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Abstract: Early and self-identification of locomotive degradation facilitates us with awareness and
motivation to prevent further deterioration. We propose the usage of nine squat and four one-leg
standing exercise features as input parameters to Machine Learning (ML) classifiers in order to
perform lower limb skill assessment. The significance of this approach is that it does not demand
manpower and infrastructure, unlike traditional methods. We base the output layer of the classifiers
on the Short Test Battery Locomotive Syndrome (STBLS) test used to detect Locomotive Syndrome
(LS) approved by the Japanese Orthopedic Association (JOA). We obtained three assessment scores
by using this test, namely sit-stand, 2-stride, and Geriatric Locomotive Function Scale (GLFS-25).
We tested two ML methods, namely an Artificial Neural Network (ANN) comprised of two hidden
layers with six nodes per layer configured with Rectified-Linear-Unit (ReLU) activation function
and a Random Forest (RF) regressor with number of estimators varied from 5 to 100. We could
predict the stand-up and 2-stride scores of the STBLS test with correlation of 0.59 and 0.76 between
the real and predicted data, respectively, by using the ANN. The best accuracies (R-squared values)
obtained through the RF regressor were 0.86, 0.79, and 0.73 for stand-up, 2-stride, and GLFS-25
scores, respectively.

Keywords: artificial neural network (ANN); Random Forest regressor; skill assessment; squat;
one-leg standing; locomotive syndrome

1. Introduction

The locomotor system of the human body performs complex processes of control
and coordination. Our locomotor system’s efficiency is affected by various factors such as
accidental injury, aging, arthritis, osteoporosis, and most importantly a sedentary lifestyle.
During the COVID-19 pandemic, we have observed an increase in sedentarism or physical
inactivity, thus threatening both physical and mental health [1]. Hospitalization is also
considered as a contributing factor in causing reduced mobility, resulting in functional
decline in older adults during discharge [2]. Reduced physical activity and sedentary
behavior predominantly affect older adults due to increased fall risk [3]. The consequences
of unexpected falls and related costs constitute substantial concern in the modern world [4].
Moreover, most Asian and European countries are experiencing a significant increase in
the proportion of their geriatric population [5]. This population trend is more common
in countries such as Japan, where the elderly constitutes over one-third of the national
population. Physical and health examination can be considered as global requirements
to reduce accidents caused by musculoskeletal degeneration and other locomotive health
effects of aging and sedentarism. The lower extremity facilitates the entire body’s mobility

Sensors 2021, 21, 6459. https://doi.org/10.3390/s21196459 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3429-7442
https://orcid.org/0000-0002-7848-1460
https://doi.org/10.3390/s21196459
https://doi.org/10.3390/s21196459
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196459
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196459?type=check_update&version=2


Sensors 2021, 21, 6459 2 of 18

with the ankle, knee, and hip joints depending on stability and control. Therefore, a timely
risk assessment of the lower-limb may significantly reduce the risk of falls and increase
awareness, making assessment of the stability of human locomotion a vital research area
owing to reducing the risk of falls and unstable gait.

In 2007, the Japanese Orthopaedic Association (JOA) introduced the concept of Locomo-
tive Syndrome (LS). They defined it as a condition of mobility disorder that results from the
degeneration of locomotive organs such that nursing care becomes a requirement. With a
high proportion of older adults, most of the Japanese population experienced LS during
the latter part of their lives. According to a survey conducted by the Japanese Ministry
of Health, Labor, and Welfare in 2016, 6.32 million people requested nursing care for the
elderly, which is more than twice compared to the count 15 years ago [6]. The risk level
of LS can be evaluated by a self-reported assessment test proposed by the JOA, which is
widely known as the Short Test Battery Locomotive Syndrome (STBLS) [7]. This test makes
it possible to identify LS, which is otherwise challenging in terms of diagnosis. Identifying
early stage LS enables us to slacken expenses and motivate diagnosed patients to remain
active. Even though the STBLS test is a widely used tool for diagnosing LS, it requires the
presence of a therapist or supporter to perform the evaluation. In addition, human-based
measurements are subject to inadvertent errors and require measurement tools. Therefore,
self-sustained yet accurate measurement techniques show better chances of acceptance by
the present society.

In this paper, we propose the utilization of skeletal data obtained by using the Intel
RealSense depth camera to predict the occurrence of Locomotive Syndrome (LS) by using
Machine Learning (ML) classification techniques. The usage of Intel RealSense is an
interesting novelty in this work in terms of motion capture showing a distinctive approach
compared to other standard Kinect-based analysis utilized in prior literature. The Intel
RealSense depth camera provides a frame-rate of 90 Frames Per Second (FPS) and depth
resolution of 1280 × 720 thus, outperforming the Kinect V2 (FPS: 30, depth resolution:
512 × 424). The RealSense camera is compact and low-priced and yet, its remaining
specifications are comparable to Kinect V2. We used the Intel RealSense camera to collect
skeletal movement during two exercise tasks, namely squat and one-leg standing. One
of the major contributions of this paper is the calculation of 13 input parameters from
the raw skeletal data obtained during both exercise tasks that are later used to train the
classification algorithms. The predefined output data for training the ML classifiers are
acquired by using the stand-up, 2-stride, and GLFS-25 scores of the STBLS test. Two ML
classifiers facilitated high accuracy while verifying the feasibility of the proposed set of
input and output ML parameters, namely Artificial Neural Network (ANN) and Random
Forest (RF) regressor.

2. Related Work

Several clinically approved mobility assessment methods have been proposed in order
to evaluate gait, balance, and transfer abilities in older adults. In terms of assessment types,
these tests can be categorized into performance-based, performance and judgment-based,
and self-reported. The top two performance-based assessment methods are Timed Up and
Go (TUG) [8] and Soft Physical Performance Battery (SPPB) [9]. The top two performance
and judgment-based measures are Tinetti Performance Oriented Mobility Assessment
(Tinetti-POMA or TMT) [10] and Berg Balance Scale (BBS) [11]. In terms of the specific
aim of evaluation, there are tests aimed at assessing balance and walking [8], overall
mobility [12], gait speed [13], balance and transfers [11], postural stability [14], functional
stability [15], and fall risks [16]. Clinical methods of risk assessment have limitations such
as requiring a therapist’s support, low precision due to potential human errors during
measurement, and fatigue in both therapists and patients. Patients cannot carry out clinical
evaluations other than self-reported risk assessment methods at home without a therapist’s
involvement. Additionally, self-reported tests have a high possibility of being affected by
human bias and error.
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Sensor-based evaluation for assessing limb mobility has also gained popularity during
the past years. These techniques can be broadly categorized into on-body tracking and
environment tracking [17]. On-body tracking involves the use of sensors and trackers
attached to different body parts aimed at tracking movements. Environment tracking is
performed through monitoring systems such as cameras placed at a distance from the user
to track their movements. First, we consider some examples of on-body tracking evaluation
methods. Accelerometers are frequently used as on-body trackers for gait analysis and
detection [18]. Wii Balance board is another commonly used device. Yamada et al. used it
for fall risk assessment in healthy community dweller older adults [19]. A novel infrared
laser device for measuring multilateral stepping-performance parameters was introduced
by Nishiguchi et al. for identifying fall-risk in elderlies [20]. Takeda et al. predicted
footprints from the sole pressure distribution during walking and developed a diagnostic
system using features such as the mean absolute error [21]. Next, we mention some
environment tracking type evaluation techniques. Cary et al. presented a Kinect-based
system combined with ANN classifiers for physiotherapy assessment. The primary aim
of this research was to provide quantitative data of the patients to the physiotherapists
to ensure the ability to monitor and record both quantitative and qualitative skeletal data
during physiotherapy sessions [22]. Another Microsoft Kinect-based fall-risk assessment
method while performing tasks drawn from clinical balance scales is proposed in [23].
A supervised classifier is deployed for classification in this study. Nintendo introduced
Ring Fit Adventure enabled with a motion-sensing resistance ring and a controller strapped
to the leg to integrate gaming experiences with physical workouts such as squatting. Such
controllers are designed to be wearable and capable of detecting movements wirelessly [24].
However, skill assessment is not the primary rationale behind such systems.

Machine Learning (ML) and Neural Networks (NNs) were introduced in the field
of rehabilitation almost three decades ago. Recognizing healthy and pathological gaits was
implemented through an NN-based algorithm in [25]. This study also summarizes different
data processing and classification techniques utilized while designing an NN-based clinical
tool. The Genetic Algorithm Neural Network (GANN) approach was used to recognize
gait patterns and compared with a traditional ANN. The GANN-based approach could
classify the data with an accuracy rate of up to 98.7%, while the ANN’s accuracy was
limited to 89.7% [26]. Identification of locomotion type and intensity was implemented
by measuring the contact data between foot and ground. The data were acquired through
a Smart Insole Measurement System (SIMS) and identified by using an ANN. This study
mainly detected the type and speed of activities such as running, walking, and climbing
up and down [27]. Post-stroke gait classification was performed by using ANN with
classification rates of 100% and 86% using knee joint and frontal motion of the hip joint as
input parameters, respectively [28]. Principal Component Analysis (PCA), multi-layered
FF ANN, and Self Organized Maps (SOM) were used for classifying and clustering gait
patterns in normal subjects and patients with lower limb fractures. The study used Vertical
Ground Reaction Force (vGRF) as the measured data and showed the highest classification
accuracy of 96% [29]. A lower limb joint moment prediction approach using ANN is
discussed in [30]. Right lower limb EMG and five joint angle data were used as candidate
input variable sets for the ANN during this approach. A single Inertial Measurement
Unit (IMU) was used to predict lower limb kinetics and kinematics during walking with
the help of ML. This research proposes the prospect of reducing the tradeoff between
wearable convenience and data quantity by using ML algorithms utilizing the dynamic
characteristics of human movements [31]. A detailed review on the various research studies
focused on the automatic recognition of gait patterns in human motor disorders using ML
published during the past decade is presented in [32].

Environment tracking systems applied to patient evaluation are comparatively lower
in count than on-body tracking. Environment tracking methods are advantageous due to
the absence of direct physical contact with patients during the evaluation. Furthermore,
on-body tracking requires considerable effort and time for the attachment and calibration
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of the sensors. Most of the lower limb assessment research approaches include on-body
sensors and consider assessing data acquired from subjects who are already advanced
pathological patients. Environment tracking-based assessment methods that can identify
the early to advanced stages of LS are not yet introduced. Therefore, in this research, we
aim to address this issue through a non-contact risk assessment tool. This assessment tool
is implemented by using data collected through Intel RealSense depth sensor camera such
that the user may be evaluated without physical contact and need for physical therapists.

3. Proposed Lower Limb Assessment

It was pointed out in previous research that LS exhibits declining mobility char-
acterized by deteriorated motor functions and mobility deficits, making nursing care
mandatory [7]. In addition to aging, factors that may accelerate LS’s progression include
lack of exercise, inadequate nutrition, and a sedentary lifestyle. Therefore, LS’s identifica-
tion at an early stage can create awareness and reduce many healthcare expenses due to its
advanced progression. The risk assessment test called STBLS proposed by JOA is a widely
used tool for diagnosing LS in Japan. However, a supporter’s presence is still required
to identify the performance measures during the evaluation tasks. Moreover, materials
such as measuring scales and stools with variable height are required to perform the test.
Human bias may also affect the judgment of the assessment results. We need a quantitative
self-measurable tool to identify LS’s progression, which can be used by both early and
advanced stage LS patients. In this paper, we develop and validate such a tool by using
FF ANN and RF regressor. We use the STBLS test as the foundation to acquire outputs
used to train our classifiers. To reduce the efforts required to set-up the system, we use
an environment tracking system (Intel RealSense D435) to track the skeletal data used as
inputs of the classifiers. Squat and one-leg standing are used as the tasks to determine the
input features. The frame rate of data acquisition was 30 fps.

3.1. Input Features

Feature extraction is a common methodology for creating input datasets of ML clas-
sifiers. Raw skeletal data are sorted, and only the relevant features are selected as the
inputs according to the classification goal [33]. In the current input dataset, we consider
all skeletal data from the lower limb portion to derive the input parameters. Since our
main area of importance is the lower limb, we took all data points from this section of the
skeletal data. From the previous literature, we derived the understanding that selected
data points of the lower limb used to calculate the relevant parameters are suitable to be
used as inputs to the classifiers rather than using the entire skeletal data [34].

3.1.1. Squat Features

Squat performance can be classified by using non-invasive skeletal joint data as
suggested in previous research. According to Escamilla’s report on knee biomechanics
during squatting, knee and hip angular displacement (from standing to squatting) and
lateral shakiness are prime indicators [35]. In addition, Center Of Mass (COM) has been
widely used to assess balance during exercises involving the lower limbs [36]. Based on
such observations, we selected parameters to assess squat performance.

Figure 1a represents the outline of the squat measurement system, and Figure 1b shows
the states involved in the detection of the squat by the measurement system. The subject
starts with a standing posture 2 m away from the depth camera. The depth camera starts
measuring the skeletal data. The squat states and posture are shown on the monitor for the
user to follow. The algorithm for detecting the squat states is based on previous research by
Ramin et al. [34]. The measured squat parameters are shown in Table 1. These parameters
are used to calculate the input features of the classifiers.

The knee angles are calculated by using the knee, hip, and ankle joints of the skeleton
such that the knee joint is the common point. The hip angles are calculated using the hip,
spine, and knee joints of the skeleton such that the hip joint is the common point. The flexion
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and extension angles are calculated during the states 2 and 0 of squat, respectively, as shown
in Figure 1b. The shakiness parameters are calculated using the time delta of lateral position
of both knee joints during squat state 2.

Intel RealSense

Visual feedback 

(skeletal data)

(a)

Calibration Hold this posture 

for 1 second

Hold this posture 

for 1 second

c 0 1

2 3

(b)
Figure 1. Experiment protocols followed during squat. The posture of arms was not restricted in any experiment. Users
were free to keep their arms folded or otherwise as per their preference. (a) Squat posture maintained along with the visual
feedback given to the user. (b) Different states followed during one squat.

Table 1. Parameters considered for the squat motion measurement. Here, the units of angle, shakiness,
and time-based parameters are degree, meter, and second, respectively.

Index Parameters

θlk f Left knee flexion angle
θrk f Right knee flexion angle
θlke Left knee extension angle
θrke Left knee extension angle
slk Left knee shakiness
srk Right knee shakiness
θlh f Left hip flexion angle
θrh f Right hip flexion angle
θlhe Left hip extension angle
θrhe Right hip extension angle
te Extension time
ns Number of squats

Table 2 shows the list of input features derived from the squat parameters. X1, X2, X3,
and X4 are obtained by measuring the joint angles during complete upright and squat
positions. Values are obtained within the range of [0, 180] and are normalized to the range
[0.00, 1.00].

X1 = abs(θlk f − θlke)/105 (1)

X2 = abs(θrk f − θrke)/105 (2)

X3 = abs(θlh f − θlhe)/45 (3)

X4 = abs(θrh f − θrhe)/45 (4)

The input features X5 and X6 represent the lateral displacement of the left and right
knees during state 2. The maximum raw value (3.50) is used to normalize the data to the
range of [0.00, 1.00].

X5 = 1− slk
1000

(5)

X6 = 1− srk
1000

(6)

The input feature X7 represents the Centre Of Mass (COM) smoothness. This value
is obtained by using the input features X1 to X6. For a stable squat, the normalized value
is 1.0.
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X7 =

[
1 − 0.25 ∗ abs(X1 − X2)

45
− 0.25 ∗ abs(X3 − X4)

45
− 0.5 ∗ (abs(X5) + abs(X6)) − 0.7

]
/0.3 (7)

The input feature X8 represents the average time required to complete one full squat.
The input feature X9 represents the number of squats performed compared to the maximum
number of squats performed by any participant.

X8 = 1− te − 1.5
0.5

(8)

X9 =
ns

max(ns)
(9)

Table 2. Inputs to the neural network considered for the squat motion measurement.

Index Features

X1 Left knee angular displacement
X2 Right knee angular displacement
X3 Left hip angular displacement
X4 Right hip angular displacement
X5 Left knee lateral displacement
X6 Right knee lateral displacement
X7 COM smoothness
X8 Squat extension rate
X9 Squat completion rate

3.1.2. One-Leg Standing Features

One-leg standing is a widely used exercise to train the lower limbs for balance and
posture control. It can also be assessed through non-invasive skeletal detection by measur-
ing the standing time and movement trajectory of the waist [37]. Therefore, we used these
parameters for evaluating the one-leg standing performance.

The user starts with an upright standing posture 2 m away from the depth camera.
An avatar is displayed on the monitor to replicate the skeletal data of the user’s joints.
Figure 2 shows an overview of the one-leg standing measurement system. When the
absolute value of the difference between the y-coordinates of both ankles and both knees
exceeds a predefined threshold, the system recognizes one-leg standing initiation. If the
user loses balance before the stipulated time (70 s), data recording is stopped. The standing
time and waist coordinates of the recorded data, as shown in Table 3 are used to calculate
the input features X10, X11, X12, and X13 shown in Table 4. For each user, the dominant
leg is determined by asking which leg they would prefer to use in kickicking a football.
X10 and X11 correspond to the standing time with the dominant and non-dominant legs,
respectively. These values are utilized as additional input features to the neural network.
As the stipulated standing time is set to 70 s, X10 and X11 are obtained in the range of
[0, 70]. The raw values are then normalized to [0.00, 1.00].

X10 =
tdl
70

(10)

X11 =
tndl
70

(11)

The input features X12 and X13 correspond to the waist coordinates’ total trajectory
lengths during one-leg standing with dominant and non-dominant legs, respectively.
During the measurement, the trajectory length is calculated from the waist coordinate data
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to obtain the input value. Since there is no fixed maximum value, if the maximum total
trajectory length exceeds 1.00, it is normalized to the range of [0.00, 1.00].

X12 =
∑

j
i=1

√
xdli

2 + ydli
2 + zdli

2

j
(12)

X13 =
∑

j
i=1

√
xndli

2 + yndli
2 + zndli

2

j
(13)

Viewing 

magnet

Visual feedback 

(skeletal data)

(a)

Calibration

Stand on 

one leg

If 70 seconds pass

If balance lost

Task over

(b)
Figure 2. Experiment protocols followed during one-leg standing measurement. (a) One leg stance posture maintained
along with the visual feedback given to the user. (b) Different stages of one-leg standing measurement.

Table 3. Parameters considered for the one-leg standing measurement. The units for time and
position-based parameters are second and meter, respectively. Abbreviations used in this table:
Dominant Leg (DL); Non-Dominant Leg (NDL).

Index Parameters

tdl Standing time (DL)
tndl Standing time (NDL)
xdl X axis position of waist (DL)
ydl Y axis position of waist (DL)
zdl Z axis position of waist (DL)
xndl X axis position of waist (NDL)
yndl Y axis position of waist (NDL)
zndl Z axis position of waist (NDL)

Table 4. Inputs to the neural network considered for the one-leg standing measurement.

Index Features

X10 Standing time (DL)
X11 Standing time (NDL)
X12 Total trajectory length (DL)
X13 Total trajectory length (NDL)

3.2. Output Scores

This section illustrates how the three scoring methods of the STBLS test called
stand-up, 2-stride, and Geriatric Locomotive Function Scale (GLFS-25) were used to de-
fine our classifier’s output scores for quantifying the lower limb risk assessment level.
Figures 3 and 4 show the stand-up and 2-stride test details in the form of illustrations.

For stand-up test, the individual is required to stand up from being initially seated
on variable height (10, 20, 30, and 40 cm) seats. The action of standing up is observed
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for conditions of both two-leg and one-leg support. The test is sequenced from easy to
difficult levels in which taller seats are less challenging. If the individual can hold the
position after standing up for more than 3 s, then it is declared successful. For each seat
height, the two-legged test is performed first, and if the test is passed, it is followed by a
single-legged test. Scores are assigned on a scale of 0 to 8. A score of zero means the subject
is unable to stand and remain balanced in any of the conditions. A score between 1 and 4
means the ability to stand up from heights of 40, 30, 20, and 10 cm using both legs. A score
between 5 and 8 means the ability to stand up from heights of 40, 30, 20, and 10 cm using
one leg.

10cm

20cm
30cm

40cm

(a)

Stand up

Hold posture 

for 3 seconds

(b)

Stand up

Hold posture 

for 3 seconds

(c)
Figure 3. Details of the stand-up test in the form of illustrations [7]. This test is helpful for assessing
the subject’s leg strength. (a) Different seat heights (10 to 40 cm) used for the stand-up test. (b)
Stand-up test with both legs on the ground. (c) Stand-up test with single leg on the ground.

Height

Maximum length of double stride

(distance covered in two steps)

StartFinish Second step First step

Subject takes the longest possible two strides

Figure 4. Details of the two-step test in the form of illustrations [7]. This test is used to measure the
stride length, which is divided by the subject’s height in order to obtain the final score. This test helps
to assess walking ability, muscular strength, balance, gait speed, and lower limb flexibility.

The second parameter is based on a test called the two-step test. This test assesses the
subject’s gait stability, balance, and lower extremity musculoskeletal strength. In this test,
the subject starts by standing on both legs and then takes two steps forward such that the
initially grounded foot is used to finish the leap. The subject has to cover as much distance
as possible without losing stability or falling. The total length of the stride is measured
from the starting point to the endpoint in centimetres, as shown in Figure 4. This distance is
then normalized by dividing the value by the subject’s height in centimetres. The resultant
ratio represents the value of the second parameter.
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The third output score is calculated by a subjective questionnaire called GLFS-25. This
questionnaire comprises 25 questions that evaluate the subject’s mobility and motor ability
and its effects on social participation. Responses range from 0 to 4, where zero indicates no
pain and four indicates high pain and discomfort levels. A lower total score indicates a
healthier subject.

The JOA has determined risk calculation based on the individual STBLS parameters
and established its relation to the subject’s mobility [38]. We can categorize the lower
extremity locomotive risk into three stages zero, one, and two, where zero is healthy,
and two is at the highest risk. Table 5 shows the STBLS risk level determination according
to the three scoring parameters.

Table 5. Using the Short Test Battery Locomotive Syndrome (STBLS) test parameters to determine the
Risk Level (RL) in individuals. The STBLS test includes stand-up, 2-stride, and Geriatric Locomotive
Function Scale (GLFS-25) scores [38].

RL Stand-Up Test 2-Stride Test GLFS-25

0 O1 > 4 O2 ≥ 1.3 O3 < 7
1 2 < O1 ≤ 4 1.1 ≤ O2 < 1.3 16 > O3 ≥ 7
2 O1 ≤ 2 O2 < 1.1 O3 ≥ 16

3.3. Classifier Configuration

For selecting the best classifier that is also relevant to the proposed input and output
dataset, we considered the traditional ML methods that were already used for classifying
skeletal data in previous research such as, Support Vector Machine (SVM) [39], Random
Forest (RF) [40], K-Nearest Neighbors (kNN) [39], Linear Regressor [41], Logistic Regres-
sor [40], and Artificial Neural Network (ANN) [25]. After implementing the mentioned
classifiers for our data, we selected the results of RF and ANN classifiers to report in detail.
Even though the remaining classifiers were implemented, acceptable accuracy rates could
not be achieved due to insufficient training data, resulting in overfitting. This section
introduces the classifiers used to identify individuals’ risk levels using the STBLS scoring
system of the JOA. The features shown in Tables 1 and 3 are used as the input values to the
classifiers to predict the individual STBLS scores.

3.3.1. Artificial Neural Network (ANN)

Figure 5 shows the structure of the proposed neural network. Two hidden layers
contain six nodes per layer, and the output layer uses one of the STBLS test scores. The acti-
vation function ( f (xi)) used here is the Rectified-Linear-Unit function (ReLU).

f (xi) = max(0, xi) + 0.01 ∗min(0, xi) (14)

F(xi) = max(0, xi)/xi + 0.01 ∗min(0, xi)/xi (15)

F(xi) represents the derivative of the activation function, f (xi). The first step is
forward propagation. Then, the first hidden layer, H(1)

i is calculated by using the input

features Xi (input layer containing 13 nodes) and weights w(0)
ji . The second hidden layer,

H(2)
k , is calculated by using the first hidden layer H(1)

j and weights w(1)
kj . Finally, the output

Y is calculated using the hidden layer Hk and the weights w(2)
1k .

The initial values of the weights, w(0)
ji , w(1)

kj , and w(2)
1k , use the initial value of “He”.

“He” is set randomly from a normal distribution with a mean of 0 and a standard deviation
of
√

2/n for n parameters. Next, backpropagation is performed. The error e(2) between the
output Y and the measured score O of the STBLS is calculated. Next, the contributions of
the current hidden-layer weights w(2)

1k and w(1)
kj to the output error are calculated.

When the output error is small, the output parameters are determined by repeatedly
processing forward propagation and error backpropagation. Hence, the updated weight
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parameters are used to predict the test score of STBLS for new users that are unknown to
the trained classifiers. The number of learning epochs was 100,000, and the learning rate lr
used for tuning the parameters was 0.005.

Figure 5. Combined Artificial Neural Network (ANN) for predicting STBLS score based on squat
and one-leg standing measurement parameters.

3.3.2. Random Forest Regressor

In addition to ANN, we also considered using the Random Forest (RF) regressor
to recognize our skeletal data-based parameters. Since our input data were paired with
corresponding STBLS output scores, the supervised nature of RF regressor made it an
apposite choice. RF regressors include the ensemble of a large number of decision trees
which operate individually. Each decision tree predicts an output class, and the output
class that is predicted by most number of trees is the final prediction of the classifier.
The selection of optimal number of decision trees is essential for minimizing computational
cost and for obtaining high accuracy simultaneously. In this work, we obtained the accuracy
by varying the number of trees from 5 through 100.

4. Accuracy Evaluation

We performed a user study to determine the accuracy of our proposed risk assessment
method. The study was designed by following the ethical regulations postulated by the
Declaration of Helsinki. Informed consent was acquired from all subjects. The conditions
for training the classifiers included the following: using squat features only (X1 to X9),
using one-leg standing features only (X10 to X13), and using all features (X1 to X13). We
used leave-one-out cross-validation for evaluating the accuracy of prediction.

Methodology

Ten subjects aged 20 to 35 years without any reported history of ailments participated.
The experiment was divided into three stages:
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• STBLS scores: The three STBLS scores were first recorded and used as the classifiers’ outputs;
• Squat measurement: The subjects were instructed to perform a 1 min squat. The pro-

cedure is shown in Figure 1b;
• One-leg standing measurement: Subjects were instructed to maintain the one-leg

standing posture for 70 s and maintain the lifted knee and hip joints, precisely at
90 degrees. The subjects were also asked to gaze at a magnet placed at eye level to
ensure concentration. The procedure is shown in Figure 2b.

The squat and one-leg standing measurements were carried out within a six month
period. Since a time gap was present between the two measurements for some subjects,
we verified that there were no changes in their physical condition by recording STBLS
scores during both measurements. The JOA STBLS assessment results, squat, and one-leg
standing input features are shown in Tables 6 and 7. The average scores of stand-up,
2-stride, and GLFS-25 were 6.93 ± 0.995, 1.44 ± 0.013, and 2.71 ± 5.91, respectively.

Table 6. Results of the input features from squat measurement (X1 to X9) for 10 subjects.

Subject X1 X2 X3 X4 X5 X6 X7 X8 X9

A 0.385 0.335 0.199 0.261 1.000 1.000 0.850 0.826 0.833
B 0.869 0.987 0.942 0.942 1.000 1.000 0.570 0.152 0.667
C 0.752 0.823 0.503 0.306 0.648 0.445 0.697 0.247 0.917
D 0.742 0.581 0.508 0.650 1.000 1.000 0.569 0.807 0.917
E 0.244 0.336 0.113 0.203 0.838 0.820 0.747 0.334 0.917
F 0.395 0.684 0.773 0.601 1.000 1.000 0.294 0.690 0.833
G 0.929 0.730 0.861 0.987 1.000 1.000 0.508 0.476 0.917
H 0.841 0.847 0.624 0.627 1.000 1.000 0.986 0.098 0.667
I 0.406 0.620 0.707 0.423 0.745 0.565 0.345 0.882 0.750
J 0.778 0.758 0.671 0.508 0.888 0.876 0.824 0.118 1.000

Table 7. Results of the STBLS assessment and one-leg standing measurement (X10 to X13) for
10 subjects.

Subject Stand-Up 2-Stride GLFS-25 X10 X11 X12 X13

A 6 1.59 5 1 1 0.285 0.307
B 5 1.49 3 1 0.874 0.291 0.291
C 7 1.33 4 1 1 0.741 0.341
D 7 1.53 4 1 1 0.794 0.378
E 6 1.47 3 1 1 0.849 0.729
F 8 1.60 0 1 1 0.722 0.437
G 8 1.43 3 1 1 0.528 0.202
H 6 1.39 0 1 1 0.634 0.228
I 8 1.42 0 1 1 0.399 0.377
J 8 1.47 0 1 1 0.205 0.414

5. Results

Figure 6 illustrates the best accuracies achieved for all considered classification ap-
proaches when implemented with the available data. The graph depicts the best accuracies
for each classification parameter selection condition. From these data, it can be observed
that the best performance was achieved in the case of ANN and RF classifiers. Owing to
this observation, we selected these two classifier data to be reported in detail.

• Stand-up score: Figure 7 shows the ANN and RF accuracies for the stand-up score.
The ANN correlation coefficients while considering all input features, one-leg stand-
ing features only, and squat features only were observed as 0.07, −0.096, and 0.59,
respectively. The best RF regressor accuracy (R2) was obtained while considering
squat features only followed by all features and one-leg standing features only.
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• Two-stride score: Figure 8 shows the ANN and RF accuracies for the 2-stride score.
The ANN correlation coefficients while considering all input features, one-leg standing
features only, and squat features only were observed as 0.76, 0.20, and 0.45, respectively.
The best RF regressor accuracy (R2) was obtained while considering one-leg standing
features only followed by all features and squat features only.

• GLFS-25 score: Figure 9 shows the ANN and RF accuracies for GLFS-25 score.
The ANN correlation coefficients while considering all input features, one-leg stand-
ing features only, and squat features only were observed as −0.66, −0.070, and 0.27,
respectively. The best RF regressor accuracy (R2) was obtained while considering
squat features only followed by one-leg standing features only and all features.
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Figure 6. Comparing the accuracy of all classification methods. The accuracy values mentioned here
indicate the highest value out of the three considered conditions of parameter selection as indicated
by the type of color (all features, squat features only, and one-leg standing features only). The shades
indicate the STBLS test scores considered (stand-up, 2-stride, and GLFS-25).

In case of the ANN accuracy, we observed that the maximum correlation coefficient
between predicted and real scores while using only squat input parameters from i1 to i9 was
0.59. On the other hand, while using only one-leg standing parameter inputs from i10 to
i13, no correlation between the predicted and actual scores was observed. However, while
combining both training set inputs from i1 to i13, an apparent increase in the correlation
coefficients was observed for stand-up and 2-stride scores specifically.
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Figure 7. Comparing the accuracy of the ANN and Random Forest regressor in predicting the STBLS
test stand-up score.
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Figure 8. Comparing the accuracy of the ANN and Random Forest regressor in predicting the STBLS
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Figure 9. Comparing the accuracy of the ANN and Random Forest regressor in predicting the STBLS
test GLFS-25 score.

The accuracies of the RF regressor, on the other hand, indicated squat features to be the
most suitable choice for predicting stand-up and GLFS-25 scores. One-leg standing features
produced the highest accuracy in predicting the 2-stride score. Table 8 shows the best accu-
racies obtained for the three STBLS scores considering different input feature conditions.

The SVR method produced the high accuracy (R2) during two instances, namely
stand-up score prediction using all features (0.62) and squat features only (0.75). The SVR
accuracies for the remaining conditions were not in an acceptable range. Moreover, even
though we applied linear regression on our data and achieved accuracies in the range of
0.4 to 0.5, there were issues of over-fitting. kNN also showed signs of overfitting when low
values of k were selected. Logistic regression was applied to classify stand-up and GLFS
test scores only since it does not support non-integer values as the output layer. Selecting
all features produced higher accuracy for this method.
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Table 8. Maximum accuracies (R2) achieved through the Random Forest regressor.

STBLS Score Squat Features One-Leg Standing Features All Features

Stand-up 0.856 0.813 0.84
2-stride 0.64 0.788 0.707
GLFS-25 0.736 0.731 0.678

6. Discussion and Future Direction

While using the ANN, we observed that the best correlation coefficient between
predicted and real scores was 0.59 (moderate correlation) for identifying stand-up scores
using the squat features only (i1 to i9). The one-leg standing features (i10 to i13) only were
not useful for any score prediction. However, while combining both training set inputs (i1
to i13), an increase in the correlation coefficient to 0.76 (high correlation) was observed for
the 2-stride score. Hence, it is crucial to train the algorithm by combining one-leg standing
features and squat features to achieve improved accuracy. From the results obtained in this
study, the stand-up and 2-stride test scores could be predicted with acceptable accuracy by
choosing the appropriate input features. The quality of the observed correlation coefficients
has been termed moderate or high according to previously published work on ANN
prediction [42]. On the other hand, while using the RF regressor to perform the score
predictions, we could achieve the highest accuracies (R2) of 0.856, 0.788, and 0.736 for stand-
up, 2-stride, and GLFS-25 test scores, respectively. Individual features of squat and one-leg
standing were more efficient compared to the combined features. This behaviour can be
associated with the observation made by previous literature that even small feature subsets
are sufficient for achieving full base accuracy in the case of RF classifiers [43]. The STBLS
test facilitates accurate identification of LS. The same has also been implemented through
the proposed classifiers in this paper. This risk prediction method can help determine
difficulty levels of therapeutic exercises deployed to pathological patients. On the other
hand, this system can also evaluate healthy adults who may be unknowingly progressing
towards LS.

Limitations were found in our current version of the estimation system. We could
not achieve significantly high accuracy with the given conditions due to various possible
reasons. The squat measurement sessions were held without limiting the squat depth,
which may have caused variation in the data. In case of ANN, the real and predicted
scores for GLFS-25 and stand-up tests had low correlation compared to 2-stride due to
the use of integer values in the STBLS scoring. Moreover, the GLFS-25 questionnaire
mainly depends on the participants’ subjective responses; hence, the prediction of this
score with motion measurement was challenging. The target users of our work are not
limited to the elderly, which is why lower limb skill assessments were performed for young
subjects in the current paper. The inclusion of elderly and patient data was a necessary
step to validate the proposed method of parameter selection and classification. Therefore,
conclusions cannot be drawn about how the classifier will perform on non-healthy subject
data. Future investigations also includes reconsidering subjective or questionnaire-based
risk level indicators.

We obtained acceptable classifier accuracy for young subjects. In order to further
improve the efficiency and variation in training data, expanding the number and variation
of subjects in terms of age, gender, and physical fitness is our next step. A large dataset will
open up the possibility of testing additional classifiers and retesting the classifiers that are
already tested and mentioned in this paper. Commonly used deep ML methods on skeletal
data such as Convolutional Neural Network (CNN) [44] and Recurrent Neural Network
(RNN) [45] will also be attempted in order to verify their usability with the proposed and
additional set of skeletal parameters for skill assessment. Skeletal features that were not
considered in this paper will also be tested for usability in these classifiers.

An important prospect of this research is its implementation as a personal health mon-
itoring or assessment module which can be used without therapist assistance. The usage
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of Intel RealSense comes with the added advantage of being convenient to install and
inexpensive compared to similar depth cameras. After the acquisition of additional training
data, integration of the tracking system and an adequately trained classifier will provide
us with an independently usable skill assessment tool. However, to ensure medical safety
and to make the system usable by patients and elderly, we plan to integrate algorithms
to detect unsafe postures and to stop the session in order to avoid injury. In addition,
a graphical user interface (GUI)-based application will be designed and developed to allow
users to interact with the assessment tool and store their data for future reference. This
tool will be especially helpful for individuals who are unaware that they are approaching
towards the onset of Locomotive Syndrome. Monitoring their lower limb constantly will
motivate them to stay physically active. This type of skill assessment can also be integrated
with rehabilitation robots with control strategies, which can manipulate the amount of
assistive force according to the identified risk level [46]. Rehabilitation robots and exoskele-
ton suits for training the elderly and other pathological individuals are gradually being
accepted, and weighted models for assessing individuals’ ability and training them based
on their skill levels would optimize the process of rehabilitation. Therefore, the proposed
risk assessment method can also be utilized to manipulate the assistive or resistive forces
delivered to healthy and pathological users while taking part in workout sessions and
therapeutic exercises.

7. Conclusions

As the current times challenge us with sedentary lifestyles and reduced mobility, it is
more likely that adults will progress towards immobility disorders such as the Locomotive
Syndrome (LS). The only way to combat this is its early detection and taking necessary
measures. Conventional methods of identifying LS in adults are quite useful but are
subjective and require several resources such as adjustable height stool, weighing scale,
and measuring tape. Therefore, to make this process easier, we introduced an ML-based
system that estimates the LS risk level. This estimation tool uses 13 parameters acquired
from squat and one-leg standing exercises as input layer data. These parameters were
obtained by processing raw skeletal data recorded through the Intel RealSense depth
camera. We predicted the stand-up and 2-stride scores of the STBLS test with correlation
coefficients of 0.59 and 0.76 between the real and predicted data, respectively, when using
an ANN. In addition, an RF regressor could predict the stand-up, 2-stride, and GLFS-25
scores with accuracies of 0.856, 0.788, and 0.736, respectively.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
BBS Berg Balance Scale
CNN Convolutional Neural Network
COM Center Of Mass
DL Dominant Leg
FFANN Feed forward ANN
FPS Frames Per Second
GANN Genetic Algorithm Neural Network
GLFS Geriatric Locomotive Function Scale
IMU Inertial Measurement Unit
JOA Japanese Orthopedic Association
kNN k-Nearest Neighbors
LS Locomotive Syndrome
ML Machine Learning
NDL Non Dominant Leg
PCA Principal Component Analysis
ReLU Rectified Linear Unit
RL Risk Level
RNN Recurrent Neural Network
SIMS Smart Insole Measurement System
SOM Self Organized Maps
SPPB Soft Physical Performance Battery
STBLS Short Test Battery Locomotive Syndrome
SVM Support Vector Machine
SVR Support Vector Regressor
Tinetti-POMA Tinetti Performance Oriented Mobility Assessment
TUG Timed Up and Go
VGRF Vertical Ground Reaction Force
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