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Abstract: Protein-based targeted toxins play an increasingly important role in targeted tumor
therapies. In spite of their high intrinsic toxicity, their efficacy in animal models is low. A major
reason for this is the limited entry of the toxin into the cytosol of the target cell, which is required
to mediate the fatal effect. Target receptor bound and internalized toxins are mostly either recycled
back to the cell surface or lysosomally degraded. This might explain why no antibody-targeted
protein toxin has been approved for tumor therapeutic applications by the authorities to date
although more than 500 targeted toxins have been developed within the last decades. To overcome
the problem of insufficient endosomal escape, a number of strategies that make use of diverse
chemicals, cell-penetrating or fusogenic peptides, and light-induced techniques were designed to
weaken the membrane integrity of endosomes. This review focuses on glycosylated triterpenoids as
endosomal escape enhancers and throws light on their structure, the mechanism of action, and on
their efficacy in cell culture and animal models. Obstacles, challenges, opportunities, and future
prospects are discussed.

Keywords: saponins; endosomal escape; efficacy enhancers; targeted toxins; immunotoxins; cytosolic
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1. Introduction

In the last decades new therapeutic strategies were developed in the battle against cancer including
radio- and chemotherapeutic agents. Unfortunately these types of drugs exhibit strong side effects
and operate in an unspecific manner, i.e., off-target cells are also affected. In consequence of that,
the idea of a targeted tumor therapy was born, based on anticancer conjugates that obtain a target
specific ligand function such as antibodies, growth factors or lectins, and a toxic moiety including
radioisotopes, small molecule drugs or protein toxins [1]. Immunotoxins, which are targeted toxins
that contain an antibody as targeting moiety, seemed to be very promising because they combine the
specificity of an antibody against tumor-specific antigens, which enables them to channel the toxin to
the point of action, and introduce additionally cell killing mechanisms such as antibody-dependent
cell-mediated cytotoxicity and complement-dependent cytotoxicity [2–4]. To exhibit its effect, the toxin
needs to be released into the cytosol after internalization. A major drawback is that the targeting
moiety is often not fully internalized, directly recycled to the surface after internalization, or degraded
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in lysosomes [5–8]. To facilitate cytosolic entry of the toxin, it is possible to cleave off the toxin from the
targeting moiety inside the cell by disulfide cleavage or endopeptidases [9,10]. Nonetheless, to insure a
toxic concentration for tumor cells and to overcome insufficient cytosolic entry, high serum levels of the
targeted toxin are required resulting in severe side effects, in particular including immunogenicity and
vascular leak syndrome [11,12]. This demonstrates that new innovative strategies are urgently needed.

To cope with the drawback of insufficient cytosolic entry, many strategies were described including
redirection of toxins to endogenous cellular membrane transport complexes of the biosynthetic
pathway, disruption of endosomes, attenuation of the membrane integrity of endosomal membranes,
or use of cell penetrating peptides [13–16]. Particular glycosylated triterpenes were found to act as
tremendous endosomal escape enhancers for targeted toxins in tumor therapy [17–19]. These toxins
essentially comprise ribosome-inactivating proteins (RIPs), a class of toxic plant enzymes that release a
specific adenine residue from ribosomal RNA finally resulting in the arrest of protein synthesis and
apoptosis [20]. Type 1 RIPs only consist of a single catalytically active polypeptide chain (A chain)
while type 2 RIPs in addition possess a cell binding domain (B chain), making a number of these
proteins highly cytotoxic, in particular ricin. Since the B chain recognizes regular cells, type 1 RIPs such
as saporin, dianthin, agrostin, or gelonin are better suited for the design of targeted toxins. These toxins
can be coupled to a targeting moiety by chemical conjugation or as a fusion protein [21]. The present
review describes the different approaches to augment the efficacy of targeted toxins, especially of type 1
RIPs, by glycosylated triterpenoids. Structure–function relationships, investigations on the molecular
mechanism of the endosomal escape, molecular interactions, cell culture experiments, and animal
tumor models are presented. Pros and cons are discussed and the prospects and risks for future clinical
development are outlined.

2. Glycosylated Triterpenoids

2.1. Origin and Structure

Saponins represent a wide spectrum in the field of secondary plant compounds and are subdivided
into two groups, the steroid saponins and triterpenoid saponins. Occasionally, a third group of
steroid alkaloid saponins is mentioned, however, often counted among the group of alkaloids [22].
Triterpenoid saponins are mostly found in eudicots [23,24], especially in families like Caryophyllaceae,
Araliaceae, Fabaceae, and Hippocastanaceae [25].

Triterpenoid saponins are glycosides comprising a pentacyclic C30 terpene skeleton as a backbone
and one or more covalently bound sugar chains [25]. The triterpene backbone of saponins is also called
sapogenin or aglycone. Dependent on the number of sugar chains attached to the backbone, saponins
are divided into mono-, bis-, and trisdesmosidic compounds. Generally, common sugars like glucose,
fructose, galactose, and fucose as well as other sugars such as rhamnose, quinovose, and uronic acids
are found in triterpenoid saponins. Linear as well as branched sugar chains are observed [22].

The wide range of structural variation options, both in the aglycone and sugar moieties explains
the variety of different saponins with diverse effects. Nevertheless, all triterpenoid saponins can
be described as amphiphilic due to the nonpolar triterpene backbone and the polar sugar chains.
The ability of saponins to interact with both hydrophilic and lipophilic compounds enables them
to interfere with or even disrupt cell membranes, phases and other amphiphilic structures [26].
These characteristics explain mostly all effects that are linked to saponins to date.

Saponins, the name derived from the Latin word “sapo”—soap, are soluble in water and
create stable foam upon shaking [27]. Most saponins show hemolytic [28] and membrane
permeabilizing [26] properties at specific concentrations, used by plants to defend themselves from
predators. Below these toxic concentrations, triterpenoid saponins are widely used in several fields of
phytotherapy. For instance, saponins derived from Hedera helix L. (ivy), Glycyrrhiza glabra L. (liquorice),
and Primula veris L. (cowslip) are often used against productive cough [29] while triterpenoids from
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Aesculus hippocastanum L. (horse-chestnut) are known for their anti-inflammatory and anti-exudative
effects [30,31], and Panax ginseng C. A. Mey. (Chinese ginseng) for blood flow stimulating effects [32].

In the recent past a new and considerable effect was observed for specific triterpenoid saponins.
These saponins are able to substantially increase the cytotoxic effect of saporin, a type I RIP, in a
synergistic manner [33]. Several studies showed that the cause for this effect is an increased uptake of
the toxic compound into the cytosol when co-administered with triterpene saponins [34–36], however,
this synergistic effect only applies for certain triterpenoids. Thus, many studies were conducted in
order to demonstrate a structure–activity relationship in this respect.

In 2005, Melzig et al. [37] described the saponin-mediated enhancer effect for agrostin, another
type I RIP, and also delineated the most important structural features of saponins required for this
ability. An aldehyde function bound at C-4 and an acidic oligosaccharidic ester chain at C-28 play
an important role in increasing the toxicity of agrostin. Monodesmosidic saponins showed lower
toxicities in cell culture experiments, which underlined the importance of a C-28 glycosylation and
the sugar chains in general. Bachran et al. [38] confirmed the previous findings of C-4 and C-28 as
well as the vital role of the sugar side chains. Thus, highly active saponins usually are bisdesmosidic
and possess a branched sugar chain at C-3 with a glucuronic moiety. Well-known representatives are
oleanane saponins such as quillajasaponin from Quillaja saponaria Molina or Saponinum album from
Gypsophila paniculata L., however, when combined with targeted toxins (i.e., toxins linked to a targeting
moiety, e.g., an antibody), the specificity for target cells was lost when quillajasaponin was used [38]
indicating further specific characteristics of particular saponins.

A valuable overview on the relation between structure and toxin enhancer ability of saponins
was provided by Böttger et al. [39]. They corroborated previous findings and added more detailed
information on the required sugar composition (Figure 1). The hydroxyl group at C-3 has to be linked
to a branched trisaccharide comprising a glucuronic acid and the glycoside at C-28 must be a branched
sugar chain. Finally, previous findings implied that for a drastic synergistic enhancer effect of saponins
and protein toxins, a molecule mass of at least 1600 g/mol is necessary and aglycones consisting of an
oleanane skeleton such as quillaic acid or gypsogenin are the most promising.
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enhance the cytotoxicity of protein toxins. The displayed differences in residues R1 and R2 determine 
the intensity of the effect. Fuc: fucose (6-deoxy-galactose); Gal: galactose; Glc: glucose; GlcA: 
glucuronic acid; Qui: quinovose (6-deoxy-glucose); Rha: rhamnose (6-deoxy-mannose); Xyl: xylose. 
Structure information was obtained for SA1641 from [40], for SA1657 from [41], for Gyp 1, Gyp 2, and 
Gyp 3 from [42], and for AG 1, AG 2, AG 3, and AG 4 from [43]. 
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The isolation of chemically defined triterpene saponins is an extremely time-consuming task. 
The raw extracts used to isolate saponins are highly complex and comprise hundreds of different and 

Figure 1. Relevant structural characteristics of the oleanane type triterpenoid saponins. The figure
provides an overview on those saponins, for which the complete structure has been published to date.
The residues at C-3 and C-4 and a sugar chain at C-28 with at least four sugar units are mandatory to
enhance the cytotoxicity of protein toxins. The displayed differences in residues R1 and R2 determine
the intensity of the effect. Fuc: fucose (6-deoxy-galactose); Gal: galactose; Glc: glucose; GlcA: glucuronic
acid; Qui: quinovose (6-deoxy-glucose); Rha: rhamnose (6-deoxy-mannose); Xyl: xylose. Structure
information was obtained for SA1641 from [40], for SA1657 from [41], for Gyp 1, Gyp 2, and Gyp 3
from [42], and for AG 1, AG 2, AG 3, and AG 4 from [43].
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2.2. Purification

The isolation of chemically defined triterpene saponins is an extremely time-consuming task.
The raw extracts used to isolate saponins are highly complex and comprise hundreds of different and
partly very similar triterpene saponin structures. The main question that arises at this point is, which
saponin should be isolated or to put it simply, which is the best saponin? From the medical point of
view, the best saponins are those that enhance the endosomal escape of targeted anti-tumor toxins in
tumor cells at a maximum while off-target cells remain unaffected. For this reason it is important to
conduct series of corresponding bio-assays with targeted anti-tumor toxins and isolated triterpene
saponins. The results of such bio-assays are important tools that guide the whole isolation process,
leading to the identification of highly efficacious triterpene saponins. This concept is the basis of the
bio-assay guided isolation strategy as exemplified in Figure 2.
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Figure 2. Bio-assay guided isolation of triterpene saponins. The bio-assay guided isolation allows
the isolation and identification of biological active saponins. The raw extract is fractionated into
sub-fractions, which are tested in suitable bio-assays. Bio-active sub-fractions are further purified
resulting in a sub-sub-fractionation and so forth. Liquid chromatography–(tandem) mass spectrometry
and high performance thin layer chromatography analyses are conducted at each point.

The isolation of triterpene saponins starts with the preparation of the raw extract from the
plant material such as roots or seeds. First of all, the roots are washed, freeze dried, and ground.
Seeds are defatted by Soxhlet extraction with petroleum ether. Complex mixtures of mono- and
bisdesmosidic triterpene saponins and carbohydrates (raw extract) are obtained by solvent extraction
with water-methanol mixtures. The polarity of the solvent determines the composition of the raw
extract. For instance an increased proportion of water in the solvent increases the proportion of
carbohydrates in the raw extract. Generally, 90% methanol is used for the generation of the raw extract.
The methanol is removed by vacuum distillation. The remaining saponin containing aqueous phase can
be processed differently. Reducing the polarity of the solution, by adding acetonitrile or cold acetone,
results in precipitation of the more polar triterpene saponins [44,45]. Alternative approaches comprise
agarose gel-electrophoresis of the aqueous phase, resulting in pre-purified agarose-gel fractions that
contain charged triterpene saponins [46–48]. An advantage of this technique is its simplicity. Dialysis of
the aqueous phase is a method to reduce the complexity by excluding low molecular mass components
such as carbohydrates [42].

After conducting one of the described methods, the pre-purified fractions are subjected to high
performance liquid chromatography (HPLC). For this purpose, a C18 reversed phase column and
methanol/water or acetonitrile/water gradients are used [49,50]. Trifluoroacetic acid is added at low
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percentages to repress the dissociation of uronic acids. In order to isolate single triterpene saponins
several HPLC steps with different solvent compositions are combined. The isolation process is usually
performed in the semi-preparative mode and each HPLC purification step is paralleled by a decrease of
the yield. For each HPLC cycle, yields of around 1 mg can be achieved. Higher yields are only feasible
by the time-consuming procedure of repeating HPLC cycles because at higher concentrations, beyond
the critical micellar concentration, saponins form micelles. This phenomenon hinders the scaling-up
of the isolation protocol for preparative amounts using preparative C18 HPLC columns. A solution
for this problem is the application of countercurrent chromatography techniques (high-performance
countercurrent chromatography, high-speed countercurrent chromatography, centrifugal partition
chromatography), which are based on the separation of the triterpene saponins between non-miscible
solvent layers [51].

Triterpene saponins and saponin containing fractions are usually analyzed by high performance
thin layer chromatography, thin layer chromatography-densitometry [52], infrared spectroscopy, and
liquid chromatography coupled to (tandem) mass spectrometry. Tandem mass spectrometry is an
indispensable tool that provides important structural information. By comparing the mass spectra
of unknown saponins with the mass spectra of characterized triterpene saponins, it is possible to
differentiate monodesmosidic from bisdesmosidic saponins. In addition, the corresponding aglycone
can be identified (Figure 3).
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Figure 3. Tandem mass spectra of triterpene saponins. The triterpene saponin with m/z 1674 (SO1674)
was isolated by countercurrent chromatography from the roots of Saponaria officinalis L. The triterpene
saponin with m/z 1641 (SA1641) was isolated by HPLC from Saponinum album (Merck, Darmstadt,
Germany). The identification of the aglycones of SO1674 (quillaic acid) and SA1641 (gypsogenin) was
based on the fragmentation pattern. The peaks at m/z 955 and 939 were assigned to the prosapogenic
parts of the bisdesmosidic saponins.
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2.3. Molecular Interactions

Saponins are initially considered to be part of the plant defense systems against pathogens and
herbivores. Many other reports emphasize numerous biological functions [19] such as fungicidal [53],
anti-microbial [54], insecticidal [55], and molluscicidal [56] activity and the enhancement of the
endosomal escape and therefore their importance for targeted toxins [44,57].

2.3.1. Hemolytic Activity of Saponins

Several studies revealed the ability of steroid and triterpenoid saponins as well as of many steroid
alkaloid saponins to weaken membrane integrity [58]. It is assumed that this property is the molecular
basis for the well-known ability of saponins to lyse mammalian erythrocytes and therefore often
referred to as their hemolytic activity [59]. Dourmashkin et al. described this effect for the first time in
their electron microscopic study on saponin-inactivated Rous sarcoma virus [60]. The essential role
of cholesterol in the membrane of target cells for saponin-induced pore formation was subsequently
reported by Bangham and Horne [61].

Augustin et al. perfectly reviewed the influence of the membrane composition on the function of
steroid and triterpenoid saponins, and steroid alkaloid saponins [58]. In brief, the authors summarize
that concentration and structure of incorporated membrane sterols affect the ability of glycosides
to cause membrane perturbation. Moreover, all characteristics of the chemical composition of the
glycosides themselves including structure of the aglycone, number and length of saccharide side chains
as well as type and linkage variants of the incorporated sugar residues contribute to their hemolytic
potential. However, the high number of structural characteristics that were found to modulate
the hemolytic activity and the diversity in experimental setups resulted in partially conflicting
conclusions [58].

2.3.2. Interaction of Saponins with Cell Membranes and Their Components

In 1962 Bangham et al. proposed the first model of saponin actions towards membranes.
They postulated that the interaction and formation of complexes between saponins and cholesterol in
membranes lead to two-dimensional micellar-type structures within the membrane [61]. Other authors
highlighted the hydrophilic origin of the saponins’ sugar chains that can form micellar-like
complexes as aqueous pores. These pores allow higher permeability for ions and macromolecules.
Augustin et al. described in their review the concept of pore formation and subsequent changes
in ion conductivity and protein mobility through the membrane [58]. In brief, the first step of
induced membrane-permeabilization is the incorporation of saponins into the membrane monolayer.
The lipophilic character of the aglycone accelerates the interaction with hydrophobic membrane
layers and the glycosides form complexes with membrane sterols, e.g., cholesterol. In addition, the
interactions between the sugar residues of the incorporated glycosides with the membrane lead to a
phase-separation. Subsequent accumulation of the glycosides within the cell membrane might cause
membrane curvature and perturbation, and finally leads to pore formation and sterol extraction as
underlined by electron microscopy [58]. In contrast, absence of pores was observed in cells treated
with the steroidal glycoside digitonin [60]. Notably, pretreatment of cells with digitonin prevented
formation of pores during subsequent treatment with pore-inducing saponins. Other investigations
on digitonin revealed hemitubular alterations comparable to the finding of Keukens et al. for steroid
alkaloid saponins [62,63]. Lin and Wang investigated the steroid saponin dioscin by computational
simulations and demonstrated a curvature of the membrane that resemble hemitubular alterations [64]
indicating the coexistence of pores and tubular alterations or vesiculation.

Since many studies demonstrated that saponins have different abilities to cause membrane
perturbation and permeabilization, these phenomena were analyzed by Böttger and Melzig using
a cell culture model and radioactive 3H-labeled cholesterol [65]. The authors revealed that cell
membrane-active saponins (those with significant membrane toxicity) decreased the cholesterol content
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while no significant change in the cholesterol content was detectable after treatment with saponins
that are not or only slightly cell membrane-active. Böttger and Melzig postulated a membrane
toxicity mechanism that is caused by the saponin-dependent loss of membrane cholesterol. Notably,
no significant effect of the investigated membrane-active saponins on the cholesterol of endosomes
and lysosomes was measurable [65]. These results corroborated the observations of Krawczyk et al.
who revealed the cell membrane-permeabilizing effect of digitonin, however, a saponin composite
from Quillaja saponaria Molina in addition caused perturbation of intracellular membrane systems [66].
Lin and Wang described an alternative model of saponin activity towards membranes based on
coarse-grained molecular dynamics simulations. Here dioscin interacts with sphingomyelin and
cholesterol in the cell membrane and the subsequent enrichment of these complexes damages the
structure of lipid rafts [64]. Lipid raft disruption and other microdomain alterations caused by saponins
were also described by a number of other authors as reviewed by Augustin et al. [58].

In contrast, Segal et al. demonstrated that the presence of cholesterol is not essential for cell
membrane permeabilization and pore formation mediated by certain saponins [67]. Real-time
monitoring of cell membrane permeabilization was conducted to reveal the kinetics of saponin
effects [68]. In this study, oleanane saponins showed variable permeabilizing effects on the cell
and lysosomal membranes at distinct concentrations of 6 µM or higher (dependent on the saponin) and
hemolysis at 3 µM or higher. The results further suggest that the charge of saponins might not play a
significant role for their membrane permeabilizing effects. Böttger et al. described a correlation between
the membrane toxicity of saponins and their ability to reduce the surface tension [26]. Apart from that,
several structure–activity relation studies revealed that the power to cause hemolysis or membrane
toxicity often does not correlate with the other known activities of saponins e.g., with their anti-fungal
effects or their applicability as adjuvants [69,70].

An essential role of the acylation in the glycosidic part of saponins on metabolic stimulation
was demonstrated by transient integration into the cellular membrane [71]. Another described
mode of action for some saponins is their interaction with glucocorticoid receptors. Glucocorticoids
are involved as steroidal hormones in the regulation of development, metabolism, neurobiology,
and apoptosis pathways [72]. Therefore, several pharmacological activities such as anti-inflammatory
and neuroprotective effects as well as induction of adipogenesis or apoptosis are linked to interactions
of saponins with receptors of glucocorticoid hormones as reviewed by Augustin et al. [58].

Taken together, the biological activities of saponins are manifold reflected by their diverse chemical
compositions and structures, and up to now the prediction of all their functions based on their
composition is near to impossible [73].

3. Endosomal Escape in Cell Culture Models

3.1. Cellular Interactions

The most prominent general characteristics of saponins are their ability to form pores,
to permeabilize the cell membrane [28,74] and to lower the surface tension of aqueous
solutions [26,75]. Apart from these physico-chemical properties, saponins also possess pharmacological
features [76], such as antimicrobial [54,77], immunomodulatory [46,78], anti-inflammatory [79,80],
and anti-neoplastic [81,82] activities. A further promising field of application is their combination with
anti-tumoral drugs. In many studies, additive or synergistic properties were described for saponins
in combination with classical chemotherapeutic agents such as 5-fluorouracil [83] or cisplatin [84].
Other saponins showed no or only a slight increase in the effect of chemotherapeutic agents [85].

In 2003, Heisler et al. described for the first time that saponins are able to enhance the cytotoxicity
of targeted toxins. The authors evaluated a combination therapy of a saponin composite (Saponinum
album from Gypsophila species) and a targeted chimeric toxin composed of human epidermal
growth factor (EGF) and saporin, a type I RIP [33]. Notably, the enhancer effect was observed at
a non-permeabilizing concentration of the saponins. Another study by Hebestreit et al. underlined
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the saponin-mediated enhancer effect on the cytotoxicity of RIPs [35]. This phenomenon was
diminished by latrunculin and bafilomycin, inhibitors of endocytosis and vacuolar-type H+-ATPase,
respectively. On the contrary, the effect was neither altered by addition of various monosaccharides
nor by brefeldin A that is known to dissolve the Golgi stacks. Saponins are able to only slightly
enhance the toxicity of other peptidic toxins indicating a specific interaction with RIPs present in
Caryophyllaceae [35]. Two years later Weng et al. found out that saponins from Saponaria spec. provoke
clathrin-mediated endocytosis of saporin [86]. They used inhibitors of clathrin-mediated endocytosis,
chlorpromazine, and imipramine, and significantly hampered the saponin-mediated cytotoxicity of
saporin. Holmes et al. demonstrated that apoptosis is the mode of cell death in human leukemia and
lymphoma cells induced by the combination therapy of triterpenoid saponins and immunotoxins [41].
The annexin V and propidium iodide data revealed again that the plasma membrane integrity of target
cells was not affected by the saponins at the employed concentrations.

Kinetic studies by Weng et al. revealed that a small portion of saponin molecules remained
associated with the cell after extensive washing [87]. These remaining saponins caused a drastic
and long-lasting sensitization of the cells against saporin. This effect appeared to be dependent
on the charge of the saponins as demonstrated by a charge-based fractional evaluation of saponins
by Thakur et al. [48]. The authors revealed that only saponins of a certain electrophoretic mobility
exhibited in agarose gels are able to enhance the endosomal escape of RIPs. Live cell imaging
experiments applying such a saponin fraction with a relative electrophoretic mobility of 0.59 showed
that these saponins mediate endosomal release of the toxic payload without affecting the membrane
integrity and finally induce apoptosis while saponin fractions with other electrophoretic mobilities
do not cause an effect. The enhancer effect of the active fraction was observed for type 1 RIPs but not
for the investigated bacterial toxins. Therefore, Thakur et al. postulated electrochemical interactions
between the saponins and the targeted toxins [48]. Moreover, Gilabert-Oriol et al. delineated a
correlation between electrophoretic mobility and immune adjuvant, cytotoxic, and hemolytic properties
of saponins [46]. The importance of the electrophoretic mobility for the saponin’s function comes
along with the finding of a pH-dependent interaction between type 1 RIPs and saponins [36,40]. Using
surface plasmon resonance, the authors observed that the investigated type 1 RIPs directly bind to
saponins of the mentioned electrophoretic mobility at acidic pH while such binding did not occur at
neutral pH. In the case of other toxins, such as ricin A chain and fragments of Pseudomonas exotoxin
A and diphtheria toxin that were not enhanced by saponins, there was no binding at all. It can be
hypothesized from this data that the direct interaction between saponins and type 1 RIPs at acidic
pH is required for mediating the escape from late endosomes, particularly as neutralization of the
endosomes results in loss of the enhancer effect [88], however, it must be noted that all the toxins
that cannot be enhanced by saponins do naturally not reach the late endosomes so that intracellular
trafficking might be more important than a direct interaction although the latter is conceivably a
supporting property.

To characterize the enhancer effect of saponins in more detail, Thakur et al. purified two
saponins with suitable electrophoretic mobility from Gypsophila species (SA1641, SA1657) and one
from Saponaria officinalis L. (SO1861) [48]. SO1861 was more efficacious than SA1641 and SA1657,
but all were active and the development of a reporter assay to measure the endosomal escape of
toxin-based therapeutics by Gilabert-Oriol et al. underlined the postulated cytosolic release induced by
SA1641 at a non-cytotoxic concentration [89]. Due to its high potential, SO1861 was further used in cell
culture and in vivo studies (see following sections). Holmes et al. for the first time provided evidence
that saponins are also able to enhance the effect of saporin-based immunotoxins in human leukemia
and lymphoma cells [41]. They postulated a dual effect for the enhancer mechanism: first, a direct
increase of the endosomal escape resulting in caspase-dependent apoptosis that is, second, combined
with lysosomal-mediated cell death pathways, which are triggered after the release of cathepsins
and other hydrolytic enzymes following destruction of lysosomal membranes by saponin/saporin
complexes [41].
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3.2. Endosomal Release of Proteins

The success of protein-based targeted toxins for an efficient tumor therapy mainly depends on
their ability to overcome the limited entry of the toxin into the cytosol of the targeted cell in sufficient
quantity. Endosomal entrapment of molecules is a widespread problem not only for tumor-targeted
therapy [57], but also in nanomedicine and gene therapy [90,91]. The internalized toxins are typically
trapped inside endosomes and are either recycled back to the cell surface [92] or they become degraded
in lysosomes [5–8] (Figure 4). The successful application of macromolecular drugs still remains a
major bottleneck in targeted therapies since the internalized toxin needs to escape from the endosome
in order to exhibit its function on the cytosolic target. Co-localization studies of a targeted toxin
revealed that it preferentially accumulates in lysosomes of unaffected cells but not in sensitive cells [93].
This demonstrates that the process of lysosomal degradation is the most probable basis for resistance
and emphasizes the need for the discovery of novel endosomal escape enhancers [13,57,93]. As a
result of lysosomal degradation, relatively high concentrations of the targeted toxin are usually needed
for modest cytosolic or nuclear delivery, leading to severe side-effects also for off-target cells [94].
Consequently, to increase the therapeutic window for tumor targeted toxins, the efficacy of delivery
has to be enhanced and the following characteristics should be fulfilled: low immunogenicity and
toxicity, minimized unspecific off-target effects, high efficacy and specificity as well as ease of use and
production [13,57,95].
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Figure 4. Schematic representation of receptor-mediated endocytic uptake of tumor-targeted proteins.
(1) The first step is the binding of targeted toxins to their cognate receptor and internalization via
the clathrin-dependent pathway; (2) The clathrin is removed and the uncoated vesicle fuses with
the early endosome that mainly functions as a sorting compartment. Proton pumps cause a slightly
acidic pH of 6.5 resulting (for most of the known receptor–ligand pairs) in the release of the ligand;
(3A–B) The receptor and a large part of the membrane might be recycled back to the surface via
recycling vesicles that bud from the endosome; (4) Proteins and substances destined for lysosomal
degradation are transported by endosome carrier vesicles to late endosomes. The pH continues to drop
to ~5.5; (5) The late endosome fuses with a lysosome, which results in the formation of an endolysosome
and the pH further decreases to 4.5. Consequently, the protein gets degraded by proteases and cannot
exhibit its function; (6) In a final step the lysosome is restored by budding off the hybrid organelle.

Many bacteria and viruses have evolved quite efficient strategies to successfully deliver their
toxins or DNA into their targets. Understanding this mechanism of viral and bacterial escape from
endosomes and exploring it for improving intracellular delivery has opened new avenues to overcome
the endosomal barrier. These mechanisms include pore formation, membrane fusion, and the proton
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sponge effect [96–99]. Numerous developed protein delivery approaches mainly focus on selective
disruption, and weakening or destabilization of the integrity of the endosomes [13,57]. This leads to an
increased release of the macromolecular drug, for example by fusogenic peptides [100,101] or diverse
chemicals including lysosomotropic amines [102,103], carboxylic ionophores [104,105] and calcium
channel antagonists [99,106,107]. Another tool to mediate cytosolic delivery of proteins is the use of
cell-penetrating peptides. These are short peptides often composed of cationic amino acids enabling
the proteins to dive through the membrane [108,109]. A further strategy to overcome the endosomal
entrapment of proteins can be achieved by the application of physiochemical processes, for example
by light induced photochemical internalization [14]. In addition to all these approaches, another
powerful and promising group of endosomal escape enhancers is the family of saponins as introduced
in the preceding sections. Especially, saponins of the oleanane type possess the capability to enhance
the endosomal release of several RIPs and RIP-based targeted toxins [19,34,37]. They synergistically
enhance the cytotoxicity of different targeted toxins depending on the cell line by 3000 fold up to
4,000,000-fold in cell culture experiments [33,40,88,110,111]. The idea of using saponins in combination
with a tumor targeted toxin containing a type 1 RIP arose from the finding that the combination of
saponins and RIPs already exists in nature and might be evolved as a defense mechanism of the plants
to protect themselves from herbivores [48,76].

The synergistic enhancement effect was first described for the type 1 RIP agrostin [34]. At that time,
it was still hypothesized that the effect was probably based on the enhanced penetration of agrostin
through the cell membrane when applied in combination with saponins. In the meantime several dozen
saponins were investigated with regard to their ability to enhance the cytotoxicity of RIPs, but only a
few of them with particular structural features were active [43]. These features include an aglycone
of the oleanane type, a branched trisaccharide at C-3 containing a glucuronic acid, an aldehyde at
C-4, a carboxy group at C-28, and a branched polysaccharide with at least four sugar residues also
at C-28. One terminal sugar residue might be replaced by an acetyl group or 4-methoxycinnamic
acid but none of the sugar residues must be modified with a bulky, long acyl chain [43]. In contrast
to herein cited older studies, it is now accepted that the enhancer effect of saponins for RIPs neither
occurs due to the permeabilization of the plasma membrane nor to the stimulation of endocytic events.
Instead, saponins cause the escape of already internalized toxin molecules into the cytosol [112,113] and
co-localization studies revealed that the relevant cellular compartments for the enhanced cytotoxicity
are late endosomes and lysosomes [36,48]. This observation is of high importance for the use of such
saponins in combination with targeted toxins (see next section) since target cell specificity is retained,
which would not be the case if plasma membrane integrity is affected.

A prerequisite for saponin-mediated intracellular release of RIPs into the cytosol is an acidic
pH. During the passage from early to late endosomes and endolysosomes, the pH gradually
drops to an acidic milieu beginning at 7.4 (extracellular) and decreasing to ~6.5 (early endosomes),
~5.5 (late endosomes), and finally ~4.5 (endolysosomes) (Figure 5) [36,114]. It was assumed that
saponins possessing the capability to mediate the endosomal escape are co-localized with the targeted
toxins in the same vesicles [26]. It was hypothesized that inside these acidic vesicles, the saponins start
to interact with the toxin component of the targeted toxin in a pH-dependent manner, modulating the
endosomal release of the protein toxins through the membrane into the cytoplasm. The pH dependency
was proven in a cell culture experiment by adding the inhibitors chloroquine or bafilomycin A1 to
increase the pH prior to addition of a saponin composite [88]. This treatment resulted in a substantially
reduced release of saporin into the cytosol of the targeted cell line. The effect was further confirmed
for the purified saponins SA1657 and SO1861 [36]. Nevertheless, it is still unclear to date whether
the acidic pH in late endosomes and endolysosomes initiates an association of saponin and RIP or
only supports the disintegration of the membrane by saponins. The latter way is corroborated by the
observations that saponins did not associate with the type 1 RIP gelonin at acidic pH although they
can mediate an enhanced cytotoxicity of this toxin [115] and that saponins were also shown to have a
great potential as a new transfection multiplier for non-viral gene delivery systems [45].
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Figure 5. Model of the receptor-mediated endocytic uptake of a tumor-targeted protein in the presence
of saponins with endosomal escape enhancer features. (1) The first step is the application of saponins
prior to the targeted protein. The saponins integrate, due to their amphiphilic character, into the
plasma membrane but do not affect the integrity, presumably because this particular group of saponins
require an acidic pH; (2) The targeted protein binds to the cognate receptor and is internalized via
the clathrin-dependent pathway. Saponins are taken up simultaneously together with the targeted
protein and remain in the budded vesicle; (3) The clathrin is removed and the uncoated vesicle fuses
with the early endosome; (4A–B). After acidic release of the protein, the receptor and a large part of
the membrane might recycle back to the surface; (5) The targeted protein and membrane-associated
saponins are transported via carrier vesicles to late endosomes; (6) The late endosomes fuse with
lysosomes to endolysosomes. During the entire transport process, the pH continuously drops.
The acidic pH in late endosomes and endolysosomes might initiate the association of saponins with the
protein; (7) The saponins then mediate the endosomal release of the protein through the membrane
into the cytoplasm. The molecular mechanism is not clear to date and appears to be a sophisticated
interaction of cholesterol and other components of the membrane with the saponins and the protein
triggered by low pH.

Although the approach to use saponins for an augmented endosomal escape appears to have
unbeatable advantages, there are still some drawbacks that have to be solved. One major problem
of saponins and most other chemical endosomal escape enhancers is that they are applied in all
described experiments independently of the targeted toxin. They therefore behave differently
with regard to body distribution, liberation, absorption, metabolization and excretion, and cellular
internalization and release. This in turn can influence the efficacy of the combinatorial approach [57].
Cell culture experiments investigating the optimal order and time interval between application of
saponins and targeted toxins delineated that the maximum synergistic toxicity is reached when
the saponins are pre-incubated for five minutes and then followed by the administration of the
targeted toxins [33]. These findings emphasize the importance of a synchronization of enhancer
and protein kinetics to ensure that both compounds are at the same time at the site of interaction.
Additionally it is worth noting that for in vitro studies, the non-lytic concentration for each cell line
has to be determined individually [115]. Notwithstanding that there is a tremendous progress in the
understanding of the enhancement of tumor targeted toxins by different saponins, more development
and research is indispensable to completely comprehend and apply these secondary plant metabolites
in combined therapies.
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3.3. Synergistic Effects with Targeted Toxins

Targeted toxins are toxins that possess a binding domain for specific cell surface proteins.
The binding domains of natural targeted toxins typically recognize normal cells and therefore
exhibit counter-productive effects. Therefore, truncated versions that lack the natural cell
binding domain were used to create tumor-targeted toxins. Examples are truncated versions of
Pseudomonas aeruginosa (Schroeter) Migula exotoxin (PE40, PE38), diphtheria toxin (DT388, DT389,
DT390) from Corynebacterium diphtheriae (Kruse) Lehmann and Neumann, and ricin (RTA) from
Ricinus communis L. [116]. Truncated diphtheria toxin still possesses its native translocation domain
to escape from early endosomes into the cytosol [117,118] while truncated Pseudomonas exotoxin
employs a KDEL-related motive and thus follows retrograde transport to the endoplasmic reticulum
to enter the cytosol [119]. Type 1 RIPs such as saporin (from Saponaria officinalis L.), dianthin
(Dianthus caryophyllus L.) or agrostin (Agrostemma githago L.) consist, compared to type 2 RIPs
such as ricin (Ricinus communis L.), abrin (Abrus precatorius L.) or nigrin (Sambucus nigra L.), only
of an enzymatic active single A chain whereas type 2 RIPs additionally possess the cell-binding
lectin B chain. This makes type 1 RIPs ideal candidates for tumor targeted toxins, however, due to a
lacking mechanism for cytosolic entry, they are condemned to be degenerated inside endosomes and
lysosomes [120,121]. As mentioned before, the effect of targeted toxins is dependent on the amount
of toxin that has been released into the cytosol. To overcome these obstacles, enhancing agents are
necessary. Several strategies exist to enhance the cytotoxicity of RIP-based targeted toxins such as
photochemical internalization [122,123], insertion of a protein transduction domain [124], or usage
of the pore-forming protein toxin listeriolysin O [125,126]. As described in the previous sections,
another approach is the combinatorial application with glycosylated triterpenoids called saponins.
When saponins gained the status of an enhancer for targeted toxins, most of the investigations were
done with a saponin composite from Gypsophila species, Saponinum album. Due to the intricate
structures contained in saponin composites, it was difficult to find out clear structure–function
relationships. Different toxins were investigated in combination with Saponinum album, but only
the cytotoxicity of agrostin and saporin was enhanced whereas no or nearly no effect was observed
for diphtheria toxin, ricin toxin A chain, microcystin-LR, and nigrin [35]. It was assumed that the
enhancement effect depends on certain conserved amino acids that are present in the RIPs dianthin,
saporin, and gelonin but not in ricin A chain [115], nevertheless, the number of data is not sufficient
for a final conclusion.

Of particular importance is the observation that the construction of a targeted toxin by fusion
with EGF does not change the capability of a toxin to become enhanced by saponins. While
EGF-PE40, DT390-EGF, and RTA-EGF only show enhancement factors of 1.2, 12.0, and 16.3, respectively,
the cytotoxicity of EGF-saporin and EGF-dianthin was increased by more than four million times
using saponin SA1641 [40]. This clearly indicates that the enhancement effect takes place inside the
cell and thus, target cell specificity introduced by a ligand is retained. Considerable inhibitor studies
showed that the increased cytotoxicity of saporin-EGF mediated by Saponinum album is clathrin- and
actin-dependent. Six inhibitory agents that are known to inhibit either clathrin-mediated endocytosis,
GTPase activity of dynamin-2, actin-polymerization, endosomal acidification, or caveolae-dependent
endocytosis were tested [88]. Inhibition of clathrin-mediated endocytosis, actin-polymerization,
and endosomal acidification blocked the enhancer effect of Saponinum album. The cytotoxicity of
Pseudomonas exotoxin was again not affected. The investigations suggest that the retrograde pathway
is not influenced by saponins, which would also explain why ricin toxin A chain is not enhanced.
Diphtheria toxin is also not enhanced by saponins but in contrast to Pseudomonas exotoxin, diphtheria
toxin enters the cytosol from early endosomes [127]. All these findings corroborate the model that the
discussed subset of saponins acts in late endosomes and lysosomes. Solely the localization of the effect
can explain why some toxins are enhanced and others are not. Direct interactions between saponins
and toxins might play an additional role.
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It is known that antibodies once they have been bound to the cellular receptor are internalized and
then present in endosomes and lysosomes [128,129]. The cytotoxicity of a corresponding immunotoxin
is hence dependent on the rate of endocytosis and the intracellular trafficking after internalization [130].
A colocalization study of Alexa Fluor-labeled saporin-trastuzumab in a live cell imaging experiment
demonstrated that this immunotoxin is, in the absence of saponins, enriched in acidic vesicles such as
endosomes and lysosomes [111]. The immunotoxins persist there, which finally leads to abrogation
of their cytotoxic effect. Furthermore, a small amount of the protein was not internalized. However,
after addition of the saponin SO1861 from Saponaria officinalis L. at a nontoxic concentration, the escape
of saporin-trastuzumab out of the endosomes or lysosomes into the cytosol was induced. It is
again important to mention that the cell membrane was not affected and the toxin remained inside
the cell [111].

An important advantage of antibodies is their ability to trigger antibody-dependent cell-mediated
cytotoxicity (ADCC) [131], which is initiated by the interaction of the Fc domain of the antibody with
the FcγRIII of natural killer cells (NK) [132]. This important mechanism might be affected due to
the chemical modification of the antibody with a toxin. Comprehensive impedance-based real-time
viability assays with the antibodies trastuzumab and cetuximab as well as with their corresponding
saporin-based immunotoxins were conducted with BT-474 (HER2-overexpressing) and HCT-116
(EGF receptor overexpressing) cells, respectively [115]. Both immunotoxins retained their ability
to trigger ADCC with an efficacy comparable to that of the unconjugated antibody demonstrated
in cell culture assays with freshly isolated NK-cells. The cytotoxicity of both conjugates was highly
enhanced by adding a nontoxic concentration of SO1861, confirming the synergistic augmentation [115].
Furthermore, the binding affinity of the modified antibodies to their tumor-specific cellular antigens
was not affected by toxin conjugation as displayed by surface plasmon resonance spectroscopy.
The specificity of binding was confirmed by the inhibition of the cytotoxic effect in the presence of an
excess of unconjugated antibody [111]. Similarly, a competitive fluorescence-based real-time binding
assay of dianthin-cetuximab also exhibits high receptor specificity. After blocking of EGF receptors by
unconjugated antibodies, the immunotoxin was not able to bind [133]. The application of saponins
does not affect the binding specificity of these immunotoxins. Moreover, since the enhancement effect
of saponins is not dependent on the targeting moiety as shown for a number of molecules including
EGF, rituximab, cetuximab, trastuzumab, panitumumab, and obinutuzumab, the option to freely
vary the ligands facilitates the development of a platform technology in the battle against solid and
hematologic tumors.

While independent of the targeting moiety of the targeted toxin, the saponin-mediated
enhancement factor of the cytotoxic effect is dependent on the cell line and on the expression and
internalization level of the target molecule (Table 1) [33,38,40,41,44,110,133]. The enhancement factor
is defined as the ratio of the concentrations in the absence and presence of saponins required for half
maximal growth inhibition compared to untreated controls. The enhancement factor is different for
varying targets (CD20, CD22, CD25) on the same cell line [44] and for the same target on a number of
different cell lines [110]. The latter effect appears to be mostly dependent on target receptor expression,
however, the enhancement factor decreased at very high amounts of the receptor. The reason for this is
that at a certain surface concentration of the target receptor, the maximum possible cytotoxic effect has
already been reached in the presence of saponins, i.e., further increase of the number of RIP molecules
in the cytosol cannot inactivate more ribosomes (lack of substrate) [110]. Since growth inhibition further
increases for higher target receptor expression in the absence of saponins (because only a low number
of RIP molecules enters the cytosol so that an increase still has an effect), the enhancement factor
begins to drop. As explained, this does not stand for quality loss. Since the endosomal escape effect
of saponins depends on pH, the abnormal pH regulation in tumor cells [134] might also contribute
to variations observed from cell line to cell line. When investigating non-specific enhancer effects of
saponins by applying a targeted toxin on off-target cells and a ligand-free toxin on target cells, it was
shown that there is some non-specific increase in cytotoxicity, however, this increase is much lower
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than the specific increase. The ratio of the enhancement factor for target cells and off-target cells was,
dependent on the cell line, calculated to 56 (HER14), 342 (MDA-MB-435S), 367 (MCF-7), 760 (CaSki),
1514 (HeLa), and 50,000 (SiHa), indicating a specific augmentation of the cytotoxicity for target cells.
Similar, the ratio of the enhancement factor for targeted cells treated by the targeted toxin and the
toxin alone was 4.2–4.5 (HER14), 10 (CaSki), 19 (MDA-MB-435S), 30 (HeLa), 266 (MCF-7), and 500
(SiHa) [33,110]. Thus, the specificity for the enhancement is both ligand- and receptor-dependent.
In addition, insertion of cleavable peptides, cell-penetrating peptides or ligand mutations into the
targeted toxin did not influence the enhancer effect of saponins [135,136].

Table 1. Enhancement factors for saponin-mediated cytotoxicity on different cell lines. GI50 refers to
half maximal growth inhibition compared to untreated cells.

Toxin Ligand Saponin GI50 without
Saponin [nM]

GI50 with
Saponin [nM]

Enhancement
Factor Cell Line Reference

Dianthin

EGF SA1641 0.45 <0.0000001 >4,000,000 HER14 [40]

Cetuximab
SO1861

>10 0.0053 >1886 HCT116
[133]Panitumumab >10 0.0015 >6666 HCT116

Trastuzumab >10 0.023 >434 BT-474

Saporin

EGF Saponinum
album

80 0.0011 76,000 PHCC1

[110]

24.5 0.0027 9000 PHCC2
>300 0.00012 >2,500,000 SiHa

53 0.0007 75,700 HeLa
5 0.00013 38,000 CaSki

2.5 0.0009 2800 HER14
206 0.012 17,100 MDA-MB-435S

Adapter-EGF

Quillaja
saponin

2.4 0.0017 1434 HER14
[38]27.2 0.013 2113 NIH-3T3

Saponinum
album

2.4 0.00018
0.00067 13,647 3560 HER14

[33,38]

27.2
135

0.014
0.13

1977
1050 NIH-3T3

1040 0.0027 385,000 MCF-7 [33]

EGF SA1641 57 <0.0000001 >4,000,000 HER14 [40]

Rituximab
SO1861

7 0.01 700
Ramos [44]Anti-CD22 0.5 0.003 170

Anti-CD25 1 0.04 25

HB2

Saponinum
album

139 0.31 448 Daudi

[41]

1000 * 0.88 * 1130 Ramos
0.5 * 0.003 * 146 HSB-2

BU12
965 0.00003 31,500,000 Daudi
1.5 * 0.000867 * 1730 Ramos
250 * 0.08 * 3140 HSB-2

4KB128
0.0139 0.0000226 615 Daudi
0.15 * 0.0000331 * 4520 Ramos
1000 * 25 * 39 HSB-2

OKT10
0.0532 0.000222 242 Daudi

1 * 0.000346 * 2890 Ramos
0.2 * 0.0007246 * 276 HSB-2

DF1513
0.0143 0.0000413 346 Daudi
0.8 * 0.000396 * 2020 Ramos

0.03 * 0.0001724 * 174 HSB-2

* Estimated number obtained from Figure 5 of the corresponding reference. EGF: epidermal growth factor; HER14:
embryonic mouse fibroblasts (NIH-3T3) stably transfected with human epidermal growth factor receptor; HCT116:
human colorectal carcinoma cells; BT-474: human breast ductal carcinoma cells; PHCC: human cervical carcinoma
cells; SiHa: human cervical squamous carcinoma cells; HeLa: human cervical adenocarcinoma cells; CaSki: human
cervical epidermoid carcinoma cells; MDA-MB-435S: human breast carcinoma cells; NIH-3T3: embryonic mouse
fibroblasts; MCF-7: human breast adenocarcinoma cells; Ramos: human Burkitt's lymphoma cells; Daudi: human
Burkitt's lymphoma cells; HSB-2: human lymphoblastic leukemia cells.
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4. Endosomal Escape in Animal Models

4.1. Biodistribution and Toxicity

The convincing enhancer effect of saponins for targeted toxins in cell culture needs to be
transferred to animal models for further development. In cell culture, both targeted toxins and
enhancer are continuously present in the medium and therefore available for the cell at any time.
But even in cell culture, the time interval between the application of the two substances and their order
of application (saponin added before, simultaneously with or after targeted toxin) strongly influences
the enhancer effect [33], indicating that uptake of saponins and targeted toxins into endosomes occurs
independently via different routes and different kinetics. In animals, in addition other aspects such as
distribution in the body, liberation, absorption, metabolization, and excretion influence the kinetics of
the saponins and targeted toxins, raising the question of whether it is possible to synchronize their
appearance inside the endosomes. Saponins with endosomal escape enhancer activity that are injected
subcutaneously into the neck are rapidly distributed in the body with highest concentration in the
kidneys after 10 min and in all other organs after 10 to 30 min. Nearly all of the saponin was found
in the urine after 30 to 60 min and only about 1% was observed in the tumor between 10 to 240 min
after injection [137]. It is assumed that part of the tumor-associated saponins become located inside
the endosomes and are then able to mediate the endosomal escape. This process appears to take some
time since injection of a targeted toxin results in a substantially lower effect when applied 10 min after
saponins compared to 1 h [137].

In contrast to kinetic investigations, which require strong effort to detect and quantify the saponins
in the different organs, toxicity studies are known for a number of saponins, however, most of
the studies dealt with oral toxicity, which is not of interest for tumor treatment. Hemolysis, liver
toxicity, and inflammation are the most prominent side effects of subcutaneously injected saponins.
The hemolytic effect strongly depends on the structure of the saponins [46,68,138]. In vivo, the applied
dose must be below the critical hemolytic concentration since otherwise progressive hemolysis will
lead to death. Investigations on the toxic effects of an anti-leishmanial triterpene saponin showed that
the target toxicity parameters leukocytosis, granulocytosis, lymphopenia, and the strong increase of
the liver enzymes alkaline phosphatase, aspartate, and alanine aminotransferase did not return to
normal pre-dose values within four weeks after subcutaneous dosing of 20 mg/kg for five consecutive
days, but when injecting 5 mg/kg, the effects were marginal and doses of 2.5 mg/kg or lower did
not differ from vehicle-treated control [139]. Subcutaneous injections of a saponin composite from
Gypsophila species with endosomal escape enhancer properties showed toxic effects at 5 mg/kg and
were lethal at 10 mg/kg, however, the typical dose of 0.75 to 1.5 mg/kg that is used for a combination
therapy of saponins with targeted toxins is not toxic [140]. The saponin SA1641 purified from this
Gypsophila saponin composite did not show any toxic effect at 5 mg/kg [36]. A more detailed analysis
was done for SO1861 from Saponaria officinalis L. [141]. All animals treated with 10 mg/kg SO1861
died on the second day of the experiment. All animals treated with 5 mg/kg or less stayed alive for
the entire observation period of 28 days. For some animals, a slight increase in aspartate and alanine
aminotransferase activity, glutamate dehydrogenase activity and serum creatinine levels was detected
in case of 3 mg/kg and 5 mg/kg, but no substantial increase in the average of these parameters
was observed compared to placebo-treated controls [141]. Mild alterations of the liver (e.g., single
cell necrosis) were detected by histopathological examinations in the majority of mice treated with
0.75–5 mg/kg SO1861. Less than 10% of these animals showed moderate liver damage (e.g., necrosis
of small groups of cells). In contrast, severe injuries of the liver were often induced in mice receiving
10 mg/kg SO1861. In all cases, SO1861 did not damage kidneys and spleens, however, the spleens
showed lymphatic hyperplasia indicating an immunogenic potential of the injected reagents [141].
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4.2. Efficacy

The question was now whether endosomal enhancer saponins are able to improve the efficacy
of an anti-tumor therapy with targeted toxins. Several tumor models were tested. Subcutaneous
application of a particular saponin composite (1.5 mg/kg) and a saporin-based targeted toxin
(0.005 mg/kg) in BALB/c mice bearing a solid tumor of mouse adenocarcinoma cells transfected
with human epidermal growth factor receptor resulted in 94% tumor volume reduction and complete
regression in seven of 10 cases [140]. Monotherapy with the same targeted toxin alone at the same
concentration only resulted in 42% tumor regression and even with the 50-fold dose of 0.25 mg/kg
only in 71% regression [124,140]. Side effects that find expression in observable complications, loss
of body weight, altered blood parameters, histologic changes, and immune responses were only
moderate and commonly reversible [140]. In a similar study with another saporin-based targeted toxin
and the purified saponin SA1641, complete regression was observed in all cases [36]. When saponin
SO1861 was used with the same targeted toxin, eight of 10 animals showed complete regression [141].
SO1861 was also tested in combination with a dianthin-based targeted toxin in a nude mouse model
with subcutaneous tumors consisting of HCT116 human colon carcinoma cells [142]. Mice treated
with 1.5 mg/kg SO1861 and 0.0175 mg/kg targeted toxin showed 96% tumor volume reduction and
complete regression in three of four cases. Low-grade toxic alterations of the liver such as single cell
necrosis and cytoplasmic degeneration were detected by histopathological analyses. Morphological
alterations were neither observed in pancreas nor lungs. The lymphatic tissue of the spleen revealed
a follicular hyperplasia in both verum and placebo group, which can be attributed to an immune
response of residual T cells to tumor formation [142]. The same combination of saponin and targeted
toxin was used for the treatment of pancreatic BxPC-3 cell carcinoma in nude mice [52]. There was an
average reduction in the tumor volume of 97% and four out of five mice showed complete regression
while monotherapy with the targeted toxin in absence of SO1861 only resulted in a 52% average
reduction of the tumor and no complete regression (two mice had continuous tumor growth and three
had retarded tumor growth). SO1861-induced skin hardening was observed at the injection site after
two therapy cycles, but after six therapy cycles no skin lesions were observed either at the injection or
at the tumor site. No altered values were detected in complete blood count analysis with the exception
of increased platelet count [52]. Summing up all the mentioned studies, complete regression of the
tumor was observed in 25 out of 32 mice treated with a saponin in combination with a targeted toxin.
There are a number of other publications where saponins were used as enhancers in combination
with other drugs in cancer therapy [18], however, in all these cases small molecule drugs were used,
e.g., cisplatin, 5-fluorouracil, or paclitaxel, and the enhancer effect is based on other mechanisms,
e.g., via cell cycle arrest, signaling pathways, and apoptosis [143,144].

5. Discussion

Surgery, conventional chemotherapy, and radiotherapy are the most relevant practices in the
treatment of cancer. While surgery is limited to accessible tumors, chemotherapy and radiotherapy
are often accompanied by severe side effects and formation of resistances. In the last decades more
specific therapies mainly comprising receptor tyrosine kinase inhibitors [145] and antibody-based
therapies [146] were developed. The efficacy of antibodies can be augmented by linking them to
cytotoxic substances and other targeting ligands such as growth factors and cytokines can replace
the antibody [147]. The toxic substances in protein-based drug systems are typically enzymes with
an extremely high cell killing potential [148]. Type 1 RIPs are ideal toxins for targeted anti-cancer
drugs since they are, once in the cytosol, highly toxic, and they can be coupled to any targeting moiety
specific for tumor cells, however, these enzymes lack a mechanism to enter the cytosol. As described
in this review article, a particular group of secondary plant metabolites that comprise saponins
with certain structural elements were found to substantially enhance the endosomal escape of RIPs
and to dramatically augment the efficacy of RIP-based targeted toxins in vitro and in vivo in mouse
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models [57]. The main question is now whether saponins are also a promising endosomal escape
enhancer in the clinic.

Important requirements for saponins designated to be employed as endosomal escape enhancers
can be formulated. (1) The natural source should be continuously available or alternatively,
an economically reasonable method for the synthetic production of the substance should be known;
(2) high grade purification and quality control must be possible; (3) long term stability must be
guaranteed; (4) the saponins must be excretable or biodegradable; (5) they should not substantially
interfere with metabolic processes of the organism; (6) they should not be toxic for regular cells; (7) they
should not augment the uptake of the targeted toxin into off-target cells; and (8) their appearance at
the site of action should be synchronized with the appearance of the targeted toxin.

The isolation of single pure products from complex natural mixtures is a challenging task, in
particular because the composition of secondary metabolites can considerably vary in individuals
of the same species dependent on growth conditions [149]. Therefore, high effort is required to
ensure a defined and reproducible quality of the natural substance. There are two strategies to solve
this problem, full chemical synthesis or production in plant cell bioreactors. Chemical synthesis
is possible, however, the sophisticated structure of saponin-based endosomal escape enhancers
requires comprehensive multistep syntheses, which are presently not economical [150]. Nevertheless,
an indisputable advantage of the chemical synthesis is the option to modify and optimize the structure
with regard to efficacy, side effects, immunogenic potential, size, and intricacy. An alternative to full
synthetic products is the synthesis of saponin analogues from building blocks obtained from natural
sources [151]. Bioreactor production makes the process independent of natural sources and allows
control of preferred products by additives, however, requires high investment [152,153].

The biological properties of saponins as endosomal escape enhancers mostly meet the needs.
They are stable, excretable, biodegradable, and do not interfere with important metabolic pathways.
As also reported in this review, they are not toxic when applied at concentrations not higher than
required for the augmentation of the endosomal escape. Nevertheless, a common feature of all these
substances is that they are per se not target-specific and distribute with other kinetics than the targeted
toxins. Thus, after application, the saponins can be found in any organ [137] connoting that specificity
is only mediated by the targeted toxin. If the toxin affects off-target cells, it is also augmented in
these cells. Moreover, distribution of saponins in the whole body requires higher concentrations for a
successful treatment as in the case of specific accumulation in target cells. The latter would improve
the safety profile of saponins but would not be able to solve the problem of different pharmacokinetics.
A lot of effort is necessary to find practicable solutions.

The mechanism of saponin-mediated endosomal escape is not fully understood. As described
before, a lot of descriptive data is available that helps us to understand structure–function relationships,
however, at the moment we are not in the situation to predict what we have to change in the saponins,
in the targeted toxins, and in the treatment regimen to further improve the efficacy and tolerance.
For instance, it was observed for a number of RIPs that they directly interact with saponins at acidic
pH and it was concluded that this might explain the enhancer effect, but in the meantime, other
molecules were found that are enhanced by saponins [45]. It has not yet been proven, but all the data
together appears to imply that the intracellular trafficking into endosomes or endolysosomes determine
whether cytosolic entry of a substance can be enhanced by saponins. Further understanding of the
mechanism of how these particular saponins manage to make the endosomal membrane somewhat
leaky without affecting other membranes will enable us to develop a more rational design of this drug
delivery system.

6. Conclusions

Particular saponins with certain defined structural features are potent molecules in order to
enhance the endosomal escape of tumor cell targeted toxins. This substantially improves the efficacy of
the toxins in vitro and in mouse tumor models. The saponins do not impair the integrity of the plasma
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membrane so that the specificity of the targeted toxins for cancer cells is retained although the saponins
are distributed in the whole body and also affect off-target cells. Compared to the monotherapy with
targeted toxins, the combination therapy has less side effects since the toxin can be applied at very
low concentrations and the saponins are employed at non-toxic levels. The major problem is the
synchronization of the pharmacokinetics of the two substances to deliver them at the same time to the
endosomes of the target cells. Solving this challenge might result in a promising new general drug
delivery system for cytosolically active macromolecules.
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