
1ScIentIfIc REPOrTS |  (2018) 8:3162  | DOI:10.1038/s41598-018-21530-7

www.nature.com/scientificreports

Georeferenced soil provenancing 
with digital signatures
M. Tighe1, N. Forster1, C. Guppy   1, D. Savage2, P. Grave3 & I. M. Young4

The provenance or origin of a soil sample is of interest in soil forensics, archaeology, and biosecurity. 
In all of these fields, highly specialized and often expensive analysis is usually combined with expert 
interpretation to estimate sample origin. In this proof of concept study we apply rapid and non-
destructive spectral analysis to the question of direct soil provenancing. This approach is based 
on one of the underlying tenets of soil science – that soil pedogenesis is spatially unique, and thus 
digital spectral signatures of soil can be related directly, rather than via individual soil properties, to 
a georeferenced location. We examine three different multivariate regression techniques to predict 
GPS coordinates in two nested datasets. With a minimum of data processing, we show that in most 
instances Eastings and Northings can be predicted to within 20% of the range of each within the dataset 
using the spectral signatures produced via portable x-ray fluorescence. We also generate 50 and 95% 
confidence intervals of prediction and express these as a range of GPS coordinates. This approach has 
promise for future application in soil and environmental provenancing.

Determining the provenance or origin of a soil sample is of interest in soil forensics and many archaeological and 
environmental tracing studies1,2. The approach taken in these fields is usually a combination of high precision 
analysis and expert interpretation of the results3, which can be both highly technical and time consuming4.

Determining the provenance of a soil sample may never be absolute5, but an indication of origin can be useful 
in many instances, such as guiding police in the initial steps of an investigation6, determining archaeological 
sources of trade goods such as ceramics1,3,7,8, or potentially even informing biosecurity9.

Different statistical approaches are popular when analyzing soil or similar data for provenancing work. These 
range from Principal Components groupings of data points through to more novel approaches such as Lark and 
Rawlins6 development of a spatial likelihood function. These types of existing analyses are still mostly dependent 
on the quantification of particular physical or chemical soil properties in both reference dataset samples and 
the samples of interest. This is a time consuming and costly process. While rapidity of analysis is not essential 
when estimating provenance, it could be a distinct advantage in both time and financial savings, particularly 
when reference databases may require hundreds or even thousands of samples to ensure robust baseline data for 
comparisons.

Several rapid semi-quantitative analyses exist that can provide spectral signatures or elemental abundance 
data for soil samples. Equipment such as portable Visible to Near Infrared (Vis-NIR) and portable X-ray fluo-
rescence (PXRF) spectrometers combine rapid and non-destructive analysis10–12. Visible to near infrared spectra 
in particular have been used to predict different soil properties such as soil carbon, pH, and mineralogy10,13–15. 
This is done using data mining techniques such as partial least squares regression, in which a large set of poten-
tial predictor variables are combined and compressed in multivariate space to produce a calibrated predictive 
regression16. To date, these combinations of spectral techniques and data mining approaches, have been used to 
predict soil provenance by first determining predicting soil chemical or physical properties, and then matching 
these properties to locations or soil types17–20. The success of this approach is due to the many spectral absorbance 
features in the visible to near infrared wavelength range that relate to different soil properties10. Similar multivari-
ate approaches using PXRF estimates of elemental abundances have been applied in the discipline of archaeology 
and palaeontology21,22.

If determining the provenance of soil is the aim of the analysis, then it may be possible to make the approach 
more spatially explicit. It is a basic tenet of soil science that climate, parent material, and land use history 
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combine at any given location to produce a soil with unique properties23. This uniqueness is reflected in elemen-
tal composition, mineralogy, and organic constituents of the soil24. Thus, it may be possible to combine rapid, 
non-destructive analysis that can detect one or more of these unique properties with data mining techniques to 
predict the actual provenance, or Global Positioning System (GPS) origin, of a soil sample of interest.

This study assessed the concept of predicting the actual GPS coordinates of samples by comparing a spectral 
signature with a reference set of spectra. Three data mining approaches were compared for each of two different 
rapid and portable analysis techniques – PXRF as a measure of elemental abundances in samples, and Vis-NIR as 
an amalgamated measure of minerals and compounds and other soil characteristics that respond in the measured 
wavelength range. The concept was assessed at two nested spatial scales within Australia.

Results
Individual Regressions.  Table 1 displays the regression metrics for Eastings and Northings in both datasets 
using the vis-NIR and PXRF data. In one instance (prediction of Eastings using Vis-NIR) did the spline based 
method (EARTH) appear commensurate with the two other regression methods (PLS and PCR). Otherwise, the 
latter two methods appeared to be more accurate predictors of both Eastings and Northings. In the instances 
where EARTH was a poorer predictor than the other techniques, it overfits the training data (data not shown). 
Eastings were best predicted by both scanning approaches using the Local dataset (within 14–18% of the range of 
distance within the dataset). Northing predictions were generally more consistent and provided better predictions 
at the Farm level compared with Easting predictions. However the best fits were still found using PLS or PCR 
with either scanning (PXRF or Vis-NIR) method, to within 14–18% of the range of Northing distances within the 
dataset (Table 1).

Cumulative Probability Curves.  Of the three potential predictors for Eastings and Northings at the Farm 
scale, PCR applied to PXRF data provided the best fit in terms of minimizing the prediction error at the cumula-
tive probability levels of 0.5 and 0.95 (50 and 95%) (Fig. 1). Figure 1 also indicates that PLS of Northings applied 
to Vis-NIR data at the Farm scale included some instability – the RMSE from one regression prediction was much 
lower (384 m – Table 1) than indicated by the cumulative probability curve of 1000 simulations drawing from the 
Farm dataset.

Figure 2 indicates that the ‘best’ predictor of Eastings at the Australian Local scale was also PCR applied to 
PXRF data. However, the Northings were best predicted at this scale by PLS applied to PXRF data.

Dataset plots with predictive windows.  Figures 3 and 4 display each dataset with the 50% and 95% 
confidence intervals of prediction. These rectangles can be considered ‘movable windows’ of average prediction 
confidence, as calculated from the test portion of the data. The relatively small difference in the 50% and 95% 
windows indicates the general steepness of the cumulative probability curves as depicted in Figs 1 and 2.

The predictive window in Fig. 3 was produced using the PCR regression of PXRF data for both Eastings and 
Northings. The lower precision of the Eastings predictions are represented by the longer x-axis of the predictive 
window compared with the Northings predictions. Figure 3 indicates that given an independent sample drawn 
from the area covered by the Farm dataset, the 95% confidence interval of prediction would be 640 m and 740 m 
on the Eastings and Northings axes, respectively. This equates to 41% and 25% of the east to west and north to 
south ranges respectively. The variable of most importance for both Eastings and Northings predictions was Fe, 
an element that is detected with high accuracy and precision by the PXRF11.

Figure 4 indicates the clustered yet overall spatially sparse nature of the Australian Local dataset, and the 
predictive window produced from the PCR regression of PXRF data for Eastings and the PLS regression of PXRF 

Scanning 
method Dataset Regression

Eastings Northings

Components1 R2 RMSE (%) AIC Components1 R2 RMSE (%) AIC

Vis-NIR

Australia – Farm

PLS 4 0.25 315 (20) 169 3 0.66 384 (15) 173

PCR 10 0.07 350 (22) 184 4 0.68 376 (14) 174

EARTH 8,6 0.24 318 (20) — 6,4 0.09 632 (24) —

Australia – Local

PLS 10 0.72 426 (14) 244 14 0.48 1604 (23) 301

PCR 18 0.72 427 (14) 260 15 0.54 1505 (22) 301

EARTH 7,5 0.56 535 (18) — 12,9 0.22 1973 (29) —

PXRF

Australia – Farm

PLS 8 −0.13 387 (25) 183 4 0.67 370 (14) 174

PCR 12 0.35 293 (19) 167 4 0.68 376 (14) 174

EARTH 7,5 −0.69 473 (30) — 13,9 0.51 461 (17) —

Australia – Local

PLS 12 0.62 496 (17) 254 17 0.75 1118 (16) 294

PCR 17 0.73 420 (14) 257 17 0.71 1208 (18) 297

EARTH 13,8 0.67 465 (16) — 16,11 0.53 1530 (22) —

Table 1.  Model fit parameters and prediction results of Eastings and Northings using Vis-NIR and PXRF 
analysis of Australian Farm and Local dataset samples. 1For PLS and PCR, components are the number of 
latent variables that minimized the adjusted general cross validation value on the training portion of data. For 
EARTH, the components are the number of terms and knot points automatically selected during the building of 
the piecewise splines of the model with 10-fold validation as per the methods section.
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data for the Northings. Figure 4 indicates that given an independent test sample drawn from one of the areas 
covered by the existing dataset, then a 95% predictive confidence interval in the Eastings axis equates to approxi-
mately 950 m and 2000 m on the Northings axis, or 32% and 29% of the dataset range on the respective axes. This 
would provide delineation between the Farm samples and the additional Local samples, but with some potential 
overlap between the sample clusters in the bottom right hand corner of Fig. 4. As with the Farm dataset, the vari-
able of most importance for both Eastings and Northings predictions at the Australian Local scale was Fe.

Discussion
The objective of this study was to determine if it would be possible to combine rapid, non-destructive sample 
analysis with data mining techniques to directly predict the georeferenced location of an unknown sample of 
soil. This concept is based on the understanding that both soil pedogenesis and ongoing soil development are the 
product of climate, parent material, topography and other factors that are unique to any given location24. This is in 
essence the same concept applied in many soil provenancing approaches, but until now it has almost exclusively 
been applied to matching one or more soil characteristics or inferring spatial location indirectly10,13,25. In this 
study the concept was applied directly to georeferenced soil samples in two datasets to illustrate the feasibility of 
the approach.

Lark and Rawlins6 provided a rare exception to the usual indirect inferences of soil provenance in which they 
developed a spatial likelihood function for prediction of sample provenance based on disjunctive kriging and 
the multivariate structure of a geochemical dataset. This approach generated a probability of including the ‘true’ 
location given a sample signature. However, the authors indicated that at the time of the study the process was not 
easily automated and the necessary modelling was tedious. By considering two forms of rapid, non-destructive 
analysis and three different data mining/multivariate regression techniques that are already included in the freely 
available R software package26, we have shown that it is possible to generate Easting and Northing predictions 
of on average, to within 20% of the maximum distance within the considered datasets. When we considered the 
95% prediction confidence intervals the error of these predictions did increase from less than 20% to 25–41% 
depending on the dataset and selected regression technique. While such accuracy is not in the realm required 
for true forensics applications, the ability to reduce an area of interest by ruling out areas with low probability 
has great potential in guiding more detailed provenance investigations across a range of disciplines. This appears 
particularly useful when local knowledge or soil expertise may be minimal.

Figure 1.  Cumulative probability distributions of distance predictions falling within a specified prediction 
error (m) for the Australian Farm dataset. The three regression approaches and instrument combinations as 
described in text are presented for (a) Eastings predictions and (b) Northings predictions. Vis-NIR = black 
lines, PXRF = grey lines. PLS = solid lines. PXRF = short dashed lines. EARTH = dash-dot lines.
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Although we examined which variable was statistically ‘most important’ for each final predictive regression, 
the small size of the datasets precludes any in-depth analysis of which on-ground variables may be greatly affect-
ing each model. However, it is noteworthy that both final dataset predictions of Eastings and Northings relied 
heavily on total Fe abundance in a relatively small area that is known to have a contrasting mix of granitic and 

Figure 2.  Cumulative probability distributions of distance predictions falling within a specified prediction error 
(m) for the Australian Local dataset. The three regression approaches and instrument combinations selected 
as described in text are presented for (a) Eastings predictions and (b) Northings predictions. Vis-NIR = black 
lines, PXRF = grey lines. PLS = solid lines. PXRF = short dashed lines. EARTH = dash-dot lines.

Figure 3.  Sample points for the Australian Farm dataset, with the simulated average 50% (dark grey) 
and 95% (light grey) prediction space for the independent test samples overlain as the moving window of 
average prediction uncertainty as per text. As such the size of the shaded rectangles can be taken as graphical 
representations of model predictive performance. Prediction spaces were extracted from the probability 
distributions with the lowest cumulative error in Fig. 1.
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basaltic parent materials which should generate, through pedogenesis, soils with contrasting total Fe signatures24. 
This suggests that given a reference dataset of appropriate sampling density and additional meta-data such as 
geological information, then estimates of variable importance may play a further role in improving provenance 
predictions. This also supports the use of Fe rich minerals in other provenancing studies in which different miner-
als can be diagnostic of climate related conditions, such as with the Chinese Loess Plateau27, and suggests benefits 
in combining this rapid approach with other, more specific provenancing techniques, including mineralogy, grain 
size and magnetic enhancement work28–30.

The generally superior predictive performance of PXRF data needs to be placed in the appropriate analy-
sis context. Vis-NIR scans take 30 seconds (10 second scans in triplicate per sample) while the PXRF scans 
undertaken for this study were 18 minutes, not including the time taken to change the instrument parameters 
between analysis of ‘light’ and ‘heavy’ suites of elements. Reducing the PXRF analysis time to that of the Vis-NIR 
may see the latter analysis become the better provenance predictor. In addition, including some further data 
pre-processing of the Vis-NIR data (such as additional smoothing, examining the derivatives, or the log(1/reflec-
tance) values) may improve the predictive capacity of this technique10. Similarly, longer PXRF scans may increase 
predictive power compared with results of this current study, as there is a well-documented relationship between 
X-ray scan time, accuracy and precision using PXRF8,11.

We have demonstrated how this concept of direct provenancing of georeferenced values can be applied due 
to the unique spatial nature of soil pedogenesis processes. This has already been proven numerous times in the 
related context of digitally determining soil chemical and physical characteristics that are helpful in inferring soil 
provenance3,4,17–19. There is much scope for development of this approach. In the vein of studies such as Viscarra 
Rossel and Behrens15, there are numerous data mining techniques that could be trialed and assessed. Similarly, 
there is a wealth of both rapid and more time consuming non-destructive soil analysis techniques, ranging from 
categorical morphological descriptors through to high resolution X-ray diffraction spectra3 that could be incor-
porated into such an approach. Many data mining techniques can accommodate both discrete and continuous 
data types, so different analysis types do not need to be examined in isolation – the use of complementary data 
may greatly improve spatial predictions, or permit verification of a provenancing conclusion from one method 
using another, independent method in an integrated approach as suggested by Nie and Peng31.

Another avenue of investigation is that of increasing rapidity of analysis versus any potential sacrifices in accu-
racy and/or precision of the predictions. In this study, we examined two rapid analysis techniques but undertook 
sample processing (drying and grinding) to increase analysis accuracy and precision at this proof of concept 
stage. Some rapid, non-destructive techniques are quite sensitive to additional factors such as water content and 
sample size (Vis-NIR in particular has spectral components that respond strongly to water10). Examining any loss 
of accuracy and precision of predictions as sample processing is reduced would help place this analysis approach 
in context – it may be a truly rapid, on-site application or it may be reserved for ‘rapid’ production of results com-
pared to more time consuming, specialized analysis such as that reserved for true forensic evidentiary processes.

In any provenance study appropriate reference sample databases to compare unknown samples with is of 
paramount importance10. In this proof of concept study, we used two small, nested datasets as reference material. 
Any further investigation of the approach we have presented here would need to be undertaken in conjunction 
with the development or use of dataset(s) covering the initial area of interest at sufficient spatial resolution to 
make predictions sensible and useful. The successful application of the approach outlined here will depend upon 
the availability of a soil reference dataset matched to the appropriate scale of investigation (local, regional or even 
national), with appropriate caveats built into the interpretation of results. In particular, the influence of varying 

Figure 4.  Sample points for the Australian Local dataset, with the simulated average 50% (dark grey) 
and 95% (light grey) prediction space for the independent test samples overlain as the moving window of 
average prediction uncertainty as per text. As such the size of the shaded rectangles can be taken as graphical 
representations of model predictive performance. Prediction spaces were extracted from the probability 
distributions with the lowest cumulative error in Fig. 2. The samples of the Local dataset that also comprise part 
of the Farm dataset are shown as filled dark grey squares.
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soil properties upon the robustness of the technique, such as organic matter or soil moisture ranges and influence 
on the regression approaches, need examination.

Similarly, how soil forming factors combine to produce a signature may potentially lead to ‘false positives’ if 
the approach is applied to areas without a robust reference set, or across areas that have similar digital signatures, 
needs to be examined. In such situations there exist a wide range of diagnostic techniques that are of use, from 
mineralogy through to isotopic provenancing approaches. In many instances, a combination of the approach 
we have demonstrated here along with other tools may be most beneficial, either using this rapid approach as 
a screening tool to reduce search areas, followed by more time consuming diagnostic approaches, or by using 
a diagnostic approach to eliminate areas across larger spatial scales (such as climatic zones or areas of dispa-
rate minerology) that pertain to local datasets, and then applying this rapid technique to the subset of data that 
remains. For example, Nie et al.28 used a combination of zircon U-Pb dating, heavy minerals and framework 
petrography to demonstrate where sediment from Northeast Tibet has been carried to via the Yellow River over 
very long time periods. Bird et al.29 applied a similar multi-faceted approach to long distance dust provenancing. 
Such approaches provenancing could be used in combination with the rapid screening approach here to further 
refine predictions of provenance31.

In addition, there is a large literature examining spatial correlation of predictions and ways to cope with such. 
While spatial correlation was minimal in this study, the checks of such as undertaken here are an integral part of 
such provenancing work. It is possible that modifications to typical regressive type approaches, such as the lag 
incorporations demonstrated by Lewis and Stevens32, or more contemporary regression-kriging analysis, possibly 
in combination with data mining approaches33, may be required in some instances.

These are not unique or new propositions, but important consideration in any soil provenancing approach 
that uses a reference dataset6,14. If the type of approach presented here ultimately proves useful in real-world 
contexts, then reference datasets may be developed for specific areas of interest, and statistical properties of such 
datasets, such as spatial correlations, should be determined. For example, border areas of neighbouring countries 
that experience biosecurity issues34 or criminal problems35.

In this study, we have developed a direct georeferenced soil provenancing approach that we consider useful in 
the context of numerous soil provenancing questions which all generically amount to the same query – i.e. how to 
exclude some areas or to narrow an area of interest in an examination. We have done this by applying one of the 
foundation concepts of soil science – that soil development factors combine uniquely at any given location to pro-
duce a spatially distinct soil – with rapid analysis that collects a signature related to numerous soil characteristics 
at once. This approach is amenable to different types of data and data mining approaches, and appears quite useful 
in reducing areas of interest in a given examination. It does remain to be determined if this type of approach could 
discern the likely provenance of ‘mixed’ samples, but we envisage such an approach as being potentially useful as 
a precursor to more rigorous and formal soil analysis for forensic purposes7 in certain instances. Like many prov-
enancing approaches, an appropriate reference dataset for comparison to question samples will be of paramount 
importance in further applications.

Methods
Sample collection and dataset rationale.  The collection of the two sets of data were designed to start 
with a relatively high density grid of samples at the farm scale and then add sparse additional samples at georef-
erenced points at what was considered a local scale (additional samples from nearby farms). These datasets are 
referred to as the Australian Farm and Local datasets respectively.

The Australian Farm dataset consisted of 100 samples taken on a grid across a 746 ha research station owned 
by the University of New England, Armidale NSW Australia (east to west range of 1561 m and north to south 
range of 2647 m). The Australian Local dataset consisted of the Farm dataset plus an additional 60 samples 
sourced from agricultural paddocks in the immediate vicinity of the University of New England, Armidale, NSW 
Australia (east to west range of 2984 m and north to south range of 6886 m). These additional 60 samples were col-
lected on a random walk within paddocks (sampling stratified across any obvious slope differences). All samples 
for the Farm and Local datasets were taken from the 0–5 cm depth interval. Study location and sample points are 
displayed in Supplementary Figure 1.

All samples were georeferenced with a hand-held GPS device referencing the WGS84 datum and plotting to 
the UTM grid system (Eastings and Northings as the geographic Cartesian coordinates in this system, analogous 
with latitude and longitude in some other coordinate systems but expressed in metres). All samples were air dried 
and ground by hand to <2 mm prior to analysis.

Vis-NIR.  Approximately 2 g of each of the ground samples was placed in a small plastic petri dish for analysis. 
The diffuse reflectance spectra was measured using the Terraspec vis-NIR spectrometer with a spectral measure-
ment range of 350–2500 nm (ASD, Boulder, Colorado USA). A thin plastic film was used to cover the contact 
probe to allow close contact between the sample and probe (rather than scanning from below through a trans-
parent sample container15). To compensate for the added interference of the plastic film, the spectrometer (with 
plastic film in place) was calibrated against a white Spectralon calibration panel before each sample reading. 
Scanning occurred at sampling intervals of 1.4 nm for the spectral region 350–1000 nm and 2 nm for the region 
1000–2500 nm. The maximum spectral resolution was 3 nm FWHM at 700 nm. Each sample was analysed three 
times (consisting of 100 internal replicates per scan) and an average spectra taken. Sample scanning time was 
10 seconds. Spectra were collected in the associated equipment software R3 and were exported in the associated 
software TSG7 as csv files for statistical analysis. Data points between spectral resolutions were interpolated auto-
matically during data processing, resulting in 2150 variables (wavelength readings) per sample. Each candidate 
variable was expressed in arbitrary reflectance units scaled between 0 and 1.
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PXRF.  Ground samples were prepared as described previously11. Briefly, samples were placed in a small poly-
ethylene container and sealed with a sheet of thin polyethylene film. Samples were analysed with a Bruker Tracer 
SD PXRF spectrometer. The instrument used a Rh miniature X-ray tube equipped with a Si-Pin detector with 
an active detection area of 7 mm2 and a resolution of 170 eV (determined at the Mn Kα edge). Samples were 
scanned in triplicate under two different PXRF settings. Low-Z elements (elements Na to Fe) were determined 
under vacuum conditions via a scan at 15 keV and 20 µA, and medium to high-Z elements (elements Fe to Pb) 
were determined via a scan at 40 keV and 30 µA using a 0.152 mm Cu, 0.025 mm Ti, 0.305 Al filter in the incident 
x-ray path. Scans were conducted at a 180 second live count per setting resulting in a total scan time of approx-
imately 18 minutes per sample (including triplicates). All results were collected as raw spectra in the equipment 
software (S1PXRF 3.8.30) and converted in Spectra 7.2.1.1 to counts (relative abundance estimates of individual 
elements) using the net area under each elemental response curve after Bayes deconvolution. Abundance values 
were exported as csv files for statistical analysis, resulting in 21 variables (elements) per sample. Thus, the can-
didate variables were the elements Al, Br, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Nb, Ni, P, Rb, Si, Sr, Ti, V, Y, Zn, and 
Zr expressed as relative abundance estimates. Elements were selected based on standard recommendations for 
screening soil samples with PXRF. No attempt was made to reduce the elemental dataset by comparison to detec-
tion limits or potential interferences between elemental peaks. Rather, all calculated abundances were included 
as spectral responses of low elemental certainty are still potentially unique signals pertaining to a sample’s origin.

Statistical analysis.  Both Vis-NIR and PXRF data were analysed using three different data mining tech-
niques aimed at reducing high dimensionality data to a useful predictive regression; partial least squares regres-
sion (PLS), principal components regression (PCR), and enhanced adaptive regression through hinges (EARTH).

Partial least squares regression is a popular chemometric technique for constructing predictive regressions 
from datasets in which the number of predictive variables may outnumber the samples, and/or when predictive 
variables are highly collinear16,36. Partial least squares regression compresses the data and can be considered a 
shrinkage method – selecting orthogonal factors (latent variables) from the higher dimension set of possible 
predictors by maximizing the covariance explained between predictors and response. Principal components 
regression is a very similar technique but does not include information from the response variable when selecting 
predictors (focusing on the variance of predictors, rather than covariance between predictors and response). 
While PLS is considered to have an advantage over PCR, in practical applications the differences are often slight 
and there are some situations in which PLS may increase the variance of individual regression coefficients36.

Enhanced adaptive regression through hinges is an application of the multivariate adaptive regression splines 
approach. It is a non-parametric multivariate regression approach in which the regression is built upon a series 
of splines. The parameters of the individual splines are determined via the data properties and ‘splits’ in the data 
structure that maximize the variation explained. The individual models are then combined into one additive 
regression. For further detail see Friedman37.

The dependent variables in each instance were the Eastings and Northings of the samples within each dataset. 
Each data mining technique was undertaken using each dataset and each of the dependent variables in turn. For 
each analysis, 30% of the dataset was randomly assigned to a test group to assess the predictive regression. Partial 
least squares and PCR were undertaken using the pls package36 in the statistical programming software R 3.2.226. 
For both regression techniques, the appropriate number of latent variables was determined by examining the 
Adjusted General Cross Validation (GCV) estimates across models with a range of latent variables (1–35) and 
selecting that which minimized the GCV of the training portion of the dataset. The EARTH analysis was under-
taken using the earth package in R38. For the EARTH analysis a 10-fold cross validation was used to fit the model 
to the training portion of each dataset with automated optimized selection of the number of terms and spline 
knots for the piecewise functions used to build the additive predictive regression. The final number of latent vari-
ables and the number of terms and spline knots for the EARTH analysis can be found in Table 1.

Following the above modelling, the predictive capacity of each selected model was then assessed on the test 
portion of each dataset using both the generalized R2 and the root mean square error of prediction (RMSE) 
values39. Root mean square error values were also expressed as a percentage of the total range of variation in the 
dataset (i.e. expressed in metres, and in percentage of total range of metres in the dataset). Akaike’s Information 
Criterion (AIC) was also computed for PLS and PCR analyses to provide information on parsimony. A directly 
comparable form of AIC does not exist for EARTH and thus was not calculated.

As each of the regression models may produce different results and possibly different degrees of spatial cor-
relation depending on the subset of data randomly selected for cross-validation, the stability of the above pre-
dictions for each dataset were further assessed and cumulative probability distributions of prediction error were 
generated via simulation. Within each dataset analysis, the three regression models with the combination of the 
lowest AIC (for PLS and PCR), highest R2 and lowest RMSE values for each dependent variable (Easting and 
Northing) were recalculated after randomly drawing 70% of data from the training portion of each dataset. The 
generated predictive regression was then applied to the test set of data and the errors in prediction calculated. This 
process was repeated 1000 times and cumulative probability distributions of prediction error generated. These 
probability distributions were plotted and assessed graphically to further determine the best regression model to 
use for predicting Eastings and Northings within each dataset (Figs 1 and 2).

The ‘best’ predictors of Eastings and Northings were selected based on these curves (i.e. those curves with 
the steepest slopes and overall lowest prediction error across the probability space of 0–1). The 50% and 95% 
confidence intervals of prediction were estimated from these curves and plotted graphically in association with 
the respective dataset. Thus, Figs 3 and 4 show the sample points of the two datasets (including the spatial con-
text of the Farm samples in relation to the additional Local samples) as well as two ‘average’ windows of sample 
prediction. These windows or rectangles represent the spatial range of Eastings and Northings that correspond 
to the average 50% and 95% prediction interval of all GPS values drawn from the test datasets. These can be 
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interpreted as the average estimate of prediction confidence intervals when all test samples are considered via the 
1000 iterations of prediction and thus graphically represent both the average prediction interval for the approach, 
and a visual representation of model performance. Practically these can be interpreted as ‘movable windows’ of 
prediction intervals that can be mentally placed over any part of the plotted dataset in lieu of individual sample 
estimates of prediction (which will provide estimates of prediction windows for individual samples rather than an 
indication of overall performance of the model when applied to the test set of data).

Variable importance and additional analysis.  The three data mining techniques were interrogated to 
develop an indication of the statistical importance of individual variables to the overall multivariate regression. 
For the final, ‘best’ predictors of Eastings and Northings for each dataset, variable importance was determined 
using the loadings function in the pls package for PLS and PCR36, and the drop1 function in the earth package for 
EARTH38. Only the most influential variable for each model is reported, so as to demonstrate the possibility of 
this type of model interrogation but not to place a large amount of emphasis on individual variables in this proof 
of concept study.

As multivariate calibrations using Vis-NIR data are often improved using the derivative of the spectra rather 
than the spectra itself, Vis-NIR data from the Local dataset were analysed both as raw absorbance spectra and as 
the first derivative of the spectra. The first derivative was calculated using the Savitzky-Golay algorithm with a 
filtering window of 10 data points and a quadratic smoothing term40. No improvements in the calibration results 
were found using the first derivative of the Vis-NIR data and these results are not discussed further.

In addition, the ‘best’ predictors as used to generate Figs 3 and 4 were also investigated for spatial correlation. 
As the ultimate goal of the analysis was to predict spatial locations as Eastings and Northings, the typical defini-
tion of spatial correlation in this instance was analogous to the more general interpretation of correlation between 
predicted results (heteroscedasity of predicted values). In addition, the concept of spatially correlated raw spectra 
cannot be defined without first applying a shrinkage method such as PLS (as each original data point is actually 
comprised of thousands of points). Thus, two approaches were taken to assess ‘spatial’ correlation. Firstly, pre-
dicted values were examined for heteroscedasticity via standard diagnostic plots. Secondly, using an approach 
similar to Overmars et al.41 and Lewis and Stevens32 we generated the variograms (omnidirectional) for the errors 
in the Eastings and Northings predictions using both the Farm and Local datasets using the variog function in 
the geoR package42. The Eastings predictions at the farm level showed some weak spatial correlation for samples 
<400 m apart which was considered minimal in this instance (Supplementary Figure 2). All other predictions 
showed no discernable spatial correlation.

Data availability.  The datasets generated and analysed during the current study are available from the cor-
responding author on reasonable request.
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