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Abstract

Rhinolophidae or Horseshoe bats emit long and narrowband calls. Fluttering insect prey generates echoes in which
amplitude and frequency shifts are present, i.e. glints. These glints are reliable cues about the presence of prey and also
encode certain properties of the prey. In this paper, we propose that these glints, i.e. the dominant glints, are also reliable
signals upon which to base prey localization. In contrast to the spectral cues used by many other bats, the localization cues
in Rhinolophidae are most likely provided by self-induced amplitude modulations generated by pinnae movement.
Amplitude variations in the echo not introduced by the moving pinnae can be considered as noise interfering with the
localization process. The amplitude of the dominant glints is very stable. Therefore, these parts of the echoes contain very
little noise. However, using only the dominant glints potentially comes at a cost. Depending on the flutter rate of the insect,
a limited number of dominant glints will be present in each echo giving the bat a limited number of sample points on which
to base localization. We evaluate the feasibility of a strategy under which Rhinolophidae use only dominant glints. We use a
computational model of the echolocation task faced by Rhinolophidae. Our model includes the spatial filtering of the
echoes by the morphology of the sonar apparatus of Rhinolophus rouxii as well as the amplitude modulations introduced by
pinnae movements. Using this model, we evaluate whether the dominant glints provide Rhinolophidae with enough
information to perform localization. Our simulations show that Rhinolophidae can use dominant glints in the echoes as
carriers for self-induced amplitude modulations serving as localization cues. In particular, it is shown that the reduction in
noise achieved by using only the dominant glints outweighs the information loss that occurs by sampling the echo.
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Introduction

Rhinolophidae or Horseshoe bats, a family of echolocating bats,

hunt for fluttering insects amongst vegetation [1,2]. This implies

that, with each call, they receive a large number of echoes most of

which originate from foliage. They have evolved an echolocation

system that allows detecting prey under these difficult circumstances

by encoding the presence and the properties of prey by frequency

and amplitude modulations in the returning echo (reviewed in [3]).

Rhinolophidae emit long narrowband pulses where most energy

is contained in a single and well-controlled frequency component.

Fluttering prey introduces frequency and amplitude modulations

into the returning echo called glints [4–7]. Glints reliably signal the

presence of prey to the bat. Indeed, Rhinolophidae only pursue

insect prey that introduces glints in the echoes [3,7,8]. In addition to

merely signalling the presence of prey, it has been argued that the

glints provide Rhinolophidae with cues about a number of prey

properties (reviewed in refs. [3,7,9]). The prey property encoded in

the glints that is best studied is the wing beat frequency. The wing

beat frequency of an insect can readily be inferred from an echo by

counting the glints. In experiments, Rhinolophidae were able to

discriminate between targets fluttering at different rates, e.g. [5,7,8].

For the localization of echoes in azimuth and elevation bats

using broadband calls depend on spectral cues created by the

transfer function of the outer ears (e.g. [10–12]). The use of a

narrow frequency band to perform echolocation prevents

Rhinolophidae from using spectral cues to localize reflectors in

space [13]. To overcome this, they vigorously move their ears

while echolocating [13–17]. The movement of the pinnae (which

they coordinate with the reception of the echo) imposes amplitude

modulations upon the incoming echo. The exact modulation

patterns depend on the reflector position (azimuth and elevation).

As it has been shown that these amplitude cues provide stable

localization information [18,19], it is assumed that this cue is also

used by the bat to estimate the origin of the echo [13]. Indeed,

when Rhinolophidae are prevented from moving their pinnae,

their ability to locate obstacles deteriorates [14,20].

In the current paper, we present simulations showing that glints

carry the most reliable information for prey localization (as has

been shown to be the case for prey classification,). Only fluttering

insect prey produces glints. Therefore, the amplitude of glints is

not influenced by interfering echoes from the background

vegetation. In contrast, the carrier frequency band will contain a

number of overlapping echoes from foliage resulting in spurious

amplitude variations that are not due to pinna movement [18]. By

only processing the glints when determining the location of prey,

the bat could effectively reduce the influence of clutter on the

localization cues. Fluttering prey not only introduces frequency
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shifts into the echo but also considerable amplitude variations

[4,9,18]. However, the amplitude of the dominant glint is rather

stable. Dominant glints can be defined as the most Doppler shifted

parts in the echo and are produced at the instant the insects wings

are perpendicular to the impinging sound waves [4]. In

ensonification experiments, the amplitude of the dominant glint

was found to have a standard deviation of less than 1 dB [4] while

the amplitude of the echo across its entire duration can fluctuate

by up to 20 dB [3]. In sum, for localization, Rhinolophidae could

substantially reduce the noise (i.e. unknown amplitude variations)

by focussing on the dominant glints. This would reduce both the

interference by echoes from foliage and stabilize the glint

amplitude.

Focussing on the dominant glint potentially comes at a cost.

Depending on the flutter rate of a target, only a limited number of

dominant glints will be present in each echo. By only processing

these, the bat would effectively use a sampled version of the echo

where information is only available at discrete times of dominant

glints caused by the wing beat. This process is illustrated in figure 1.

Using a sampled version of the echo, potentially reduces the

amount of localization information generated by the moving ears

that is transferred to higher auditory centres. Indeed, unless the

information generated by the amplitude modulations is robust

against being sampled at a low rate (given by the dominant glint

rate), the clutter rejection mechanism would pose a limit to the

echolocation capacity of the animal.

In this paper, we use a computational model of the echolocation

task faced by Rhinolophidae to investigate the feasibility of a

localization mechanism that is based on processing the dominant

glints. We test whether the localization cues introduced by the

moving pinnae are robust against sampling. We do this by

evaluating the information transfer in R. rouxii for a range of

simulated flutter rates. We hypothesize that, the glint based

localization mechanism would be feasible only if the information

transfer is not hindered considerably when localization is based on

the information carried by the dominant glints.

In addition, we compare the information transfer in two

qualitatively different frequency channels available to the bat. In a

first alternative, we analyse the information content of the response

from a cochlear channel sensitive to frequencies close to the resting

frequency. Such a channel produces a non-zero response

throughout the duration of the echo. However, the expected

response pattern, i.e. the one corresponding with the echo strength

modulation due to ear movement, is disturbed by an additional

unknown amplitude modulation pattern due to the fluttering prey

and clutter echoes. In the other alternative, the information content

of the response of a second type of channel (a Doppler shifted

frequency channel) is analysed. This cochlear channel is only

stimulated when large frequency shifts are introduced into the echo,

i.e. during the dominant glints. We hypothesise, that using the

Doppler shifted frequency channels in locating the prey will only be

adaptive if its advantages (i.e. noise reduction) outweighs its

potential disadvantages (i.e. information loss due to sampling).

The calls of Rhinolophidae are often preceded by a short

upward sweep and/or followed by a short downward sweep.

However, we only consider the constant frequency (CF) compo-

nent of the calls of R. rouxii in our analysis. The limited bandwidth

and relatively small energy in the frequency modulated (FM)

component of their call has been taken to indicate that

Rhinolophidae rely less on the spectral cues that are used for

localization by bats emitting broadband calls [21–24]. Moreover,

R. rouxii has been observed to omit the FM component in 90

percent of its calls while hanging from a perch and scanning the

surroundings for flying insect prey [1,25].

Methods

3D Model of R. rouxii morphology
While the hearing directionality of R. rouxii has been measured

[13], this is not the case for the emission directionality. However,

simulation methods have become available that allow the

Author Summary

Rhinolophidae are echolocating bats that hunt among
vegetation. The foliage returns clutter echoes that
potentially mask the echoes of insect prey. However, prey
introduces frequency and amplitude shifts, called glints,
into the echo to which these bats are highly sensitive.
Therefore, these glints are used by Rhinolophidae to
detect prey and infer its properties. One of the defining
characteristic of consecutive dominant glints is that they
have a very stable amplitude. This is, consecutive wing
beats of the insect produce dominant glints with more of
less the same amplitude. Owing to the strategy Rhinolo-
phidae use to locate prey, the stable amplitude of glints
makes these parts of the echoes ideal signals to use to
locate prey. In this paper, we demonstrate the feasibility of
strategy under which Rhinolophidae use only the domi-
nant glints in the echo for locating prey.

Figure 1. Illustration of the origin of the echolocation cues and the sampling that would occur by focusing on the glints in
Rhinolophidae. Fluttering insects in the environment (a) cause echoes containing Doppler shifted glints. (c) The moving pinnae of R. rouxii impose
an amplitude modulation upon the received echo. This modulation is different for each position of the target with respect to the bat. The echoes of
the red and green insects would be modulated differently. (d) The dominant glints are selected by attending the most Doppler shifted parts of the
echo. (e) This results in a sampled template (location of the red dots) at the left and the right ear (illustrated for the red insect). It should be noted that
the spectrogram shown in (b) and the templates shown in (c) are stylized versions of a real echo containing glints and templates respectively. See
[4,5,8] for real examples of echoes from fluttering insects and figure 7 for real templates.
doi:10.1371/journal.pcbi.1002268.g001

Dominant Glint Localization in Horseshoe Bats

PLoS Computational Biology | www.ploscompbiol.org 2 December 2011 | Volume 7 | Issue 12 | e1002268



evaluation of the directionality of the echolocation system of bats

at a high resolution [26–31]. Among these simulation methods,

Boundary Element Methods (BEM) are well suited to simulate

both the emission and hearing directionality of bats [29].

Furthermore, BEM is thus far the only simulation method that

has been formally validated for the simulation of HRTFs of small

mammals (for bats [18,29] and for gerbils [32]).

Using BEM to simulate the directionality of a bat requires a 3D

model of the morphology of the head of the species under study. In

our lab, we have developed a method to create such a model from

CT data [29]. The 3D model of R. rouxii used in this study is

rendered in figure 2. To obtain this model, a single specimen of R.

rouxii (origin: Sri Lanka [13]) was scanned using a MicroCT

machine with a resolution of 70 mm. Using standard biomedical

software and the method described in ref. [29], a 3D model of the

morphology was extracted from the data (see ref. [33] for more

details on the extraction of the current model).

On our current hardware, the software [26,27] used to simulate

the emission beam and the hearing directionality can only handle

models consisting of up to 30,000 triangles. Therefore, we

constructed a separate model of the noseleaf to ensure capturing

all important features of the baroque facial morphology of R. rouxii.

The complete head model and the model of the noseleaf are

depicted in figure 2. As the resting frequency used by R. rouxii lies

typically around 75 kHz (73–79 kHz; [1]) we use the simulated

emission pattern and hearing directionality pattern at this

frequency in the current paper.

Figure 2 shows the simulated hearing and emission directionality

for the 3D model at 75 kHz. The simulated hearing directionality

corresponds well with that reported in ref. [13]. Moreover, the

match between the simulated hearing directionality of R. rouxii and

the measured hearing directionality [13] was quantified in ref. [18]

for a range of frequencies. As reported in ref. [18], we found a good

agreement between the simulations and the measurements.

R. rouxii typically moves one of its pinnae to the front and the

other one backwards during the reception of an echo. In the

closely related specimen Rhinolophus ferrumequinum, the motion of

the pinnae describe an arc of about 30 degrees at an oblique angle

[15–17]. This is, while moving to the front (back) the pinnae also

move somewhat inwards (outwards). No accurate description of

the motion in R. rouxii is available. Therefore, we model the

motion of the pinnae based on the reports on Rhinolophus

ferrumequinum as moving from 215 degrees in elevation and

2(+)15 degrees azimuth to +15 degrees in elevation and +(2)15

degrees azimuth for the right (left) ear. This is, as one ear moves

down the other one moves up. In additional simulations, we

confirmed that other arcs of movement influenced our results very

little (see [18] for details).

Simulating the movement of the pinnae was done by assuming

that this could be approximated by rigid rotations of the hearing

directionality while keeping the emission directionality in the same

position. In cats it has been shown that rigid rotations are a good

approximation of changes to the hearing directionality due to

pinnae movement [34]. Moreover, the extent over which the

pinnae are moved in R. rouxii is rather small (about 30 degrees).

Hence, we assume that the effects of the additional deformation of

the pinnae on the combined emission-hearing directionality can be

neglected in our analysis.

Estimation of the Information Transfer Rate
In this section of the paper, we outline our mathematical model

of the echolocation task. This model has been adapted from refs.

[12,18] and is based on the Shannon Information Theory [35,36].

The basic assumption underlying our model is that the

localization of a target can be considered as a template matching

task [12,37,38]. A fluttering insect produces an echo containing

typical target-induced Doppler shifted glints that show up as

frequency spreading in the spectrogram (see refs. [4,5,8] for

Figure 2. The 3D model and its simulated emission and hearing sensitivity. Left: rendering of the morphological model of R. rouxii and a
rendering of the detailed model of the facial morphology (noseleaf) of R. rouxii . (a) Simulated directionality of the left ear of R. rouxii . The pattern was
mirrored to make the comparison with ref. [13] and (c) more easy. (b) Similar as (a) but for the right ear. (c) The measured directionality as reported in
ref. [13]. (d) The simulated emission pattern of the model (plotted assuming symmetry). All patterns are for 75 kHz. Contours are space 3 dB apart
and depict the whole frontal hemisphere from 290 degrees to +90 degrees azimuth and elevation using a Lambert azimuthal equal-area projection.
The meridians are spaced 30 degrees apart.
doi:10.1371/journal.pcbi.1002268.g002
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examples of spectrograms obtained from measurements). The

echo is picked up by the bat’s moving pinnae. Based on reports in

the literature, we assume, that each pinna moves either up or

down during the reception of the echo [15–17]. Ear movement

introduces additional amplitude modulations of the echo at both

tympanic membranes. The exact way in which the echo is

modulated depends on the augmented head related transfer func-

tion (AHRTF), i.e., the combination of the emission directionality

and the HRTF, of the bat. Each different azimuth-elevation

position of a target with respect to the bat corresponds to a

different expected modulation pattern at the left and the right ear.

These expected modulation patterns are termed templates in the

remainder of the paper. We assume the bat compares any

measurement with a set of stored templates to estimate the

direction from which the echo originated.

As argued in the introduction, we assume that R. rouxii uses the

dominant glints to perform localization. Therefore, the bat has

access to a version of the expected modulation patterns that is

sampled at the points in time at which the echo contains a

dominant glint. We assume that the bat uses a number of samples

taken at discrete points in time from the amplitude modulated

signal produced by the moving ears. The number of samples

depends on the flutter rate of the insect. This models a worst case

scenario in which a fluttering insect introduces only one dominant

glint per wingbeat and the bat does not use any other glints apart

from the dominant glints. Being a worst case scenario implies that

the evaluation of the information transfer in Rhinolophidae using

this signal results in a lower estimate. Therefore, if our results show

that the frequency channels picking up the dominant glints

conserve localization information, this indicates that using these

channels is certainly possible for Rhinolophidae hunting under

realistic circumstances where the amount of information carried

by all the glints is even higher (see Discussion).

Under these assumptions, we regularly sampled the expected

modulation patterns at frequencies between 20 and 200 Hz. A

realistic range of flutter rates for insects as reported by [4,5] would

be about 50 to 100 Hz (see also the Discussion). Extending this

range downwards enables us to assess the extent of the information

transfer at very low flutter rates. Moreover, we will use the results

for a flutter rate of 200 Hz as a baseline to which we compare the

results for lower flutter rates. As we assume that R. rouxii uses calls

with a duration of 50 ms [1], flutter rates of 20 to 200 Hz

correspond to 1 to 10 dominant glints (samples) for each ear. The

point in time of the first sample was uniformly distributed between

0 and 0.5 sampling periods. While the flutter rate of insects is very

stable [9], some deviation from regularly spaced sampling are

likely to occur. To investigate whether our results also hold when

we no longer assume regularly spaced glints in the echo, we ran

simulations in which the samples were randomly spaced over time.

The sampled versions of the expected amplitude modulation

pattern at the left and the right ear are concatenated into a single

vector ~mmh,a containing all measurements.

Using the same measurement noise model as proposed in [12],

the received amplitudes are assumed to be corrupted both by the

unknown and varying reflector strength as well as the system noise.

Their different effects on the received amplitudes follow naturally

if we represent the received echo amplitudes on a logarithmic scale

(in dB ), i.e., apply a compression very similar to the one

performed by the hearing system. System noise is additive but,

because of the logarithmic compression, its effect on the received

amplitudes can be approximated by a maximum operator as,

~mmh,a~ max (~tthz~aaz~gg,0) ð1Þ

^max (~tthz~aa,0)z~gg ð2Þ

with~tth the template, i.e., the expected amplitude modulation at

the different pinna positions (scaled such that maxh(~tth)~0dB ),

stored by the bat for reflector position h. The noise level,

i.e., the lower threshold below which no signal can be detected,

is set at 0 dBSPL. The vector ~aaz~gg denotes the unknown and

varying echo strength modulation due to the fluttering target.

The term ~aa~½a � � � a�’ represents the mean echo strength

averaged over the ear positions. As the noise level is set to zero

the parameter a can be interpreted to specify the signal to noise

ratio of the echo.

The term ~gg represents normally distributed multivariate noise,

i.e. ~gg*N(0,S) (the meaning of S is explained in the next

paragraph). This noise term models the unknown amplitude

modulations imposed onto the echo due to target movement (e.g.,

fluttering target).

Following Bayes’ theorem, the posterior probability P(hj~mmh,a,a)
of a received vector ~mmh,a of strength a to originate from position h
can be written as given by equation 3

P(hj~mmh,a,a)~
P(~mmh,ajh,a):P(h)P
h’ P(~mmh,ajh’,a):P(h’)

ð3Þ

Taking into account that the expected value of ~mmh,a, i.e.,

~tta
h~ max (~tthz~aa,0), depends on a, the likelihood of a received

vector ~mmh,a given a reflector position h’ and echo strength a is

calculated as,

P(~mmh,ajh’,a)~
e{d=2

(2p)K=2jSj1=2
ð4Þ

with K the total number of ear positions in the binaural template
~tth and

d~½~mmh,a{~tt
a
h�’:S{1:½~mmh,a{~tt

a
h�: ð5Þ

The covariance matrix S gives the variances and covariances of

the stochastic vector ~gg. However, the amplitude of the echo a is

unknown to the bat. Therefore, it is treated as a nuisance

parameter in the model,

P(~mmh,ajh)~

ðau

al

P(~mmh,ajh,a)P(a)da ð6Þ

with al ,au½ � the range of a values that can occur. Hence, we rewrite

equation 3 to arrive at,

P(hj~mmh,a)~
P(~mmh,ajh)P(h)P
h’ P(~mmh,ajh’)P(h’)

ð7Þ

Equation 6 is calculated assuming that the bat considers all echo

strengths in the interval al ,au½ � equally likely and thus maintains a

uniform prior across reflector strengths. Hence, we assume that

the bat has no priori knowledge about the fraction of the

impinging energy reflected by the target. Equation 7 gives the

posterior distribution of h. Using Shannon entropy, the uncer-

tainty about the true target position when receiving a particular

echo ~mmh,a from position h can be expressed in bits as,

Dominant Glint Localization in Horseshoe Bats
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Hh;~mmh,a
~{

X
h’

P(h’j~mmh,a): log2 P(h’j~mmh,a) ð8Þ

The quantity of direct behavioural relevance though is the

average entropy Hh carried by all possible echoes ~mmh,a originating

from position h. To calculate this quantity one should average over

all realizations of the reflector ensemble. Hh is approximated using

a Monte Carlo simulation. For each position h, 20 realizations of

the measurement vector ~mmh,a are generated. For each of these

realizations, equations 3 to 8 are evaluated and the average value

Hh is reported. Twenty realizations for each position h were found

to yield stable results.

Having introduced the model and the methods, we can

summarize all relevant assumptions: (i) localization is considered

as a template matching task, (ii) we assume that only upward

frequency-shifted dominant glints within a single echo are

evaluated and (iii) that the relative position prey with respect to

the bat does not change appreciably while it is being ensonified,

(iv) it is assumed that the HRTF does not change during pinna

movement, but is only rigidly rotated, (v) the parts of the echo that

were Doppler-shifted by insect wings are assumed to have more

stable amplitude than the echoes of non-moving objects (vi) we

assume that the head does not move during call emission and echo

reception (vii) FM parts of the echoes are not considered (see also

discussion).

Parametrization of the model
As described in the previous section, the model only has a single

parameter, the covariance matrix S,

S~

s2
L1,L1

. . . s2
L1,Ln

s2
L1,R1

. . . s2
L1,Rn

..

.
P . . . . . . P

..

.

s2
Ln,L1

..

.
s2

Ln,Ln
s2

Ln,R1

..

.
s2

Ln,Rn

s2
R1,L1

..

.
s2

R1,Ln
s2

R1,R1

..

.
s2

R1,Rn

..

.
P . . . . . . P

..

.

s2
Rn,L1

. . . s2
Rn,Ln

s2
Rn,R1

. . . s2
Rn,Rn

2
666666666666664

3
777777777777775

ð9Þ

with Li and Ri denoting the i{th sample for the left and the

right ear.

To obtain estimates of the values of S we use the value reported

in ref. [4]. The authors report that the standard deviation of the

amplitude of the dominant glints produced by fluttering echoes is

0:8 dB or less (see figure 5 in ref. [4]). Based on these data, we use

1 dB as a lower value for the diagonal of S.

The variation of the amplitude of the dominant glints in an echo

is markedly lower than the variation of the amplitude throughout

the echo as the dominant glints are, by construction, synchronized

with a specific point in the wingbeat cycle. Previously, we have

reported on asynchronous ensonification measurements of flutter-

ing targets from which we calculated the standard deviation of the

amplitude in a narrowband frequency channel [18]. We found a

value of about 6 dB . Therefore, we also evaluate the model for

sLi ,Li
~sRi ,Ri

~6 dB . We use this value to model frequency

channels that are stimulated for the entire duration of the echo

signal (resulting in more noisy modulation pattern measurements)

as opposed to the frequency channels that are stimulated by the

dominant glints only.

Finally, in addition to 1 dB and 6 dB as values for the diagonal

of S, we also use 3 dB as an intermediate value to evaluate how

the information transfer deteriorates when moving from a noise

level of 1 to 6 dB .

The value of sLi ,Lj
, sRi ,Rj

were set to 0 dB . This reflects the

assumption that the noise is uncorrelated across samples.

Previously we found that the model is not very sensitive to the

values of sLi ,Lj
and sRi ,Rj

[18]. For similar reasons sLi ,Rj
and sRi ,Lj

with i=j were set to 0 dB as well. Finally, sLi ,Ri
was set to

0:95:sLi
reflecting the assumption that simultaneous amplitude

measurements in the left and the right ear are highly (but not

perfectly) correlated (see ref. [18]).

It should be noted that S only describes the variations in the

glint amplitudes within a single echo. Variations between

consecutive calls are modelled as changes in the echo strength a.

Hence, if the insect returns weaker or stronger glints across

consecutive calls, this amounts to variations in the signal to noise

ratio under which the bat operates.

The ability of the model to match templates and measurements

critically depends on the assumed echo strength or signal to noise

ratio of the echo. In the lab, fixated R. rouxii were found to call

with an amplitude of about 105 dBSPL (at 10 cm in front of the

bat)[39]. R. rouxii hunts mostly for insects with a wing length

smaller than 10 mm [40]. Fluttering insects of this size return an

echo that is up to 50{60 dB weaker than the impinging sound

(depending on the frequencies used) [4]. Therefore, we evaluated

the localization entropy predicted by the model for echoes ranging

from 0 to 50 dBSPL in steps of 2 dB as this contains all echo

strengths likely to result from prey of interest to R. rouxii.

In the current numerical simulations, we use 3252 templates

that code for as many azimuth and elevation positions uniformly

distributed over the frontal hemisphere. It was found that using

more templates increased the computation time but did not alter

the results. Changing the number of sample points changes the

results quantitatively, but not qualitatively.

Results

Entropy as a function of flutter rate and noise level
The entropy, i.e., a measure of the remaining ambiguity, about

the origin of an echo as function of azimuth and elevation for

sLi ,Li
~sRi ,Ri

~1 dB is plotted in figure 3. From this figure, it can

be seen that, as the flutter rate increases, entropy quickly reaches a

stable level. Increasing the flutter rate beyond 60 Hz does not

reduce entropy significantly. It should also be noted that at 20 Hz,

the lowest flutter rate simulated, the predicted echolocation

entropy is already considerably lower than chance level (i.e. about

11 bits in the current simulations). In a central area, entropy goes

down to a level of about 6 bits even for this low sampling

frequency. Note that, at a flutter rate of 20 Hz, the model is only

provided with 1 sample per ear to perform localization.

Figure 4 further explores the effect of flutter rate on localization

entropy. Figure 4 confirms that entropy mostly depends on the echo

strength. For every flutter rate the entropy decreases as echo

strength increases. In contrast, entropy depends only little on flutter

rate as long as the flutter rate is higher than about 50 Hz when

sLi ,Li
~sRi ,Ri

~1 dB (fig. 4b & c). Indeed, for these flutter rates the

difference in entropy between the information transfer at a flutter

rate of 200 Hz and a lower flutter rate is less than 1 bit. For higher

noise levels, the overall entropy increases (fig. 4a, d & g). Moreover,

the effect of flutter rate increases with increasing noise levels (fig. 4b,

e & h). However, even for sLi ,Li
~sRi ,Ri

~6 dB , the effect of flutter
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Figure 3. The estimated entropy about the origin of an echo as a function of azimuth and elevation. The plots depict the whole frontal
hemisphere from 290 degrees to +90 degrees azimuth and elevation using a Lambert azimuthal equal-area projection. The meridians are spaced 30
degrees apart. Contour lines are spaced 1 bit apart. The simulated flutter rates are given above each panel. Higher entropy values denote lower
echolocation accuracy.
doi:10.1371/journal.pcbi.1002268.g003

Figure 4. The effects of sampling and higher noise levels on the information transfer. The different rows represent higher noise levels
(sLi ,Li

and sRi ,Ri
). The first column (a, d & g) shows the average entropy (across azimuth-elevation positions) as a function of flutter rate and echo

strengths. The second column (b, e & h) shows the difference in entropy between each flutter rate and the entropy for a flutter rate of 200 Hz.
Therefore, these plots illustrate the net effect of having less samples on which to base localization. The third column (c, f & i) is similar as the second
one but was based on simulations in which samples were randomly spaced in time.
doi:10.1371/journal.pcbi.1002268.g004
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rate is mainly located in the region of flutter rates lower than

100 Hz.

The third column of plots in figure 4 confirms that the results

also hold when the echo is sampled at random intervals (in

contrast to fixed intervals). This indicates that our results are not

sensitive to a deviation from regular spaced sampling.

Another way of summarizing the information loss due to

sampling is given in the performance plots in figure 5. The

performance Pr measure plotted in this figure for a given flutter

rate r is calculated as follows,

Pr~100{
100:

P
a ( �HHa,r{ �HHa,R)

n: log2 N
ð10Þ

with �HHa,r the entropy for a given flutter rate r and echo strength a
(averaged across the frontal hemisphere). Flutter rate R is the

highest flutter rate simulated, i.e. 200 Hz. The parameters n and

N give the number of echo strengths evaluated and the number of

templates (i.e. 3252) respectively. Therefore, in plot 5, a

performance of 100% is the entropy level for a flutter rate of

200 Hz and the plot shows the normalized average performance

as a function of flutter rate for the three noise levels. It can be seen

that 90% performance is reached for the three noise levels at

flutter rates 37, 65 and 86 Hz respectively.

The results presented so far indicate that, for the noise levels

typical for the dominant glints (i.e. about 1 dB ), the localization

entropy does not depend heavily on the flutter rate of the insect

that is to be located. The results plotted in figures 4 and 5 indicate

that R. rouxii looses little performance by sampling the echo even

when the flutter rate is low. In addition, these results indicate that

the robustness against sampling is higher for lower noise levels.

The dependence on flutter rate increases gradually as the noise

level rises.

Comparing the information transfer for two different
types of frequency channels

In figure 6, the entropy for the two types of frequency channels

described in the introduction are compared.

As can be seen in figure 6, the information content of the output

of the frequency channel responding for the entire duration of the

echo signal but suffering from a higher noise level is almost

uniformly the lowest. Indeed, for almost every flutter rate and echo

strength the entropy about the location of a target is higher for the

‘non-sampling’ frequency channel than for the ‘sampling’

frequency channel. Only for very low flutter rates and very high

echo strengths are the roles reversed. This indicates that, although

some information is lost due to sampling the echo signal, the noise

reduction that is achieved by processing only the most Doppler-

shifted parts of the dominant glints yields an almost universal

increase in target location information.

Template robustness in the presence of sampling
In theory, there are two ways in which templates can be robust

against sampling. First, templates could show a high degree of

variation. By having templates that have a higher dynamic range,

the Euclidean distance between templates increases and any loss in

fidelity by sampling would cause less increase in localization

entropy. Alternatively, templates could have most of their energy

in the lower frequency components of the modulation spectrum.

In this case, the spectrum of a template would only contain low

frequency components. If templates would only vary slowly as the

pinnae move through space, any sub-sampling would be less of a

problem. It should be noted that these two strategies to design

more robust templates are somewhat contradictory. Templates

that have a larger dynamic range will usually contain higher

frequencies.

In figure 7a & b, we plotted a histogram of the dynamic range of

the templates of R. rouxii and an average spectrum of the templates

respectively. In figure 7a, the dynamic range of the templates of R.

rouxii is compared with those of Micronycteris microtis and Phyllostomus

discolor. We have previously reported on the simulated HRTFs and

emission patterns of these bats [30]. Moreover, we have provided

an analysis of the localization information transfer of M. microtis

[12]. In contrast to R. rouxii , both M. microtis and P. discolor emit

short broadband calls and use spectral cues as means of localizing

echoes in space. In these animals, as in most mammals, the major

part of the localization information is provided by notches in the

spectra generated by the filtering of the pinnae [12,41]. Therefore,

in contrast to R. rouxii which is assumed to use amplitude

modulations of a narrowband signal, these bats mainly code the

position of a target in space by means of spectral notches.

In figure 7a, it can be seen that the dynamic range of the

templates of R. rouxii is not larger than that of the two other bats.

Inspecting some examples of the templates of the three species

(plotted in figures 7c–e) it can be seen that the templates of R. rouxii

do not show the deep notches found in M. microtis and P. discolor.

The templates of R. rouxii , consist mostly of low frequency

components (figure 7b). However, a major part of the energy is

contained in frequency components for which the Nyquist

criterion is not reached at typical flutter rates of insect prey. For

example, targets fluttering at 100 Hz yield 5 glints in an echo of

50 ms. This only allows to faithfully reconstruct frequencies up to

2.5 Hz (see line in figure 7b). Stated differently, reconstructing the

templates from the samples provided by a target that flutters at

50 Hz is only possible if the templates contained only frequencies

below 1.25 Hz.

In sum, the templates of the echolocation system of R. rouxii do

not seem to be particularly suited to be robust against sampling at

the rates their prey flutters. Neither the dynamic range nor the

spectra of the templates seem optimized for reconstruction from a

small number of samples. Hence, we propose that the localization

system of R. rouxii is robust against sampling of the templates only

Figure 5. Performance curves for the 3 noise levels in
percentages. In this plot, a performance of 100% is the entropy level
for a flutter rate of 200 Hz. The performance figures have been
calculated on the averaged entropy levels for all echo strenghts. The
flutter rates at which 90% performance is attained for the three noise
levels are indicated.
doi:10.1371/journal.pcbi.1002268.g005
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Figure 6. Comparison of the entropy for the two frequency channels. (a) Localization entropy as a function of flutter rate and echo strength
for a frequency channel that is stimulated only by the most Doppler-shifted parts of the dominant glints (sampling, but low noise level, i.e. 1 dB ); (b)
localization entropy as a function of flutter rate and echo strength for a frequency channel that responds for the entire duration of the echo (no
sampling, but high noise level, i.e. 6 dB ). Note that, in panel (b) the entropy does not depend on the flutter rate as no sampling at the dominant
glints is performed. (c) The difference between (a) and (b).
doi:10.1371/journal.pcbi.1002268.g006

Figure 7. Properties of the templates of R. rouxii , M. microtis and P. discolor. (a) Histograms of the dynamic range of the templates of three
species of bats. M. microtis and P. discolor are FM bats that, in contrast to R. rouxii , localize targets by means of spectral cues provided by their
broadband calls. The horizontal lines denote the 21 and +1 standard deviation intervals. (b) The average spectrum of the templates of R. rouxii. The
frequency scale is expressed as the number of cycles per ear stroke, i.e. one forward or backward sweep of the pinna. (c–e) Illustration of 5 templates
of R. rouxii , M. microtis and P. discolor . The locations for which the templates code are indicated by their line colour. Note that the x-axis of the
templates for M. microtis and P. discolor is expressed in kHz. The frequency ranges plotted are the ones relevant for these two bats.
doi:10.1371/journal.pcbi.1002268.g007
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because it can effectively limit the noise by processing the

dominant glints. Indeed, the results plotted in figure 4 and 5

indicate that good localization for low flutter rates is only attained

if the noise level is low.

Discussion

Our simulation results show that Rhinolophidae could reject

unwanted amplitude variations (i.e. noise caused both by clutter

and target movement) by processing dominant glints without

substantially reducing the localization information transfer. Plots

1a–c show that almost no localization information is lost once the

flutter rate is higher than about 50–60 Hz (for a noise level of

1 dB ). Indeed, the performance curves in figure 5 show that a

performance level of 90% is attained at a flutter rate of about

40 Hz.

Although some insects have flutter rates even below 20 Hz (the

lowest flutter rate simulated) [42], a flutter rate of 40 Hz seems in

the lower range of the flutter rates frequently encountered by these

echolocating bats [4]. Since no data exists, as far as we could find,

about the distribution of the flutter rates of insects R. rouxii preys

on it is unknown what range of flutter rates is of behavioural

importance to the bat. However, indirect evidence, i.e. cortical

neurons that encode flutter rates show best phase locking for flutter

rates between 40–60 Hz in R. ferrumequinum, seems to indicate that

flutter rates in the range 40–60 Hz might indeed be relevant to R.

rouxii . Moreover, many insects have flutter rates in this range (see

[3] for references). Furthermore, by lengthening its emissions, a

simple adaptive strategy Rhinolophidae makes use of when faced

with a difficult echolocation task [1], R. rouxii could locate insects

with lower flutter rates. Our simulations are based on a call

duration of 50 ms. Doubling the length of the call would imply

that the simulated flutter rates could be halved without altering the

results. In addition, we have assumed that insects produce a single

dominant glint per wing beat. However, depending on the wing

structure, some insects produce more than a single dominant glint

per wing beat cycle [4]. Insects that produce multiple dominant

glints would provide the bat with more localization information

and should therefore be easier to locate at lower flutter rates. The

fact that Rhinolophidae can lengthen their call and that some

insects produce multiple dominant glints increases the feasibility of

using channels sensitive to the Doppler shifted dominant glints.

More important than the absolute information transfer for any

channel is the comparison between the two types of channels

proposed in the introduction. We compared the information

transfer in both types of channels in figure 6. It was found that

Doppler shifted frequency channels almost invariably outperform

the channels responding to the centre frequency.

While our simulations show that Doppler shifted channels

provide Rhinolophidae with better localization performance than

the more noisy channels responding to the reference frequency,

bats will have access to both types of channels while locating prey.

Indeed, bats can support the information in the Doppler shifted

frequency channels with information gathered by reference

frequency channels. Therefore, our simulations yield a conserva-

tive, i.e. lower bound of the information transfer, and real bats

likely use both the reference frequency as well as the frequency

shifted parts of the echo, as would be expected from their sensory

physiology.

Neurophysiology recordings in the cochlear nucleus suggest that

Rhinolophidae posses neurons that can support the processing of

self-induced modulations of the dominant glints in the echoes.

Their cochlear nucleus contains a large proportion of neurons with

a high degree of frequency tuning that respond only to the onset of

the preferred frequency [43]. About 40% of these neurons were

found to be insensitive to variations in intensity. These neurons

would be well suited to detect dominant glints in the echoes. A

tentative hypothesis about the implementation of the glint based

localization proposed in the current paper could be as follows:

neurons selective to frequency and with a phasic response

continuously monitor Doppler shifted frequency channels. These

onset-coding and intensity-insensitive neurons act as a clock pulse

selecting samples from the continuous intensity signals coded by

other intensity-sensitive neurons.

In addition, it should be noted that, although 40% of the onset-

coding neurons in the cochlear nucleus were found to be

insensitive to intensity [43] at least some neurons in the cochlear

nucleus are capable of detecting both the onset and encoding the

intensity (by means of prolonged firing [43]). Also, similar

properties of sharp frequency tuning and amplitude modulation

selectivity can be found in other auditory nuclei in rhinolophid

bats, e.g. [44,45]. This indicates that the localization mechanism

proposed in this paper could be implemented at different levels in

the auditory system of Rhinolophidae.

Finding that the localization information transfer in R. rouxii is

robust against sampling, we analysed the templates in order to

investigate whether these show any adaptations that support this

robustness. However, we could find no evidence of the templates

of R. rouxii showing adaptations to being sampled at the flutter

rates of likely targets. On the contrary, on average the templates

show less dynamic range than those used by M. microtis and P.

discolor . Also, the sample rate dictated by the flutter rate of insects

is not high enough to comply with the Nyquist criterion as the

templates contain frequency components that are too high.

Rather, it seems that the reduction in echo amplitude variability

(i.e. noise) by focusing on dominant glints allows the bat to locate

targets without such adaptations.

Analysing the localization information transfer of the FM bat M.

microtis it was found that the spectral templates with the largest

dynamic range encode peripheral positions. Notches in the

spectral templates of this bat are mostly found for peripheral

positions. However, these notches, being created by side lobes in

the spatial sensitivity pattern of the system, lower the sensitivity of

the system at these locations. Indeed, deep notches in a template

denote a combination of a location and a frequency for which the

system is insensitive. The effect of this on localization is that weak

echoes can be located best in a central region where sensitivity is

highest. However, for stronger echoes the region with the best

localization is actually the periphery at locations coded by deep

spectral notches as these templates are more resistant to unknown

reflector filtering (noise), see figure 8 and [12]. Therefore, in the

face of noise, these bats are confronted with a trade-off: for any

given position the bat can either be highly sensitive or very

accurate.

The switch in the region where echoes can be best located, is

not observed in R. rouxii . Plotting the localization entropy as a

function of echo strength (see figure 8) it is found that lowest

entropy is always located in the central region and that this region

of low entropy simply expands as the echo strength increases. By

focussing on the dominant glints, the entropy in the central region

is not increased by noise and the bat does not experience a trade-

off. Indeed, figure 8 shows that avoiding the trade-off is only

possible for low noise levels (1 dB ). For a noise level of 6 dB ,

entropy in the central region is also higher than for the peripheral

region in R. rouxii . In this case, R. rouxii show the same trade-off as

M. microtis and, because of the overall lower dynamic range of its

templates, the trade-off is even more pronounced as can be seen

from the larger contrast between its central and peripheral
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localization entropy (bottom row of figure 8). This figure also

contains a visual analogue using the classic Lenna image [46] to

further clarify the sensitivity-accuracy trade-off faced by most bats.

Interestingly, in addition to theoretical evidence for this

fundamental trade-off [12], direct behavioural evidence was

recently found. The bat Rousettus aegyptiacus was shown to point

its beam not directly towards a target it needs to localize but

slightly to the left and to the right of it. Hence, it receives less

energetic but more informative echoes from the object of interest

[47], thereby trading sensitivity for accuracy.

Concluding, we propose that the dominant glints, showing little

amplitude variations (i.e. noise), are ideal input signals for a system

using self-induced amplitude modulations to locate targets. Indeed,

the low noise levels attained by only processing dominant glints,

outweighs the loss in information due to sampling of the echo.
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Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus

rouxi) of Sri Lanka. Behav Ecol Sociobiol 20: 53–67.

2. Jones G, Rayner J (1989) Foraging behavior and echolocation of wild horseshoe

bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolo-
phidae). Behav Ecol Sociobiol 25: 183–191.

3. Schnitzler HU, Denzinger A (2011) Auditory fovea and doppler shift
compensation: adaptations for utter detection in echolocating bats using cf-fm

signals. J Comp Physiol A Sens Neural Behav Physiol 197: 541–559.

4. Kober R, Schnitzler H (1990) Information in sonar echoes of uttering insects

available for echolocating bats. J Acoust Soc Am 87: 882–896.

5. Emde G, Menne D (1989) Discrimination of insect wingbeat-frequencies by the

batRhinolophus ferrumequinum. J Comp Physiol A Sens Neural Behav Physiol

164: 663–671.

6. Siemers B, Ivanova T (2004) Ground gleaning in horseshoe bats: comparative

evidence from Rhinolophus blasii, R. euryale and R. mehelyi. Behav Ecol

Sociobiol 56: 464–471.

7. Lazure L, Fenton M (2011) High duty cycle echolocation and prey detection by

bats. J Exp Biol 214: 1131–1137.

8. Koselj K, Schnitzler H, Siemers B (2011) Horseshoe bats make adaptive prey-

selection decisions, informed by echo cues. Proc R Soc Lond B Biol Sci 278:
3034–3041.

9. Schuller G (1984) Natural ultrasonic echoes from wing beating insects are
encoded by collicular neurons in the CF-FM bat, Rhinolophus ferrumequinum.

J Comp Physiol A Sens Neural Behav Physiol 155: 121–128.

10. Wotton JM, Haresign T, Simmons JA (1995) Spatially dependent acoustic cues

generated by the external ear of the big brown bat, eptesicus fuscus. J Acoust Soc

Am 98: 1423–1445.

Figure 8. Illustration of the sensitivity-accuracy trade-off. (a) Top row: Localization entropy plots for M. microtis as a function of echo strength
(10{50 dB ) and azimuth-elevation position. The entropy in the centre, i.e. the most sensitive region, reaches a minimum around echo strength of
30 dB . For echo strengths above 30 dB entropy in the periphery (i.c. low elevation positions) is lower than around 0 degrees azimuth and elevation.
Middle row: Plots of the localization entropy of R. rouxii as a function of echo strength (10{50 dB ) and azimuth-elevation position (noise level
1 dB ). The plots are for a flutter rate of 200 Hz. These plots show that the localization entropy in R. rouxii is always lowest in a central region and that
the region of low entropy expands as a function of echo strength. Bottom row: Similar as the middle row but for a noise level of 6 dB . (b) Visual
analogue to illustrate the sensitivity-accuracy trade-off. The top left and the bottom right quadrant of the classic Lenna image [46] were given an
increased intensity. The quadrants serve as an analogue to the highly sensitive templates found in the central region of the echolocation systems of
bats. The other two quadrants were given an increased contrast, i.e. as an analogue to the peripheral templates with a higher dynamic range. In the
bottom figure the top figure has been corrupted by additive noise. The correlation between each quadrant in the top and the bottom figure is
indicated by the numbers in the bottom figure. It can be seen that the quadrants with the highest contrast (i.e. the lowest average intensity or
sensitivity) have the highest correlation. This indicates that high contrast images, while having a lower average intensity, are less affected by noise.
Similarly, localization templates with a high dynamic range are less disturbed by noise but render the bat less sensitive.
doi:10.1371/journal.pcbi.1002268.g008

Dominant Glint Localization in Horseshoe Bats

PLoS Computational Biology | www.ploscompbiol.org 10 December 2011 | Volume 7 | Issue 12 | e1002268



11. Obrist M, Fenton M, Eger J, Schlegel P (1993) What ears do for bats: a

comparative study of pinna sound pressure transformation in Chiroptera. J Exp

Biol 180: 119–152.

12. Reijniers J, Vanderelst D, Peremans H (2010) Morphology-Induced Information

Transfer in Bat Sonar. Phys Rev 105: 148701.

13. Firzlaff U, Schuller G (2004) Directionality of hearing in two CF/FM bats,

pteronotus parnellii and rhinolophus rouxi. Hear Res 197: 74–86.

14. Mogdans J, Ostwald J, Schnitzler H (1988) The role of pinna movement for the

localization of vertical and horizontal wire obstacles in the Greater Horseshoe

Bat, Rhinolopus ferrumequinum. J Acoust Soc Am 84: 1676–1679.

15. Gri_n D, Dunning D, Da Cahlander F (1962) Correlated orientation sounds and

ear movements of horseshoe bats. Nature 196: 1185–1186.

16. Pye J, Roberts L (1970) Ear movements in a hipposiderid bat. Nature 225:

285–286.

17. Pye J, Flinn M, Pye A (1962) Correlated orientation sounds and ear movements

of horseshoe bats. Nature 196: 1186–1188.

18. Vanderelst D, Reijniers J, Steckel J, Peremans H (2011) Information generated

by the moving pinnae of rhinolophus rouxi: tuning of the morphology at

different harmonics. Plos One 6: e20627.

19. Walker VA, Peremans H, Hallam JC (1998) One tone, two ears, three

dimensions: A robotic investigation of pinnae movements used by rhinolophid

and hipposiderid bats. J Acoust Soc Am 104: 569–79.
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