAG-
GCTGGGGCTCATTTG; hGAPDH-R, AGGGGCCATCCAC AGTCTTC; mCCND1-F, CTC-
CGTATCTTACTTCAAGTGCG; mCCND1-R, CTTCTCGGCAGTCAAGGGAA; mGAPDH-F,
AGGTCGGTGTGAACGGATTTG; mGAPDH-R, TGTAGACCATGTAGTTGAGGTCA.

4.13. miRNA and KM Plotter Analyses

SEMA6C-targeting miRNAs were identified from miRDB (http://mirdb.org/) [48]
(last accessed on 9 November 2020), TargetScan (http://www.targetscan.org/vert_72/) [49]
(last accessed on 9 November 2020) and miRWalk (http://mirwalk.umm.uni-heidelberg.
de/) [50] (last accessed on 9 November 2020), and the miRNAs overlapping in the three
databases were selected for further analysis. The common miRNA, miR-124-3p, was tested
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for prognosis prediction in pancreatic cancer using a KM plotter (https://kmplot.com/
analysis/) [51] (last accessed on 9 November 2020).

4.14. Tissue Array and Immunohistochemistry Staining

Specimens from pancreatic cancer patients that had undergone surgical resection
were approved by the Institutional Review Board of National Cheng Kung University
Hospital (A-ER-105-459) and the National Health Research Institute (EC1090507-E). Clinical
information between 2001 and 2012 was reviewed using electronic medical records. Tissue
arrays were constructed from formalin-fixed paraffin-embedded blocks of 86 specimens,
as described previously [52]. After deparaffinizing and rinsing with 10 mM Tris-HCl
(pH 7.4) and 150 mM sodium chloride, slides were treated with methanol and 3% H2O2,
and then heated at 100 ◦C for 20 min in 10 mM citrate buffer. The slides were incubated
with the SEMA6C antibody for 1 h and washed with PBS, and the signals were developed
using EnVision Detection Systems, Peroxidase/DAB, Rabbit/Mouse kit (Dako; Santa Clara,
CA, USA). The slides were analyzed under a microscope and SEMA6C expression was
evaluated by an experienced pathologist, with scoring defined by staining intensity and
the percentage of positive cells expressed as follows: 0, no expression; 1, weak expression;
2, moderate expression; and 3, strong expression.

4.15. Statistical Analysis

Statistical analysis was performed with SPSS Statistics 17.0 (IBM; Armonk, NY, USA).
Statistical differences between control and experimental groups were calculated with
Student’s t-test, and p < 0.05 was considered statistically significant (* represents p < 0.05;
** and † represent p < 0.01; *** represents p < 0.001).
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