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Abstract: The purpose of this study was to examine the effects of two different feeding systems,
a control or a flaxseed and lupin diet (experimental), for a sheep flock, on the microbiota and
metabolome of Kefalograviera cheese samples produced by their milk. In particular, the microbiota
present in Kefalograviera cheese samples was analyzed using 16S rRNA gene sequencing, while
ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrom-
etry (UHPLC-QTOF-MS) was applied to investigate the chemical profile of the cheeses, considering
the different feeding systems applied. The metagenomic profile was found to be altered by the
experimental feeding system and significantly correlated to specific cheese metabolites, with Strepto-
coccaceae and Lactobacillaceae establishing positive and negative correlations with the discriminant
metabolites. Overall, more than 120 features were annotated and identified with high confidence
level across the samples while most of them belonged to specific chemical classes. Characteristic
analytes detected in different concentrations in the experimental cheese samples including arabinose,
dulcitol, hypoxanthine, itaconic acid, L-arginine, L-glutamine and succinic acid. Therefore, taken
together, our results provide an extensive foodomics approach for Kefalograviera cheese samples
from different feeding regimes, investigating the metabolomic and metagenomic biomarkers that
could be used to foresee, improve, and control cheese ripening outcomes, demonstrating the quality
of the experimental Kefalograviera cheese.

Keywords: Kefalograviera cheese quality; feeding systems; metagenomics; metabolomics; sheep
diet; pasture

1. Introduction

Milk and dairy products are classified as one of the most significant food products in
terms of their nutritional value and impact on human health. However, various factors
can influence the composition of their macro- and micronutrients and quality, including
animal traits, farming, and production practices, as well as relative environmental factors.
The most important of these factors are the farming system, animal genotype, agro-climatic
conditions, and specific farming methods such as milking and feeding practices [1–3].

Raw sheep’s milk is a rich and nutritious fluid characterized by high concentrations
of protein, fat, minerals, and vitamins compared with milk of other species [4,5]. Fur-
thermore, it supports a consistent, diverse, and complex microbiome involved in the
initiation/facilitation of fermentation and metabolome, both of which make multifaceted
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contributions to human health and the control of spoilage and disease-causing microor-
ganisms [6,7]. Most of the sheep milk produced is used to manufacture cheese, which
represents a significant percentage of world agricultural trade [8].

Cheese contains bioactive compounds that can improve consumers’ health and, there-
fore, the production and feeding strategies to increase the content of these bioactive com-
pounds through the differentiation of its microbiome and metabolome have a special
interest. The literature offers abundant information on the factors influencing the composi-
tion of milk with animal feeding practices having a pivotal influence [7,9,10]. High-quality
pasture can affect the quantity and quality of milk and milk products. The chemical compo-
sition of the milk, especially milk fat quality, can be significantly affected by the processing
procedures across the dairy production and the feeding system, both of which, in turn,
could affect the nutritional value and technological properties of the milk and cheese [11].

Greece traditionally produces a wide range of cheeses, many of which have a Protected
Designation Origin (PDO) label [12]. As the cheese microbiota has a fundamental role in
cheese making, a better understanding of the composition of these traditional cheeses, as
recently carried out for feta [13], will improve their commercialisation. Kefalograviera,
another traditional Greek PDO cheese, produced in specific regions (Western Macedonia,
Epirus, Aitoloakarnania, and Evritania), by legislated specific processing steps and milk
mixture, has a ripening period of at least 3 months. During the last decades, amplicon
high throughput sequencing (HTS), metabolomics and other omics-based technologies
have gained prominence in the field of dairy science for the traceability and quality as-
surance of dairy products [14]. A combined foodomics approach based on both targeted
metabolomics and metagenomics can be used to elucidate the impact of feeding systems
and their influence on milk quality traits. It is the first time in the literature that the
combined methodologies of next generation sequencing (NGS) and metabolomics were
used to provide evidence of a positive impact of nutritional strategies on sheep milk and
Kefalograviera cheese quality.

Culture-independent techniques have a fundamental impact in food microbial ecology,
resulting in the consideration of microbial populations as consortia [15]. A breakthrough
in this field was the development of high-throughput sequencing (HTS) technologies
which entail higher sensitivity concerning the microbial composition compared with tra-
ditional culture-dependent methods beyond being considered quantitative [15]. Genes
associated with bacterial taxonomy are sequenced through this approach, leading to the
phylobiome, the taxonomic profile of the microbial community and the relative presence of
its constituents [16].

Despite these advances, metabolomics is being utilized to investigate relative levels,
as well as interactions between the metabolite content in a biological system in response to
various factors, such as nutrition or interventions [3,17–20]. The application of metabolomics
is being expanding, investigating important factors and biomarker compounds related to
animal health, production, authenticity, and contributors to functional properties [3,21]. The
interrelationships between cheese microbiota and their metabolites remain largely unstudied.
This type of information could be useful if translated into cheesemaking practice; for example,
if ripening conditions or the application of adjuncts were adjusted to favor the growth of
specific microorganisms associated with the production of desirable flavor compounds.

In a previous study, an omega-3 enriched diet in dairy ewes led to compositional
differences in the microbiota determined by conventional microbiological methods and an
increase in the omega-3 polyunsaturated fatty acids in the produced Kefalograviera [22].
However, culture-independent methods can provide a more in-depth understanding of
the composition and the diet-induced changes in the Kefalograviera microbiota, while
metabolomic analysis can provide information on the microbial metabolites. In this study,
an integrative analysis was performed to investigate the interrelationships between cheese
microbiota and cheese metabolome of two different groups of Kefalograviera cheese sam-
ples based on milk produced by sheep with different diets, the control and the experimental
with flaxseed and lupin, rich in omega-3 fatty acids, combining 16S rRNA-based microbiota
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analysis and targeted metabolomics-based workflow using liquid chromatography–high
resolution mass spectrometry (LC-QTOFMS). To achieve the maximum metabolomic cov-
erage, two different chromatographic techniques, reversed phase liquid chromatography
(RPLC) and hydrophilic interaction chromatography (HILIC), were applied. Data were
used for relative quantification across sample groups.

The aim of this research was to identify the key microbiota players and/or metabolites
that are characteristic of the control and experimental Kefalograviera cheeses produced by
sheep fed with different diets, as well as to determine the interrelations between microbial
and metabolic profile. This combined approach can provide a novel insight into the cheese-
making processes and the potential for revealing microbial and metabolic biomarkers that
could be used to foresee, improve, and control cheese ripening outcomes, and finally the
specific quality of the experimental Kefalograviera cheese.

2. Materials and Methods
2.1. Animals, Dietary Treatments, and Milk Collection

The experimental strategy involved a total of 40 dairy sheep of Frisarta and Chios
crossbreeds. The animals were given primarily a soybean meal-based diet named the
control diet. A subgroup of twenty animals was withdrawn from the control diet and
soybean meal was partially replaced by equal amounts of flaxseed and lupins (20% of the
diet, named the experimental diet). The composition of the control and experimental diets
are available in Table S1 in the electronic Supplementary Materials. The study was carried
out in a standardized field setting in Aitoloakarnania (Greece) and lasted two months.

The sampling strategy consisted of a single collection of milk from (a) the bulk tank of
the animals that received the control diet (Period 0), one day before they were separated;
and (b) the 48 h bulk tank of the animals that received the experimental diet for two
months (Period 1) as depicted in Figure 1. The two Kefalograviera cheese types, control
and experimental, were produced in a specialized cheese factory, using the two above-
mentioned group milk samples as raw material in different batches. Based on the total milk
collected from each group, small wheel-shaped Kefalograviera cheese samples were made,
namely 11 control and 13 experimental cheese samples (n = 24) of different production
batches, and were used for the subsequent analyses.
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Figure 1. Schematic representation of the sampling strategy used for the microbial characterization
of Kefalograviera cheese samples.

2.2. Kefalograviera Cheese Production and Sampling

Sheep’s milk was collected at the producer’s facility and transported to the cheese
producer, where it was kept at a temperature of 1–4 ◦C. Kefalograviera cheeses were
manufactured in a certified PDO cheese establishment following standard procedure
specific production steps, the addition of rennet, the addition of lactic acid starter culture
(a specific mixture of cultures of Lactococcus lactis subsp. lactis, Lactococcus lactis subsp.
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cremoris, Streptococcus thermophilus, Lactobacillus bulgaricus, and Lactobacillus rhamnosus)
and a ripening period for 3 to 6 months. All samples were transported and kept under
refrigeration (≤4 ◦C) before processing, while tested after 6 months of ripening.

2.3. DNA Isolation

Ten-gram samples of cheese were collected from within a block of cheese at a depth of
approximately 5 mm. The samples were aseptically weighed on one side of sterile filter
stomacher bags (BioMérieux (UK) Ltd., Basingstoke, UK). Ninety milliliters of buffered
peptone water were added, and the samples were homogenized in a stomacher (Laboratory
Blender Stomacher 400; Seward, London, UK) for 2 min at 260 rpm. Ten milliliters of
filtered homogenized sample were collected to a 15 mL conical centrifuge tube and high-
quality metagenomic DNA was extracted using DNeasy PowerFood Microbial kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instruction. DNA concentrations were
measured using a fluorescence spectrometer (Qubit, Life Technologies, Carlsbad, CA, USA).
The samples were stored at −20 ◦C.

2.4. Sequencing Preparation, Run, and Processing

As sequencing is an expensive methodology, a subset of cheese samples, 9 control and
4 experimental cheese samples (n = 13), was used for the microbiota composition analysis.
The difference in the number between control and experimental cheese samples can be
explained by the intended use of control samples as reference in another study and they
were therefore produced in higher quantity. The same samples were also used for the
subsequent correlation analysis. The library preparation of the 16S rRNA gene amplicon
(V3–V4 hypervariable regions targeted using 341F and 806R primer pair) and its pair-end
sequencing on the Miseq platform (Illumina, San Diego, CA, USA) were carried out as
described previously [23].

Data Processing—Operational Taxonomic Units (OTUs) Analysis

The 16S rRNA gene amplicon data was analyzed and raw reads were merged using
the NGS toolkit and further processed using the “Integrated Microbial Next-generation
sequencing” (IMNGS, www.imngs.org, accessed on 5 April 2022) pipeline [24] based on
UPARSE. Rhea [25] was used to determine α- and β-diversity and bacterial OTUs in
an R programming environment (R i386 3.6.0, R Foundation for Statistical Computing,
Vienna, Austria). A detailed description of the analysis and the scripts is available online
(https://lagkouvardos.github.io/Rhea//, accessed on 7 May 2022). p-values were cor-
rected for multiple comparisons and all given results were statistically tested with the
Wilcoxon rank-sum test and/or Kruskal−Wallis Rank Sum Test, unless stated otherwise.
Significant OTUs were then identified by EzBioCloud’s 16S rRNA gene-based ID. Data
were visualized using Illustrator CS6 Version 16.0.0 (Adobe Inc., San José, CA, USA).

2.5. Chemicals and Reagents

All solvents for LC-HRMS were of high-purity (UPLC-MS grade). Methanol (MeOH)
and acetonitrile (ACN) were purchased from Merck (Darmstadt, Germany), whereas
sodium hydroxide monohydrate (≥99.9%), ammonium formate (A.F.) ≥99.0%, ammonium
acetate (A.A.) and formic acid (F.A.) 99%, were provided from Fluka (Buchs, Switzerland).
Milli-Q purification apparatus (Millipore Direct-Q UV, Bedford, MA, USA) was used
for distilled water. Analytical standards utilized in the study were of highest available
purity grade. Most of them were purchased from Sigma-Aldrich (Steinheim, Germany).
Additional standard solutions used for the in-house database development were prepared
according to Mass Spectrometry Metabolite Library of Standards (MSMLS) protocols
(more information in SM-2). A working mix solution of 5 mg L−1 was prepared for
analysis by gradient dilution of the stock solutions in methanol, in order to prepare the
matrix-matched calibration curves. Lysine-d4, syringaldehyde and hesperetin were used as
Internal Standards (IS) at a level of 10 mg L−1.

www.imngs.org
https://lagkouvardos.github.io/Rhea//
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2.6. Metabolomics Sample Preparation Protocol

For the efficient extraction of cheese metabolic content in terms of the coverage of
different metabolite’s polarities, a solid–liquid extraction was performed combining dif-
ferent extraction solvents, following a two-step defatting procedure. The procedure was
based on an optimization of a sample preparation procedure reported in a previous study
by the group [26]. Briefly, the fresh Kefalograviera cheese samples were lyophilized (at
−55 ◦C, 0.05 mbar) using a LyoQuest-55 laboratory freeze dryer (Telstar) and homogenized
prior to analysis. For the extraction, 1 g of each freeze-dried sample was weighed in a
15 mL centrifuge tube. Weighted samples were spiked with appropriate concentrations
of target compounds and IS used in the study. Following spiking, all the spiked samples,
before further analysis, were allowed to stand for 10 min. Addition of 2 mL of H2O to the
samples was performed, followed by the addition of 2 mL of MeOH and 2 mL of ACN, in
order to extract the metabolites and precipitate the proteins. Vortex mixing of each tube
for 30 s was carried out after the addition of each solvent. Afterwards, the samples were
placed in an overhead shaker for 30 min to improve the extraction efficiency. Ultrasonic
extraction for 20 min at 40 ◦C was performed for all samples followed by centrifugation
for 5 min at 4000 rpm. The supernatants were placed into new tubes and then were kept
at −23 ◦C for 12 h (overnight) for the precipitation of lipids and remaining proteins. The
samples were again centrifuged in order to remove the precipitate. For the defatting step,
the supernatant was transferred to another tube, 3 mL of hexane was added, vortexed for
1 min, and then centrifuged under the same conditions. The hexane layer was removed and
a second defatting step was further performed using 3 mL of petroleum ether. Each extract
was vortexed again for 1 min, and then centrifuged under the above-mentioned conditions.
The final extracts were evaporated to dryness under a nitrogen stream. The temperature
must not exceed 40 ◦C. Reconstitution of remaining residues in 0.5 mL of methanol/water
(80:20 v/v) was carried out for all samples, while filtration was performed through 0.22 mm
RC filters. For the preparation of the matrix-matched standard solutions required for the
analysis, multi-analyte solutions were added to blank aliquots and vortex mixed for 10 s.
For the LC-HRMS acquisition, the reconstituted extracts were put into appropriate vials,
where 5 µL were injected into the instrument.

2.7. LC-ESI-QTOFMS Instrumentation

An ultra-high performance liquid chromatography (UHPLC) system with an HPG-
3400 pump (Dionex Ultimate 3000 RSLC, Thermo Fisher Scientific, Dreieich, Germany)
coupled to a quadrupole time-of-flight mass spectrometer (QTOF) (Maxis Impact, Bruker
Daltonics, Bremen, Germany) was used for the analysis of the metabolic content of the
samples. Samples were analyzed using reversed phase liquid chromatography (RPLC).
Hydrophilic interaction liquid chromatography (HILIC) was used as a complementary
separation technique, using electrospray ionization interface (ESI), operating in positive
(PI) and negative ionization (NI) mode, in both separations.

In RPLC analysis, an Acclaim C18 column (2.1 × 100 mm, 2.2 µm) from Thermo Fisher
Scientific (Dreieich, Germany) preceded by a C18 guard column (at 30 ◦C) was used for the
chromatographic separation. In PI, mobile phases consisted of H2O/MeOH 90/10 (v/v)
(solvent A) and MeOH (solvent B), both containing 5 mM A.F. and 0.01% F.A. In NI, the
same solvents were used, both containing 5 mM A.A. For the elution, a gradient elution
program was used, same at both ionization modes. Program started with 1% B (flow rate
of 0.2 mL min−1) for 1 min, increased to 39% within 2 min and then to 99.9% (flow rate
of 0.4 mL min−1) for 11 min. For 2 min, 99.9% B was kept for 2 min (flow rate of 0.48 mL
min−1), while initial conditions were restored within 0.1 min, for the next 3 min; then the
flow rate decreased to 0.2 mL min−1.

In HILIC analysis, metabolites were separated using an ACQUITY C18 BEH Amide
column (2.1 × 100 mm, 1.7 µm) purchased from Waters (Dublin, Ireland) preceded by a
C18 guard column, thermostatted at 40 ◦C. For the PI, mobile phases consisted of H2O
(solvent A) and ACN/H2O 95/5 (v/v) (solvent B) both amended with 1 mM A.F. and 0.01%
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F.A. For the NI, in both mobile phases, 10 mM A.A. were added. The adopted gradient
elution program, for both ionization modes, started with 100% B for 2 min, decreased to 5%
in 10 min and was kept stable for 5 min. Restorage of initial conditions were performed
within 0.1 min and then re-equilibration of the column was performed for the next 8 min.
Flow rate was 0.2 mL min−1.

Regarding mass spectrometry, the QTOF-MS system provided an ESI source, oper-
ating in PI and NI, according to the following instrumental conditions: capillary voltage
2500 V (PI) and 3500 V (NI); end plate offset 500 V; nebulizer pressure 2 bar; drying gas
8 L min−1; and gas temperature 200 ◦C. The QTOF-MS system was operated in data-
dependent acquisition (DDA) mode (AutoMS/MS), as well as in data independent ac-
quisition (DIA) mode (broadband collision-induced dissociation, bbCID. Mass range for
the metabolites detection was set at m/z 50–1000 (scan rate: 2 Hz). For the verification of
the analytical performance, external instrumental calibration was performed in every run
according to the manufacturer’s guidelines.

2.8. LC-HRMS—Metabolomics Data Processing Workflow
2.8.1. Target Screening Workflow

For the evaluation of the data acquired from LC-HRMS analysis, a target screen-
ing metabolomics approach was applied. Specifically, Data Analysis 4.3 and TASQ 2.1
software (Bruker Daltonics, Bremen, Germany) were initially utilized for the data evalua-
tion. Four different in-house metabolite databases (RPLC (+): 208 compounds, RPLC (−):
164 compounds, HILIC (+): 179 compounds, HILIC (−): 144 compounds) were exploited
comprised of different classes of metabolites, as amino acids, sugars, fatty acids, etc., and
their derivatives. Each database included important characteristics for the compounds,
such as molecular formulas, retention time (min), pseudomolecular ions, as well as MS/MS
fragments (qualifier ions) (Table S3, Figure S1). The identification was performed accord-
ing to specific identification criteria, as reported in a previous study by the group [27]
(SM-1). Most of the analytes were submitted to quantification through the preparation of
matrix-matched standard calibration curves (SM-2.1).

2.8.2. Statistical Analysis

Multivariate statistical analysis, including principal component analysis (PCA), was
applied through an in-house developed workflow in R environment (R Studio, Version 1.1.463,
Boston, MA, USA) and autoscaling was applied. The unsupervised PCA was used in
the study as an initial descriptive approach to the obtained LC-HRMS data, in order to
investigate any existing clustering in cheese samples based on their metabolite content [28].

2.9. Correlation Statistical Analysis

Combinations of variables that are connected with linear relationships were detected
by calculating their Pearson’s coefficient of correlation. The centered log-ratio transfor-
mation was used to remove the compositional constraints from the taxonomic variables.
In addition, taxonomic zeros (relative abundance of taxonomic variables with the value
zero) have been treated as missing data and excluded from the calculation of correlations.
Following this transformation of taxonomic variables, the table was centered and scaled, to
adjust for differences in the offset and fold changes respectively, and the Pearson correlation
for all pairs was calculated. The significance before and after FDR correction was reported
together with the number of observations that supported the correlation [29–31].

3. Results and Discussion
3.1. Sequencing Coverage
3.1.1. α-Diversity

We extracted a total of 276,500 filtered sequence reads from the 13 samples and
obtained 268,748 high-quality sequences. The average sequence number for each sample
was 17,381 (ranging from 3373 to 21,911). The bulky of microbial diversity has been captured



Foods 2022, 11, 3164 7 of 17

as shown by the rarefaction curves. α-diversity calculated through both the Simpson and
Shannon indices and their effective numbers (Figure 2).
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3.1.2. β-Diversity

A measurement of the similarity between different microbial profiles described by the
OTUs between the two groups was calculated through a generalized UniFrac. In Figure 3,
a visualization of the multidimensional distance matrix in a space of two dimensions
was performed by multi-dimensional scaling, revealing a significantly different microbial
community of the control vs. the experimental group cheese samples at both the taxonomic
genus and family level.
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3.2. Bacterial Diversity Estimation

We can achieve a more in-depth characterization of the microbiota of the Kefalo-
graviera cheeses using HTS techniques in order to optimize their quality, safety, and
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commercial values. Since scarce data is available using HTS approaches in Kefalograviera
cheese production, this methodology was used in this study as a systematic approach to
characterize the microbial composition and richness in response to the different animal
feeding systems.

The predominant members of the Firmicutes phylum in Kefalograviera cheese-associated
microbiota accounting for approximately 99.8% of the entire abundance, while Proteobacteria
and Actinobacteriota were solely present in only one experimental cheese. The overall bacterial
composition showed a diversity with 9 families (Figure 4A) constituting the vast majority
of the community: Streptococcaceae (relative abundance: 65.99%), Lactobacillaceae (relative
abundance: 32.99%), Leuconostocaceae (relative abundance: 0.72%) and others (Enterobacteriaceae,
Enterococcaceae, Intrasporangiaceae, Pseudomonadaceae, Staphylococcaceae,Xanthomonadaceae).
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Figure 4. (A) Stacked barplots depicting the average microbiota composition of Kefalograviera cheese
at family level for experimental and control cheeses samples. Data is presented as relative abundance
on the overall microbial composition. Families below 0.5% relative abundance on average were
grouped in the “Other” category, (B) Stacked barplots depicting the average microbiota composition
of Kefalograviera cheese at species (OTUs) level for experimental and control cheese samples. Data is
presented as relative abundance on the overall microbial composition. Only the main species-OTUs
(Top 10) are presented. Low abundance species within each species are grouped in “Other” record. It
is shown the percentage of similarity (%) identified by EzBioCloud’s 16S rRNA gene-based ID. n = 13;
9 control cheese samples and 4 experimental cheese samples.
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At the genus level, Streptococcus, Lactobacillus, Lacticaseibacillus, Lactococcus, Pediococcus
and Leuconostoc constituted more than 90% of the total bacterial population and, therefore,
the subsequent analysis focused on determining the dominant species of these genera
(Figure 4B). Among Streptococcus, Streptococcus thermophilus represented most of the total
population, accounting for >98% of total relative abundance of this genus in both experi-
mental and control cheese samples. Among Lactobacillus, most species were identified as
Lactobacillus delbrueckii subsp. bulgaricus (7.68% of total relative abundance on average),
Lacticaseibacillus zeae/casei/paracasei/chiayiensis (about 18.99% of total relative abundance
on average), Lactobacillus helveticus/crispatus/gallinarum (about 4.67% of total relative abun-
dance on average) and Levilactobacillus brevis (about 0.26% of total relative abundance on
average). Lactococcus population was dominated by Lactococcus lactis/cremoris (about 6.36%
of total relative abundance on average) and Pediococcus was composed of about 1.23% of
total relative abundance on average. To our knowledge, this is the first description of the
Kefalograviera microbiota using HTS technologies. The results presented in this study
are mostly in disagreement with a recent publication on Greek cheeses including Kefalo-
graviera [32]; however, that study used different molecular methodologies and focused
on the lactic acid population with variation in starter culture composition, cheese-making
procedures, raw milk used and more probably accounting as additional factors for the
differences between the two studies.

It is worth noting that except for the high abundant OTUs at species level presented
for both control and experimental cheeses, an increase in Pediococcus pentosaceus and
Leuconostoc falkenbergense was additionally observed in the experimental cheese samples;
however, it was not statistically significant (p-value > 0.05). Several reports have indicated
that pediococci found in non-starter population of milk and play a key role in the flavor
development of cheese during the ripening process by the enzymatic degradation of
amino acids which are important precursors for flavor compounds [33]. Concerning
Leuconostoc spp., these bacteria are involved in mannitol production by a dehydrogenase
that catalyzes the reduction of fructose to mannitol, while the ability to produce bacteriocins
is an additional interesting property attributed to some strains of this genus [34].

The bioinformatics analysis showed an increase in the effective richness of the ex-
perimental cheese samples indicating differences in the biodiversity of the two types of
Kefalograviera [35]. With regard to species-level composition, the OTUs that showed
high and significant differences in relative abundance (%) between the two groups of
cheeses (control and experimental cheeses) were OTU_4: Lactobacillus delbrueckii subsp.
bulgaricus (p-value = 0.0198) with 100% similarity identified by EzBioCloud’s 16 S rRNA
gene-based ID and OTU_21: Lactobacillus helveticus/crispatus/gallinarum (p-value = 0.0202)
with 99.1% similarity identified by EzBioCloud’s 16 S rRNA gene-based ID that decreased
and increased in the experimental cheese samples, respectively (Figure 5). In our previous
study, the omega-3-enriched diet of dairy ewes influenced the lactobacilli population of
the produced Kefalograviera [22]; however, different Lactobacillus species were affected,
namely, Lb. rhamnosus, Lb. plantarum and Lb. paracasei, which can probably be attributed to
the different methodology (culture-dependent technique) used for the sample analysis.

Taking all the above together, the analysis of the microbial community in experimental
and control cheese samples revealed that the different feeding system influenced the
bacterial composition in the produced cheese, highlighting the important role of animal
diet in the cheese-making process.
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3.3. Target Metabolomic Screening

Through the UHPLC-ESI-QTOFMS analysis, a targeted metabolomics-based strat-
egy was applied to thoroughly screen and profile low-molecular-weight metabolite
content in various cheese samples. Four in-house target databases were used to screen
and quantify the content of metabolites in all the studied cheese samples. The list
of compounds for RPLC positive contained 208 metabolites, while the list for RPLC
negative contained 164 metabolites. In case of HILIC, the list of compounds for positive
ionization mode comprised of 179 metabolites, while the list for negative mode con-
tained 144 metabolites. Following the reported data treatment-processing workflow,
screening was carried out using TASQ Client 2.1 and the detected compounds were
identified according to the suitable processing parameters regarding mass accuracy, re-
tention time, diagnostic ion detection and observed isotopic patterns, as reported above.
Internal calibration was performed in all the data retrieved. Data analysis 4.3 Software
was used as an additional step of confirmation of identification. Figure 6 represents the
workflow used in the study to screen and detect metabolites in cheese extracts. In target
screening, the compounds detected in cheese samples consisted of 126 metabolites out
of 209 of the initial lists of compounds in RPLC positive, 85 metabolites out of 165 in
RPLC negative, 98 metabolites out of 180 in HILIC positive and 43 metabolites out of
145 in HILIC negative (Figure 6A).

Common compounds were observed among the RPLC and HILIC chromatogra-
phy in positive and negative ionization mode. For quantification purposes, a further
evaluation was performed in terms of sensitivity and chromatographic performance
to reach high identification levels for most of the compounds and adequate analytical
performance. Data Analysis 4.3 Software was used for this analytical process and the
evaluation was based on the recorded retention time, peak area of the chromatographic
peak and MS fragments of the common compounds. (Figure 6B) represents an example
of the compound L-ornithine, which was eluted in both RPLC and HILIC chromatogra-
phy, in positive ionization mode. For the same sample, it can be observed that, in terms
of retention time, L-ornithine was eluted in 9.6 min, while in RPLC in 1.3 min, close to
the void volume of the chromatographic column. In addition, in terms of sensitivity, it
was observed that in the MS spectrum, the intensity of the precursor ion was higher
in HILIC (3 × 105) than in RPLC (2 × 105). Additionally, in RPLC no fragments of the
precursor ion were detected, leading to decreased identification level. Thus, for this
metabolite, HILIC was proved to be more reliable for quantification purposes and the
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most efficient chromatography for compounds eluted in both RP/HILIC was chosen for
further quantitative results. Finally, a total of >120 detected metabolites identified in high
confidence levels are summarized in Table S2 in the electronic Supplementary Materials.
In particular, various classes of metabolites were annotated using the in-house databases.
Most of the metabolites detected belong to specific chemical classes, presented in Figure 6C,
while the significant number of compounds identified by this approach is directly linked
to the complexity of the food matrix investigated. More than 80 metabolites fully met
the identification criteria, showing high mass accuracy (<5 ppm), acceptable isotopic fit
values (<100 mSigma) and an acceptable retention time window (0.2–0.4 min). The level
of identification of the 85 compounds was Level 1 [36], as they were successfully identi-
fied, and their structures were confirmed with reference standards (Figure S1, electronic
Supplementary Materials). Thirty-eight metabolites showed lower ion intensities (<6.000)
and did not show any fragments in the MS/MS spectra. In this case, the level of identifica-
tion of these compounds was Level 3, as the MS/MS spectra were not informative enough
to proceed in further identification. These metabolites are included in SM-1.
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3.4. Comparison of Metabolite Profiles between the Different Groups

For the majority of detected and identified metabolites, quantification results were pro-
vided by the approach of matrix-matched standards. Specifically, more than 50 compounds
were quantified for the two groups (SM-1, Figure S2, electronic Supplementary Materials),
investigating significant differences between the groups in concentration levels. With a
quick overview, it can be observed that some of the metabolites were in higher concentra-
tions in the experimental samples, except for some cases.

Using the quantification data calculated for the majority of detected and identified
metabolites for each group of samples, an unsupervised PCA was constructed to first assess
their distribution and determine whether the cheese samples from various animal diets
fell into the same cluster groups (Figure 7A). According to this figure, samples from the
same class were grouped together, demonstrating effective class discrimination. The three
PCs also accounted for more than 40% of the variance. This is a preliminary indication that
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any PC-based supervised approaches, such as PLS-DA model, are likely to be successfully
applied [37]. (Figure S3, electronic Supplementary Materials).
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Figure 7. (A) PCA plot of the studied groups of Kefalograviera cheese. (B) Variation of significant
metabolites between the two groups. (C) Example of L-arginine detected in higher concentrations in
conventional samples. (D) Example of succinic acid detected in higher concentrations in experimental
samples; n = 24; 11 control and 13 experimental cheese samples.

Characteristic analytes that present significant differences between groups are
arabinose, dulcitol, hypoxanthine, itaconic acid, L-arginine, L-glutamine and succinic
acid. Figure 7B represents the variance of these metabolites between the groups. With a
quick overview, it can be observed that all the metabolites were in higher concentration
in the experimental samples, except for L-arginine, Figure 7C. However, the strongest
differential metabolite was succinic acid, as its average concentration was approximately
three times higher in the experimental samples Figure 7D.

The human metabolome database (available at https://hmdb.ca/, accessed on 19
August 2022) was used for the interpretation of the significantly different metabolites
between the control and experimental cheese samples. L-arabinose is a bio-active com-
pound and belongs to the class of aldopentoses. L-arabinose is found in all organisms
from bacteria to plants to animals. There are two different arabinose utilization path-
ways in nature: bacterial and fungal. Arabinose has a sweet taste and is one of the most
abundant components released by complete hydrolysis of non-starch polysaccharides
(NSP) of vegetable origin. L-arabinose is known to selectively inhibit intestinal sucrase
activity in a non-competitive manner. Sucrase is the enzyme that breaks down sucrose
into glucose and fructose in the small intestine. As a result, L-arabinose suppresses
plasma glucose increase due to sucrose ingestion. Indeed, this natural sugar has the
taste and natural properties of sucrose, but it is an anti-hyperglycemic factor known to
reduce symptoms associated with type 2 diabetes. It inhibits the hydrolysis of sucrose
into glucose and fructose. Studies have shown that replacing sucrose with L-arabinose
is potentially a good strategy to lower glycemic and insulin responses. Dulcitol, a sugar
alcohol takes part at the galactose metabolic pathway while it is a key sugar driving
the microbial and metabolic diversity. Additionally, hypoxanthine can improve the
anti-microbial properties of the milk against pathogens by increasing endogenous milk
xanthine oxidase activity while the itaconic acid is totally produced by microbial fer-
mentation in cheese samples. The higher concentrations of L-arginine can be explained
by the fact that it is an amino acid which can be found in soybean in high concentrations

https://hmdb.ca/
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while succinic acid is a compound, that can be found not only in soybean, but also in
flaxseed and lupins in high concentrations, which were constituents of the experimental
animal diet. According to literature, succinic acid, L-glutamine and hypoxanthine have
also been reported as discriminant metabolites among different ripening times in cheese
samples by Le Boucher, et al. [17]. Succinic acid was also a discriminant metabolite
between mare’s milk samples and koumiss samples in the study of Xia, et al. [38].

3.5. Correlating Metabolomic and Metagenomic Profiles

Significant metabolomic differences have been observed between the control and
experimental cheese samples (Figure 8A) with only the variables being significant in the
Kruskal–Wallis test being plotted. Ten metabolites showed higher concentrations (µg/g)
in the experimental cheese group. These metabolites were L-glutamine, tryptamine,
uracil, N-methyl-L-glutamic acid, itaconic acid, palmitate, succinic acid, 2-oxoadipic
acid, L-homoserine and L-proline.

Focusing on specific metabolites, L-glutamine is included in protein-rich foods
such as beef, chicken, fish and dairy products, while it is often used as a dietary supple-
ment. Tryptamine is strongly related to specific bacterial families. It can be detected
in several different foods, and this could make tryptamine a potential biomarker for
the consumption of these foods. L-homoserine is also a microbial metabolite produced
during the fermentation process. These interpretations were based on the human
metabolome database (available at https://hmdb.ca/, accessed on 19 August 2022). Re-
garding the other statistically significant metabolites, these have already been described
in Section 3.4.

Overall, Figure 8B reported a summary containing those OTUs establishing cor-
relation with the metabolomic compounds. At the OTUs level, OTU1 established
strong negative correlation with the microbial diversity (Shannon effective). Con-
cerning OTU3, a negative correlation was remarked with sphinganine and thymine.
Additionally, OTU5 showed a strong positive correlation with 4-imidazoleacrylic acid,
while a negative correlation with L-phenylalanine was observed. Finally, the OTU21,
was the OUT showing the most correlations with the abovementioned metabolites.
Specifically, positive correlations with arabinose, azelaic acid, L-glutamine, uracil, N-
acetyl-L-proline, N-methyl-L-glutamic acid, itaconic acid, succinic acid and 2-oxoadipic
acid were observed. Pearson’s correlation coefficients were considered for significant
marker compounds (from metabolomic analysis) and microbial families and genera
(from targeted metagenomic analysis) (Figure 8C). To our knowledge, this is the first
report of these bacterial OTUs being associated with the above-mentioned metabolites.
Further research could potentially provide a better understanding of the importance of
the identified correlations in cheese quality and possible impact on human health.
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Figure 8. (A) Dot-plots of all significant comparisons (metabolites) between the two groups of
Kefalograviera cheese samples (Ctrl: control group; Exp: experimental group). (B) Graphical display
of the metabolites correlated with specific OTUs in a matrix. Each correlation is depicted as a
small circle colored according to the direction of correlation coefficients (negative, red; positive,
blue). The size of the circles is dictated by the uncorrected p-value of the corresponding correlation.
(C) Correlations between each OTU and the metabolites. The graphs show the individual sample-
specific values, a linear fitted line, and the lower and upper boundaries of the predicted interval
(shown as a grey polygon around the fitted line). The boundaries are determined using the R function
predict, which produces predicted values based on a linear model. A predicted interval accounts for
the variability around the mean response inherent in any prediction. It represents the range where a
single new observation is likely to fall. Due to the data transformation applied before calculation of
correlations, there is no scale for the axes. The correlation coefficient and the original p-values are
shown in each plot; n = 13; 9 control cheese samples and 4 experimental cheese samples.

4. Conclusions

In this work, a targeted metagenomic and metabolomic approach based on 16s rRNA
sequencing and ultra-high-performance liquid chromatography coupled with quadrupole
time-of-flight mass spectrometry (UHPLC-QTOFMS), followed by multivariate statistics,
was carried out to discriminate Kefalograviera cheeses according to their microbial and
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chemical profiles. The utilization of metagenomic and metabolomic-technologies allowed
us to detect unique microbial and chemical signatures linked to the dietary intervention.
To find the important and cheese origin-specific metabolites, target screening was used
in accordance with strict identification criteria. More than 120 metabolites were found
and identified, including those related to proteolysis products as well as amino acids and
their derivatives; organic acids, lipids and their derivatives; fatty acids, vitamins, and
nucleotides. Quantification data were also provided for the majority of metabolites, in
order to evaluate their differentiation between the control diet compared to the flaxseed and
lupin diet. The main differences identified were distinct key microbial players such as Pedio-
coccus pentosaceus, Leuconostoc falkenbergense, Levilactobacillus brevis and arabinose, dulcitol,
hypoxanthine, itaconic acid, L-arginine, L-glutamine and succinic acid as metabolomic
markers. In this study, we clearly demonstrated that metabolomics and targeted metage-
nomic analysis combined with statistical methods have great potential for distinguishing
between innovative Kefalograviera cheese production systems, differentiated by the animal
diet. Metabolomic and metagenomic methods can also be used to identify and analyze dif-
ferent compounds and taxonomic units in fermented dairy products, which could serve as
potential biomarkers, indicating a novel traceability system and the authenticity of the final
product. Although further studies are needed to strengthen the viability of metabolomics
and metagenomics followed by multivariate statistics (including validation of the markers
identified), current preliminary results are encouraging in the field of cheese authenticity
and traceability.
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