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Mechanistic Models Predict Efficacy of CCR5-Deficient
Stem Cell Transplants in HIV Patient Populations

I Hosseini1,2and F Mac Gabhann1,2*

Combination antiretroviral therapy (cART) effectively suppresses viral load in HIV-infected individuals, but it is not a cure.
Bone marrow transplants using HIV-resistant stem cells have renewed hope that cure is achievable but key questions remain
e.g., what percentage of stem cells must be HIV-resistant to achieve cure?. As few patients have undergone transplants, we
built a mechanistic model of HIV/AIDS to approach this problem. The model includes major players of infection, reproduces
the complete course of the disease, and simulates crucial components of clinical treatments, such as cART, irradiation, host
recovery, gene augmentation, and donor chimerism. Using clinical data from 172 cART-na€ıve HIV-infected individuals, we
created virtual populations to predict performance of CCR5-deficient stem-cell therapies and explore interpatient variability.
We validated our model against a published clinical study of CCR5-modified T-cell therapy. Our model predicted that donor
chimerism must exceed 75% to achieve 90% probability of cure across patient populations.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 82–90; doi:10.1002/psp4.12059; published online 16 February 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � In 2008, the Berlin patient underwent a bone marrow
transplant from a CCR5D32 donor. Since then, he has shown no signs of active HIV-1 replication in the absence of
cART. This approach was recently shown to reduce viremia and to return T cell counts to normal levels in pigtail maca-
ques, however, clinical data remains limited, as few patients have undergone transplants. • WHAT QUESTION DOES
THIS STUDY ADDRESS? � The following questions were addressed: (i) given that patients will have a chimeric immune
system after the transplant, what percentage of stem cells must be HIV-resistant for a cure to work? and (ii) what is the
minimal level of anti-HIV activity needed in these cells to achieve cure? WHAT THIS STUDY ADDS TO OUR KNOWL-
EDGE � The mechanistic model introduced in this work reproduces the complete course of HIV/AIDS, captures varia-
tions in clinical measurements across patient subpopulations, and simulates crucial components of stem cell transplants.
The model predicts the probability of cure for CCR5-deficient stem cell therapy across patient populations. • HOW THIS
MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS � Bone marrow transplants using HIV-resistant
stem cells have renewed hope that cure is achievable but key questions remain to be answered. Our model will help
answer those questions, design stem cell-based therapies, and predict clinical studies.

Thirty-two years after the discovery of human immunodefi-

ciency virus (HIV), there has been only one reported case

of a functionally cured HIV-infected individual. This individ-
ual, known as the “Berlin patient,” was treated in 2008 with

myeloablative irradiation and hematopoietic stem cell trans-

plant from a donor with a homozygous CCR5D32 mutation
conferring resistance to HIV.1,2 Since then, the recipient

has not used combination antiretroviral therapy (cART) and

the virus seems to be eliminated. Two “Boston patients”
seemed HIV-free after reduced-intensity conditioning hema-

topoietic stem cell transplant from donors without the rare

CCR5D32 mutation; however, their new immune systems
were vulnerable to reinfection and the virus rebounded after

7 and 15 weeks.3 Thus, irradiation and transplant are likely

insufficient for cure without anti-HIV activity in the immune

system. Since 2008, at least six other patients received a
graft from a donor with a homozygous CCR5D32 muta-

tion.4,5 However, none survived for longer than one year,

suggesting that other key factors, such as graft-vs-host

effects, are involved in the success of the therapy.
Finding a rare matched donor who also has a homozy-

gous mutation in CCR5 for each patient with HIV is very

challenging. However, the HIV-resistance conferred by the

CCR5D32 mutation could be recapitulated in donor cells
by ex vivo knockout or editing of CCR5 before transplant.

This could provide HIV-resistance to the new immune sys-

tem, assist in viral elimination from the recipient’s system
(Figure 1a), and lead to a functional HIV cure.6 This

approach was recently shown to reduce plasma viremia

and to return T cell counts to normal levels7 in pigtail
macaques that underwent bone marrow transplants aug-

mented with mC46,8,9 a virus fusion inhibitor. However,

key questions remain: (a) given that patients will have a

chimeric immune system after the engraftment, what per-
centage of the cells must be HIV-resistant in order to

clear the system? (b) what is the minimal level of anti-HIV
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activity needed in these cells to achieve cure? Given the

small number of patients with HIV who have undergone

bone marrow transplants10 and the limited number of ani-

mal experiments,7,11–13 we built a novel mechanistic

model of HIV infection to answer these questions. Using

the model, we study the complex pathogenesis of HIV,

design and test CCR5-based therapies, and explore inter-

patient variability in response to these therapies.

METHODS
Description of the model
Our model is built using components of previous well-

established models of HIV dynamics by others14–25 and

models of host-pathogen molecular interaction and ther-

apy from our laboratory.26,27 Previous models of HIV

dynamics could predict some features of in vivo HIV/

AIDS, such as the biphasic viral decay after starting

Figure 1 Anti-HIV stem cell therapy and mechanistic model of HIV infection. (a) Finding matched donors with homozygous CCR5
mutation is challenging. Instead, hematopoietic stem cells can be collected from the patient (autologous) or a matched donor (alloge-
neic) and treated to become HIV-resistant. This can be done by knocking out CCR5 or by inserting anti-HIV genes, such as APOBEC3
family, SAMHD1, or on-demand apoptosis-inducing circuits. Treated stem cells expanded ex vivo are re-infused into the patient after
bone marrow or total body irradiation to kill the patient’s own stem cells. Irradiation does not eliminate 100% of the recipient’s stem
cells or immune system. Therefore, the post-engraftment immune system will be chimeric (i.e., a mixture of immune cells that are prog-
enies of the donor and recipient stem cells). (b) The model includes key components of the infection: the virus (red circles), and multi-
ple immune cell types: CD41 T cells (blue), monocytes/macrophages (orange), and CD81 cytotoxic T lymphocytes (purple). We also
track wild type (light colors) and augmented (dark colors) CD41 T cells and macrophages, in which CCR5 has been rendered dysfunc-
tional (e.g., knocked out or edited). Blue circles with a small red or white circle inside them represent productive and latently infected
CD41 T cells, respectively. Solid arrows demonstrate the mechanisms included for each cell type in the model, whereas dashed
arrows pointing out of cells or viruses indicate which mechanisms they impact. More details, including differential equations and
detailed model description, are provided in Supplementary Method S1.
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cART. However, they also have shortcomings (e.g., most

models assume that the disease is at a steady state, do

not reproduce the late-stage viremia, focus only on acute

or chronic infection, fail to reproduce the clinical results

for both treated and untreated patients, have some unreal-

istic parameter values, and/or are trained with limited viral

load or CD41 data). To address these issues, we built a

mechanistic model of HIV/AIDS that captures the com-

plete course of the disease, reproduces both treated and

untreated patients, has constant parameters that take bio-

logically relevant values, is trained with viral load, CD41

and CD81 data, uses cohort data to capture interpatient

variability, and has the ability to test anti-HIV CCR5-based

therapies. The model includes key components of the

infection: the virus, and multiple immune cell types: CD41

T cells, monocytes/macrophages, latently infected CD41

T-cells, and CD81 cytotoxic T lymphocytes. We also track

wild type (WT) and augmented cells, in which CCR5 has

been rendered dysfunctional (e.g., knocked out or edited;

Figure 1b). The model was developed in SimBiology

(MathWorks, Natick, MA). See Table 1 for parameters

used in the model and Supplementary Method S1 for

model equations and detailed description.

RESULTS
Clinical data

To train and validate our model, we used the publicly avail-

able dataset (release P20 at http://www.ntis.gov/) of the

Multicenter AIDS Cohort Study, which includes longitudinal

semiannual clinical measurements of patients from 1984–

2007. The dataset has information from 6,972 individuals,

including seronegatives, seropositives, and seroconverters.

In this study, we were interested in cART-na€ıve HIV-infected

individuals, whose date of HIV seroconversion and date of

initial AIDS diagnosis were (approximately) known. This

resulted in 172 patients (see Supplementary Method S2).

We categorized patients based on their progression time to

AIDS into 4 subgroups: AIDS occurring before 3.5 years

(rapid progressors, N 5 32), between 3.5 and 7 years

(N 5 61), between 7 and 9 years (N 5 39), and after 9 years

since seroconversion (slow progressors, N 5 40). There are

significant variations in the clinical measurements, e.g.,

plasma viremia, CD31CD41 and CD31CD81 T cell

counts among individuals within each subpopulation of

patients with HIV (Figure 2a,b,c and Supplementary

Figure S1); for example, one year post-seroconversion,

Table 1 Parameters of the model, definitions, and the mechanism they represent

Parameter Mechanism Definition

sT T cell generation Production rate of uninfected CD41 T cells

fT T cell generation Percentage of augmented stem cells, which produce CCR52/2 CD41 T cells

rT T cell proliferation Proliferation rate of uninfected CD41 T cells in the absence of infection

pT T cell proliferation Max. proliferation rate of uninfected CD41 T cells due to infection

cT T cell proliferation Conc. of virus, at which the proliferation rate of uninfected CD41 T cells due to infection is half of pT

dT T cell apoptosis Death rate of uninfected CD41 T cells

kVT T cell infection Rate constant for infection of CD41 T cells by HIV

kMT T cell infection Rate constant for infection of CD41 T cells by infected macrophages

aCCR5 T cell infection Reduction in kVT for CCR52/2 CD41 T cells

eCCR5 T cell infection Reduction in kMT for CCR52/2 CD41 T cells

kL T cell latency Fraction of infected CD41 T cells that become latently infected.

aL Act of latent T cells Activation rate of latently infected CD41 T cells

dTI Infected T cell death Death rate of infected CD41 T cells

kET Infected T cell kill Rate constant for killing of infected CD41 T cells by CD81 T cells

dL Latent T cell death Death rate of latently infected CD41 T cells

sM Mu generation Production rate of uninfected macrophages

fM Mu generation Percentage of augmented stem cells, which produce CCR52/2 macrophages

pM Mu proliferation Maximum proliferation rate of uninfected macrophages due to infection

cM Mu proliferation Concentration of virus, at which the proliferation rate of uninfected macrophages due to infection is half of pM

dM Mu apoptosis Death rate of uninfected macrophages

kVM Mu infection Rate constant for infection of macrophages by HIV

bCCR5 Mu infection Reduction in kVM for CCR52/2 macrophages

dMI Infected Mu death Death rate of infected macrophages

kEM Infected Mu kill Rate constant for killing of infected macrophages by CD81 T cells

sE CD81 T cell gen. Production rate of CD81 T cells

pE CD81 T cell prolif. Maximum proliferation rate of CD81 T cells due to infection

cE CD81 T cell prolif. Conc. of CD41 T cells, at which the proliferation rate of CD81 T cells due to infection is half of pE

dE CD81 T cell death Death rate of CD31 CD81 T cells

dV Virus clearance Clearance rate of free virus

nT Virus production Burst size of infected CD41 T cells

nM Virus production Burst size of infected macrophages
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CD41 T cell count ranges from 100 to 1,200 cells/lL in

rapid progressors (Figure 2b). There is also substantial

variability in the baseline levels of CD41 T cells before

infection (day 0 in Figure 2b and Supplementary Figure

S1e,f,g,h). Between subpopulations, there is a high degree

of overlap; however, rapid progressors have the highest

viral loads in the shortest period of time with rapid decline

in the CD41 T cell counts, whereas slow progressors show

relatively stable viral load and CD41 T cell counts for a lon-

ger time compared with other populations. We also

observed that CD81 T cell count increases until the mid-

chronic stage of HIV and then tends to drop (Figure 2c

and Supplementary Figure S1i,j,k,l), suggesting homeo-

stasis failure before the onset of AIDS.28 Most published

models of HIV dynamics only reproduce the average pro-

files of viral load and CD41 T cell counts and use that

model to predict the efficacy of treatments. This gives a lim-

ited view of treatment efficacy, as the huge interpatient vari-

ability is neglected. In this work, we build models to capture

the range of variability observed in patients and use that

information to run virtual clinical trials and predict

the interpatient variability of treatment performances. See

Supplementary Table S1 for more information on patient

characteristics and their clinical measurements.

Average clinical profiles can be reproduced using

multiple different parameter sets with biologically

relevant values
To train our model, we used average profiles of viral loads,

CD41 and CD81 T cell counts in each subpopulation. We

used the scatter-search based optimization method29 to find

the parameter values that generate curves with the best fit (the

lowest error) to the clinical data (Supplementary Figure S2).

Figure 2 Clinical data, model calibration, and generation of virtual population. (a–c) From the Multicenter AIDS Cohort Study (MACS)
cohort, we collated viral load, CD41 and CD81 T cell counts from combination antiretroviral therapy (cART)-na€ıve HIV-infected individ-
uals with known dates of HIV seroconversion and initial AIDS diagnosis; shaded regions: 5th and 95th percentiles of the aggregated
data; dark colored lines: average and standard deviation. (d–f) We calibrated the model to match the average clinical data in rapid pro-
gressors; see Supplementary Figure S3 for all subpopulations; symbols: average clinical profiles; curves: 100 best fits. (g) The
boxplots represent parameters values corresponding to the 100 best curves. See Supplementary Figure S4 for all parameters;
(h–j) Virtual patient population captures the observed variability in clinical measurements of cART-na€ıve rapid progressors and is vali-
dated against clinical data from decay of plasma viremia in another group of cART-treated patients who received cART at 208 dpi30;
symbols: average clinical profiles; dashed lines: 5th and 95th percentiles of the aggregated data; black symbols: clinical data for the
viral load decay; gray regions: temporal histograms of cART-na€ıve patients; blue region: cART-treated virtual patient profiles.
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Parameter values were confined to biologically relevant ranges
and consistent with previously published measurements (see
Supplementary Table S2). Parameter optimization is dis-
cussed in detail in Supplementary Method S3. The 100 best
curves matching the average viral load, CD41 and CD81 T-
cell counts for rapid progressors, are shown in Figure 2d,e,f
(see Supplementary Figure S3 for all subpopulations). These
100 best curves produce good fits to the clinical data and are
tightly placed on top of each other. Inspecting the values of the
23 parameters across the 100 best parameter sets, we observe
that some parameters (e.g., pM and kVT) have values in a rela-
tively tight range and therefore the model is more sensitive to
these and we have greater confidence in their values, whereas
others (e.g., kEM) take values in a wider range (Figure 2g; also
see Supplementary Figure S4 for parameter values generat-
ing the 100 best fits in each subpopulation). Although none of
these curves represents a real patient (only the population
average), this observation suggests that there might be
patients with very similar longitudinal viral loads and T cell
counts who might have very different immune systems and HIV
infections (as represented by the different parameter values)
and hence respond differently to treatments. We calculated
Spearman correlations to test for trends across populations
(Supplementary Figure S4). For example, we found that nT,
the burst size of infected T cells, takes statistically smaller val-
ues as we transition from rapid progressors to slow progres-
sors, whereas aL, activation rate of latently infected T cells,
does not take significantly different values across populations
(Figure 2g). We also studied the correlation coefficients
between the system parameters in all populations (Supple-
mentary Figure S5). In most cases, there is a weak correlation
between parameters of the system, suggesting that these
parameters act relatively independently. However, in all popula-
tions, we observed strong negative correlations between nT

and kVT and between nM and kVM, suggesting that the burst
size of infected T cells and macrophages are inversely associ-
ated with the infection rate of T cells and macrophages by free
virus, respectively. The parameter values for the 100 best
curves matching the average clinical profiles are provided in
Supplementary File S1.

The model also predicts other metrics of the disease (Sup-
plementary Figures S6 and S7). In the first 500 days, the pre-
dicted percentage of infected CD41 T cells remains under
15% in rapid progressors and this percentage is substantially
lower for slower progressors (Supplementary Figure S6).
This is consistent with the low values for clinical measurements
of infected CD41 T cells during chronic infection.30–32 The
model also suggests that the percentage of infected macro-
phages remains <5% for most of the infection and that the
number of macrophages rises at the late stage of the disease,
explaining the rise in viral load during AIDS (Supplementary
Figure S7). Finally, the model indicated that the majority of viral
load is due to infected T cells during the acute/early chronic
infection and, as the disease progresses, viruses released
from infected macrophages play a more important role and
eventually constitute the majority of viral load during AIDS
(Supplementary Figure S7). This is consistent with the experi-
mental evidence that macrophages produce large amounts of
simian immunodeficiency virus (SIV) even after CD41 T cells
are depleted in macaques.33

Virtual patient populations capture the range of
variability observed in the clinical data
To facilitate capturing the observed clinical variability in meas-
urements from HIV-infected individuals, we created four vir-
tual patient populations using the 5th and 95th percentiles of
the clinical data for each subpopulation. We used a virtual
population development methodology, introduced in ref. 34,
which includes three main steps: (1) patient generation: to
explore uncertainty by creating parameter sets locally
randomized around the 100 best fits; (2) patient selection: to
select those generated patients whose simulated profiles lie
within the range of clinical data for the corresponding subpo-
pulation; and (3) patient validation: to validate the virtual pop-
ulations against another clinical dataset (which was not used
for training). The details of virtual population development are
discussed in Supplementary Method S4. Figure 2h,i,j
show, respectively, the temporal histogram of viral load,
CD41 and CD81 T cell profiles of the 1,000 virtual patients
for rapid progressors, completely capturing the range of clini-
cal measurements (see Supplementary Figures S8 and S9
for the virtual patient profiles and the temporal histograms in
all subpopulations, respectively). For validation, we used the
viral decay data (black symbols in Figure 2h and Supple-
mentary Figure S8) from cART-treated patients, who started
taking cART approximately 208 days after infection and were
monitored for 48 weeks.30 After receiving cART, all the virtual
patient populations display a biphasic decay, consistent with
the viral decay from cART-treated patients (Figure 2h and
Supplementary Figure S8). The decay is followed by a pla-
teau in viral load, which is due to occasional activation of
latently infected CD41 T cells and is below the detection level
of clinical assays. The temporal histogram of virtual patient
profiles also demonstrates a good match between average
clinical patterns and the high intensity regions, where a
higher proportion of the patient profiles lies (Figure 2h,i,j and
Supplementary Figure S9). The parameter values for the
1,000 virtual patients in each population are provided in Sup-
plementary File S2 and the parameter trends across popula-
tions (Supplementary Figure S10) are similar to
Supplementary Figure S4. Correlations between parame-
ters (Supplementary Figure S11) have changed only
slightly compared to parameters reproducing the average
profiles (Supplementary Figure S5). The average percent-
age of infected CD41 T cells in the first 500 days remains
under 10 percent and is lower for slower progressors (Sup-
plementary Figure S12), consistent with our current under-
standing that infected CD41 T cells constitute a small
fraction of CD41 T cells during the chronic infection. The
average percentage of infected macrophages in this period is
<3 percent in all populations (Supplementary Figure S13).
Also, in cART-treated patients, the ratio of latently infected
CD41 T cells is in the range 102621023 (Supplementary
Figure S12), which is consistent with our current knowledge
of the size of the latent reservoir.35

Virtual clinical trials predict the efficacy of CCR5-based
stem cell therapy
CCR5-deficient stem cell therapy has appeared to functionally
cure the Berlin patient of HIV, but one key question is whether
CCR5-based therapy would be successful at stopping the
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disease in other HIV-infected individuals. To predict the efficacy
of CCR5-based stem cell therapy, we simulated the complex
clinical procedure for the Berlin patient as closely as possible
and ran a virtual clinical trial using our validated virtual popula-
tions. As illustrated for rapid progressors (Figure 3), the simu-
lated protocol is as follows. (1) Infection at day 0: CD41 T cells
quickly drop while plasma viremia rapidly increases in these
patients. (2) cART 208 days postinfection (dpi): patients start
taking cART, which stops the infection of CD41 T cells and
macrophages, and hence reduces the viral load in a biphasic
way and returns T cell counts to normal levels. Eventually, the
viral load plateaus and becomes undetectable. (3) Bone mar-
row transplant at 500 dpi: this procedure consists of bone mar-
row irradiation over seven days, followed by the engraftment of
new stem cells (six months). During the irradiation, stem cells
are killed and hence no more immune cells are produced. Also,
cytotoxic T lymphocytes, uninfected and infected CD41 T cells
are killed, and the size of the latent reservoir is reduced by
three orders of magnitude.36,37 However, macrophages remain
intact as they mostly reside in tissues. Note that even after the
irradiation is complete, some residual WT stem cells are left
behind. This leads to donor chimerism after infusion of CCR5-
modified stem cells. During engraftment (507–687 dpi), a per-
centage of stem cells are CCR5-deficient and the rest are WT
(donor chimerism, 50% in Figure 3). Also, the production levels
of immune cells return to pretransplant values. All patients
remain on cART during irradiation and engraftment. (4) No
cART (687 dpi): six months after engraftment, CD41 T cells
are back to normal levels (except many CD41 T cells are
CCR5-deficient) and viremia is below the detection level. These
patients cease taking cART; infection rates of CD41 T cells
and macrophages return to pre-cART values.

We observe that some patients (e.g., individual in green,
Figure 3) maintain their CD41 T cell levels and keep their
viremia below the level of detection, whereas for other
patients (e.g., individual in red), viral load rapidly increases
and CD41 T cells start to decline, suggesting that CCR5-
deficient cells slowed the infection but were not able to

completely stop it. If we only had one model with one
parameter set, our answer to the question of whether
CCR5-based therapy is successful at stopping HIV infection
would be an all-or-none response. In reality, there is huge
variability among patients and the significance of using vir-
tual populations is that, similar to running a clinical trial, we
are able to look at the interpatient variability in response to
new anti-HIV therapies in a virtual clinical trial.

To calculate probability of cure, we define an HIV-infected
patient as functionally cured if, one year post-therapy:
(1) CD41 level >95% of baseline and (2) viral load <50 cop-
ies/mL and decaying. Figure 4a,b show one year post-therapy
viral load and normalized CD41 T cell counts, respectively, for
any level of donor chimerism (percentage of CCR5-modified
stem cells) in rapid progressors. The model predicts that if aug-
mented stem cells are<10%, post-therapy viral load is at about
105 copies/mL for almost all patients and normalized CD41

levels are between 10% and 80%. As the donor chimerism
increases, the post-therapy viral load drops and CD41 T cell
count rises, however, we observe a broad spectrum. For aug-
mented stem cells >80%, the viral load is below the level of
detection and CD41 T cell counts are back to normal levels for
almost all patients. Using the post-therapy viral load and CD41

levels and based on the two conditions that we defined, we cal-
culated the probability of cure for rapid progressors (Figure 4c,
red curve). Surprisingly, the model predicts that if the donor chi-
merism is<20%, the probability of cure is zero, suggesting that
high levels of chimerism and transfection efficiencies are
needed to achieve meaningful ranges for the probability of cure
in patients. Comparing rapid progressors with the other popula-
tions, we observe that the post-therapy viral load decreases
faster and CD41 T cell counts rise to normal levels more
quickly (Supplementary Figure S14), and hence the probabil-
ity of cure is higher in these populations for a given percentage
of CCR5-modified stem cells (Figure 4c and Supplementary
Figure S14). For example, if the percentage of stem cells
transfected is 60%, the probability of cure will be 51% and 83%
in rapid progressors and slow progressors, respectively.

Figure 3 Performance prediction of CCR5-deficient stem cell therapy in rapid progressors. (a) Viral load and (b) CD41 T cell counts in
a virtual clinical trial simulating rapid progressors to predict the efficacy of CCR5-modified stem cell transplants. The virtual clinical trial
includes: (1) infection at day 0; (2) combination antiretroviral therapy (cART) from 208 days postinfection (dpi); (3) bone marrow trans-
plant at 500 dpi, including irradiation and six months of engraftment; and (4) cART cessation at 687 dpi. A patient is functionally cured
if posttherapy CD41 level >95% of preinfection level and viral load <50 copies/mL and decaying; gray curves: individual patients;
green curves: cured patient; red curves: patient not cured.

Predicting Efficacy of CCR5D32 Stem Cell Therapy
Hosseini and Mac Gabhann

87

www.wileyonlinelibrary/psp4



The model also crucially suggested that most of the difference

is between rapid progressors and the rest of the HIV-infected

individuals (Figure 4c). To achieve 90% probability of cure in

all patient populations, our model predicted that the level of

donor chimerism must be at least 75%. In our model, we

assume a partial inhibition of HIV infection (92.5%, consistent

with experimental data38) for CCR5-modified CD41 T cells and

macrophages, but these cells can still get infected. Virtual clini-

cal trials varying this level of anti-HIV activity (85% and 100%,

Supplementary Figure S15) illustrate how to evaluate multiple

therapeutic design parameters to achieve desired cure rates.

For example, with 60% donor chimerism in slow progressors,

the probability of cure increases to 91% if CCR5-modified cells

are completely resistant to infection.

Validation of the virtual populations against clinical

data from CCR5-based autologous T cell therapy in

HIV-infected patients
Recently, Tebas et al.39 investigated the infusion of CCR5-

modified autologous CD41 T cells to 12 patients, who

were receiving cART and had chronic aviremic HIV infec-

tion. Six of these patients, who had baseline CD41 T cell

counts >450 cells/lL (546–1123 cells/lL) and a docu-

mented nadir of not lower than 300 cells/lL, underwent a

12-week cART interruption four weeks after the single dose

infusion of 1010 cells (�2,000 cells/lL), with 20% of those

cells being CCR5-modified on average. Plasma viremia,

CCR5-modified, and total CD41 T cell counts were moni-

tored in these patients for 36 weeks (symbols in Figure 5

represent median results). For two of these patients, the

treatment interruption was terminated prematurely at week

eight of the interruption period.
To validate our model against this data, we selected virtual

patients with baseline CD41 T cells levels <1,200 cells/lL

from all subpopulations. In our model, these patients began

cART at 208 dpi, had undetectable viral load by 400 dpi, and

received a single infusion of 2,000 cells/lL (WT: 1,600 cells/

lL; CCR5-modified: 400 cells/lL). Four weeks postinfusion

(428 dpi) cART was ceased for 12 weeks, and they resumed

cART at 512 dpi. Figure 5 shows the individual virtual

patients (gray curves) and the median of the simulation

results (purple curves), which predicts the clinical data (sym-

bols) with low RMSPE (root-mean square prediction error)

values. The details for each subpopulation are shown in Sup-

plementary Figure S16.

DISCUSSION

In this article, we introduced a novel mechanistic model of HIV/

AIDS that reproduces the complete course of the disease from

acute infection to AIDS. Unlike most models in the literature,

our model is not running at a steady state; this challenges the

HIV RNA setpoint theory, which assumes a stable viral load

during chronic infection. We use the model to create virtual

patient populations that capture the variations in clinical meas-

urements of cART-na€ıve HIV-infected patients, who progressed

to AIDS 1.5–12 years post-seroconversion in the Multicenter

AIDS Cohort Study cohort (Supplementary Table S1 and

Supplementary Figure S1). Although CD41 T cells are

thought to be the driving force in HIV infection and the role of

macrophages is debated in the field,33,40,41 this model sug-

gests that macrophages are required to reproduce the clinical

data in cART-na€ıve patients (Supplementary Figure S3); with-

out macrophages, the calibration failed and the model could

not fit the data. The model also predicts that in late stage dis-

ease, when the viral load increases and CD41 T cells are

almost depleted, infected macrophages play a major role in

producing viruses (Supplementary Figures S7 and S13). In

this study, the immune response to HIV infection is represented

by CD81 cytotoxic T lymphocytes, as there is a strong negative

association between the strength of the immune response and

progression to AIDS.42 We also included latently infected

CD41 T cells, as they present the major obstacle to achieve

HIV cure.43 We validated the model against clinical data for the

biphasic viral decay in cART-treated patients (Supplementary

Figure S8).
To test the efficacy of CCR5-modified stem cell therapies

in blocking HIV, we considered two separate populations of

WT and CCR5-modified cells for CD41 T cells and macro-

phages. The model has the capability to simulate events in

an HIV clinical trial (e.g., taking patients on and off cART,

bone marrow, and total body irradiation, engraftment and

host recovery, gene modifications, and donor chimerism).

Using virtual populations, our model successfully predicted

the results for a clinical study of infusion of autologous

Figure 4 Probability of cure for CCR5-deficient stem cell therapy. (a) Viral loads and (b) normalized CD41 levels at one year post-
therapy in rapid progressors for different percentages of stem cells transfected (i.e., different levels of donor chimerism). (c) Using the
one-year post-therapy simulation results and the two conditions for a functional cure, we calculated the probability of cure in all patient
populations; red: AIDS �3.5 years; orange: 3.5<AIDS �7 years; blue: 7<AIDS �9 years; green: 9 years<AIDS.
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CCR5-modified CD41 T cells to HIV-infected individuals
(Figure 5 and Supplementary Figure S16). However, both
the simulation and clinical results indicated that augmented
CD41 T cell therapies do not lead to cure, as there is no
source for constant production of these cells in patients.
Instead, we used the virtual patients to predict whether the
CCR5-deficient stem cell therapy performed on the Berlin
patient can be replicated in other HIV-infected individuals
(Figure 4c; Supplementary Figures S14 and S15). The
simulations suggested some key insights: (1) for donor chi-
merism <10%, the probability of cure is zero; (2) high lev-
els of donor chimerism is required to achieve meaningful
success rates in patients (e.g., at least 75% of stem cells
must be CCR5 modified to achieve cure in 90% of
patients); and (3) most of the difference in the success rate
of the stem cell therapy lies between rapid progressors
(AIDS �3.5 years) and other HIV-infected individuals (AIDS
>3.5 years). A major barrier in stem cell therapies has
been low efficiency of gene transfections into stem cells,
leading to low levels of augmented cells in vivo.44–46 To
make anti-HIV stem cell therapies more successful in clini-
cal trials, the results indicate that more efforts should be
undertaken to increase ex vivo transfection/selection effi-
ciencies and in vivo post-transfection selection of aug-
mented cells,7,47 and to suppress the host immune system
sufficiently for achieving high levels of donor chimerism.

Including other disease-relevant tissue compartments in
addition to the blood in the model (e.g., lymphoid and
mucosal tissues), could represent a more comprehensive
picture of the immune system during the course of infec-
tion. For example, some studies have suggested that dam-
age in lymphoid tissues as a consequence of HIV infection
leads to limited reconstruction of T cells after cART. In
humans, the blood compartment contains 1–2% of the total
T cells, whereas the mucosal tissues contain at least 50%
of the T cells. Recent clinical data indicates that the per-
centages of CCR5-modified CD41 T cells in the blood and
mucosal tissues vary substantially after the infusion of
CCR5-modified CD41 T cells to HIV-infected individuals.
Therefore, understanding the dynamics of cell trafficking
could improve the predictions of efficacy for stem cell thera-
pies. In order to correctly account for infection in the tissues
and cell trafficking between them, more complex models
involving multiple compartments are needed. However, in

the absence of longitudinal biopsy data from untreated
patients, it becomes increasingly difficult to constrain and
validate these complex models, which questions the pre-
dictability and applicability of such models. Because the
single-compartment model introduced in this work accu-
rately predicts clinical data, it remains unknown whether
increasing model complexity by adding other compartments
is needed to explain the current clinical measurements.

One major issue with blocking or knocking out CCR5
alone is that it could lead to selection of CXCR4-tropic
virus.5,48 However, a recent study demonstrated that
although the Berlin patient had a minor population of
CXCR4-tropic virus before transplantation, this population
was not able to reestablish HIV infection because of its
dependence on CCR5 for replication and high genetic bar-
rier toward CXCR4 usage.49 Nonetheless, inclusion of
CXCR4-tropic virus would be a useful extension to the
model. Multiple layers of protection against HIV will likely
be required for reliable cure. Therefore, in addition to
knocking out CCR5, other restriction factors, such as mem-
bers of the APOBEC family and SAMHD1 or gene circuits
that induce apoptosis in HIV-infected cells,27 could be
used50 (Figure 1a). Our model can be extended to design
and test the performance of new CD41 T cell or stem cell
therapies with multiple genes added or edited. Finally,
gene-augmented stem cell therapies have recently been
tested in nonhuman primate models of AIDS.7,11,13 and,
hence, the model should be translated to a mathematical
model of nonhuman primates to be able to use preclinical
data, validate against it, and use the refined model to pre-
dict the results in humans.
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