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A B S T R A C T

Objective: Hospitalized cancer patients are at high risk of venous thromboembolism (VTE). However, no predictive
model has been specifically developed for this population. Machine learning (ML) is advantageous for model
development. This study was aimed at developing predictive models using three different ML algorithms and
logistic regression for VTE risk among hospitalized cancer patients and comparing their predictive performance.
Methods: A retrospective case–control study was conducted on hospitalized cancer patients at Hunan Cancer
Hospital, China, between October 1, 2021, and February 30, 2022. Patients diagnosed with vein thrombosis
before or after admission were excluded. Patient, tumor, treatment, and laboratory indicator information was
obtained from the hospital information system. The data were randomly split into distributions of 80% for
training and 20% for testing. Logistic regression and three ML algorithms—the support vector machine, random
forest, and extreme gradient boosting (XGBoost)—were used to develop the models. Model performance was
compared using F1, G-mean, area under the receiver operating characteristic curve (AUROC), accuracy, precision,
recall rate, and specificity. Feature rankings were achieved based on the permutation scores of the selected
features in the optimal model.
Results: A total of 1100 patients (mean [SD] age, 54.75 [11.08] years; 485 [44.09%] male) were included in
this study. There were 340 patients (30.9%) in the VTE group. The XGBoost model achieved the best per-
formance with the following evaluation metrics: F1 (0.750), G-mean (0.816), AUROC (0.818), accuracy
(0.845), precision (0.750), recall rate (0.750), and specificity (0.888). D-dimer level, diabetes, hypertension,
pleural metastasis, and hematological malignancies were identified as the five most significant features of the
XGBoost model.
Conclusions: Four predictive models were developed using ML algorithms. The XGBoost model was the optimal
predictive model compared with the other three models. This study indicates that ML may play an important
role in VTE risk estimation among hospitalized patients with cancer and provides a reference for
thromboprophylaxis.
Introduction

Venous thromboembolism (VTE), including deep venous thromboem-
bolism (DVT) and pulmonary embolism (PE), is a common and potentially
fatal disease. It is acknowledged that cancer is associated with an increased
risk of VTE.1 Cancer patients have a four- to seven-fold higher risk of
developing VTE than patients without cancer.1 VTE is the second leading
cause of death in cancer patients, resulting in an increased negative impact
sevier Inc. on behalf of Asian On
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on patients’ prognosis and consumption of medical resources.2,3 Moreover,
hospitalization significantly increases the occurrence of VTE in cancer
patients.4 The absolute incidence of VTE in hospitalized cancer patients is
estimated to be between 2% and 17%.5

The American Society of Hematology (ASH) guideline panel sug-
gested using pharmacological thromboprophylaxis for hospitalized can-
cer patients without VTE.6 However, it is not routinely applied owing to
the increased risk of bleeding.7 This implies that it is critical to weigh the
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risks of VTE and bleeding. Thus, the National Institute for Health and
Care Excellence (NICE) suggested assessing the VTE risks using VTE risk
assessment tools and performing a personalized anticoagulant therapy.8

Many risk assessment tools have been developed to predict the risk of
VTE in cancer patients. Two, in particular, are widely applied: the Khorana
score (KS)9 and the prospective Comparison of Methods for Thromboem-
bolic Risk Assessment with Clinical Perceptions andAwareneSS in Real Life
Patients-Cancer Associated Thrombosis (COMPASS-CAT) score.10 Unfor-
tunately, both have been derived from populations of outpatients with
cancer and showed poor predictive performance in assessing the VTE risk
of hospitalized cancer patients, such as the Chinese population.11–13 We
did not find a risk assessment model specifically developed for hospitalized
cancer patients.14 Therefore, it is necessary to develop a special predictive
model to evaluate VTE risk in hospitalized cancer patients.

Machine learning (ML) is a subdiscipline of artificial intelligence that
can help researchers handle big and complicated data, find regularities,
and make predictions. It has advantages in data processing and induction
because it can train a large amount of sample data compared to traditional
statistical methods.15 Recently, MLmethods have been applied successfully
to evaluate VTE risk among trauma patients and patients with peripherally
inserted central catheters.16,17 Support vector machine (SVM), random
forest (RF), and extreme gradient boosting (XGBoost) are the most widely
used ML algorithms for VTE prediction. Some studies have shown that
SVM, RF, and XGBoost are the most efficient ML algorithms for classifi-
cation problems of VTE prediction, respectively.18–20 Additionally, they are
classic and representative algorithms based on different machine learning
methods. Therefore, we assumed that the three MLs were effective
analytical methods for predicting VTE risk among hospitalized cancer pa-
tients. As in the literature, we used logistic regression as a baseline clas-
sifier for comparison.18–20

Given the above challenges and the advantages of ML methods, it has
important clinical implications for developing a predictive model for hos-
pitalized cancer patients usingMLmethods. It helps nurses to identify high-
risk patients with VTE and provides a reference for thromboprophylaxis.

This study had two aims: (1) to develop four predictive models to
evaluate VTE risk among hospitalized cancer patients using three ML
algorithms (SVM, RF, and XGBoost) and logistic regression; (2) to vali-
date and compare the predictive performance of the four models and
identify the optimal model with the best performance.

Methods

Setting and data sources

This retrospective case–control study was conducted from October 1,
2021, to February 30, 2022. Data were obtained from Hunan Cancer
Hospital in China. Data collection was performed using the Hospital In-
formation System (HIS) from October 1 to December 15, 2021. The in-
clusion criteria were as follows: Participants (1) had valid hospital
records between December 1, 2017, and November 30, 2020, (2) were
aged 18 years and older, (3) were diagnosed with malignant cancers, and
(4) were receiving treatment in the hospital, including surgery, chemo-
therapy, or radiotherapy. Participants were excluded if they had been
diagnosed with VTE and/or superficial vein thrombosis before or upon
admission. This study was conducted in accordance with the Declaration
of Helsinki. The Ethics Committee of Hunan Cancer Hospital approved
the study (Approval No. KYJJ-2021-291) and waived the requirement for
informed consent owing to the retrospective design of the study. This
study followed the transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis (TRIPOD).

Variables

Potential predictors of VTE were selected on the basis of the results of
previous studies.21–24 Therewere 120 potential predictors (input variables)
divided into four separate categories: patient, tumor, treatment, and
2

laboratory indicator characteristics. Patient characteristics included age,
body mass index, sex, performance status, blood type, comorbid diseases
(such as lung disease, heparin-induced thrombocytopenia, peripheral
vascular disease, and coronary artery disease), pathological symptoms and
signs (such as fracture, acid-base poisoning, swollen legs, serious infection,
and phlebitis), past medical history (eg., thrombosis, smoking, drinking,
and tumor), time (admission, cancer diagnosis, and VTE diagnosis), preg-
nancy, and postpartum. Tumor characteristics included the primary site of
cancer, pathological classification, metastasis site, and stage of the tumor.
Treatment characteristics included course information with chemotherapy
(times and regimen), surgery, puncture operation, admission to the ICU,
endocrine therapy, hormone therapy, granulocyte colony-stimulating fac-
tor, transfusion of blood, hypertonic irritating drugs, vascular access, and
plaster cast. Laboratory indicators included carcinoembryonic antigen,
carbohydrate antigen-125, glycosylated hemoglobin, white blood cells, red
blood cells, hemoglobin, platelets, prothrombin time, international
normalized ratio, fibrinogen concentration, D-dimer, antithrombin III,
fibrin degradation products, high-sensitivity C-reactive protein, total
cholesterol, blood chlorine, and serum homocysteine. For nonsurgical in-
patients, the first laboratory indicators after admission were used. For in-
patients who underwent surgery, laboratory indicators were the first
laboratory examination indices after the first surgery. Patients diagnosed
with VTE before surgery were treated as nonsurgical patients. All the input
variables are presented in Appendix A.

The outcome variable was VTE, defined as DVT and/or PE diagnosed
at Hunan Cancer Hospital. The diagnosis of DVT was based on positive
findings on vascular Doppler ultrasound. The diagnosis of PE was based
on positive findings of computed tomography pulmonary angiography
(CTPA), spiral computed tomography, and high probability ventilation/
perfusion scanning.

All records were generated when patients were discharged. Data were
extracted strictly and separately from medical records by two qualified
training nurses.

Data preprocessing

The problem of highly imbalanced data existed between the non-VTE
population (94,027 patients) and the VTE population (583 patients).
Two approaches were taken to solve the expected classification bias. At the
data level, we under-sampled the non-VTE population to balance the ma-
jority and minority class.25,26 Stratified sampling was performed in all
eligible non-VTE patients according to the month of the first admission.27

The random sampling number in every stratification was identified as 2.5
times the number of participants in the VTE group in the same month.
Random sampling was performed using a “random sample of cases” in
SPSS (version 26.0). At the algorithm level, cost-sensitive learning tech-
niques were performed. We added more weight to the minority class (VTE
group) to equalize the VTE and non-VTE groups.28 The class_weight
function in the sklearn package and scale_pos_weight function in the
xgboost package were used for this purpose. We deleted a column of fea-
tures if more than 20% of the data was missing. The missing data for the
remaining features were imputed using the mean value or mode.

Feature selection

The samples were split into a training set (80%) for model development
and a testing set (20%) for model validation. Random assignment to the
training or testing set was stratified according to VTE status. Feature se-
lection was performed during the training. Important features were filtered
using Pearson's chi-squared test or Student's t-test. The features were
standardized to realize feature scaling. Recursive feature elimination (RFE)
was then employed to screen the optimized variable combinations.

Development of models

The following four algorithms were chosen to develop the predictive



Fig. 1. Flowchart diagram. VTE, venous thromboembolism; DVT, deep venous thromboembolism; HIS, Hospital Information System.
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models: a classical multivariate statistical method (logistic regression)
and three other classic MLs (SVM, RF, and XGBoost). Logistic regression
is a conventional statistical method with good interpretable ability. The
SVM is a representative algorithm based on a kernel. It exhibits superior
performance in nonlinear classification problems.29 RF is a representa-
tive ensemble bagging algorithm. It controls overfitting problems in the
decision tree.30 XGBoost is a representative algorithm based on ensemble
boosting that complements the overfitting problem of the gradient
boosting model.31

The optimal parameters in the four models were retrospectively
identified using 10-fold cross-validation. The logistic regression, SVM,
and RF models were implemented using logistic regression, SVR, and
random forest classifier in the sklearn package, respectively. The
XGBoost model was implemented using the xGBoost package.

Performance and validation of models

Data in the testing set were measured to assess the predictive per-
formance of the four models. Considering the data imbalance, the pre-
dictive performances of the four models were compared based on the
three evaluation metrics, including F1, G-mean, and the area under the
receiver operating characteristic curve (AUROC) to select the optimal
model.32,33 Other evaluation metrics included confusion metrics, accu-
racy, precision, recall, and specificity. The confusion matrices included
four indicators: true negative, false positive, false negative, and true
positive.32 Accuracy was calculated as follows [True positive þ True
3

negative]/[True positive þ False negative þ True negative þ False pos-
itive]. Precision was calculated as True positive/[True positive þ False
positive]. The recall was calculated as True positive/[True positive þ
False negative]. Specificity was calculated using the formula: Ture neg-
ative/[True negative þ False positive]. F1 was calculated as (2 � preci-
sion � recall)/(precision þ recall). G-mean was calculated by √(Recall
� Specificity).32 The AUROC was calculated using the AUROC curve,
which is a graphical plot showing the diagnostic capability of a binary
classifier as its discrimination threshold changes.34

Feature rankings in the optimal model

Feature rankings were performed according to the permutation scores
of the selected features. The absolute magnitude of a permutation score
represents the effect of the feature on the model performance, deter-
mined by the difference in the AUROC before and after the alteration of
the feature in the model. This process was repeated for each feature
selected in the model. Permutation scores were obtained from the
optimal model using data from the testing set.

Data analysis

Data were prepared using SPSS (version 26.0) from December 15,
2021, to January 1, 2022. Data processing and analysis were conducted
using SPSS and the sklearn package in Python (version 3.7) from January
1 to February 15, 2022.



Table 1
Performance results of four models in the testing set.

Method TN FP FN TP Acc Pre Rec Spe F1 G-mean AUROC

Logistic regression 116 36 17 51 0.759 0.586 0.750 0.763 0.669 0.756 0.757
SVM 119 33 18 50 0.768 0.602 0.735 0.783 0.661 0.759 0.759
RF 136 16 28 40 0.800 0.714 0.588 0.895 0.644 0.725 0.743
XGBoost 135 17 17 51 0.845 0.750 0.750 0.888 0.750 0.816 0.818

TN, true negative; FP, false positive; FN, false negative; TP, true positive; Acc, accuracy; Pre, precision; Rec, recall rate; Spe, specificity; AUROC, the area under the
receiver operating characteristic curve; SVM, support vector machine; RF, random forest; XGBoost, extreme gradient boosting.

Table 2
The area under the receiver operating characteristic curve (AUROC) of the
training set and testing set.

Method Training set (AUROC, 95%CI) Testing set (AUROC, 95%CI)

Logistic regression 0.823 (0.796, 0.850) 0.757（0.689, 0.816)
SVM 0.828 (0.801, 0.854) 0.759（0.697, 0.818)
RF 1.0 (1.0, 1.0) 0.743（0.678, 0.808)
XGBoost 0.976 (0.965, 0.987) 0.818（0.762, 0.870)

SVM, support vector machine; RF, random forest; XGBoost, extreme gradient
boosting.
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Results

Study population characteristics

A total of 1100 patients (mean [SD] age, 54.75 [11.08] years; 485
[44.09%] male) were included in the study. A flowchart of patient
enrollment is shown in Fig. 1. There were 340 patients who developed
Fig. 2. The area under the receiver operating characteristic (AUROC) curve of four m
model; XGBoost, extreme gradient boosting model.
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symptomatic, image-confirmed DVT and/or PE, with an average age of
55.54 � 11.09. A total of 760 patients, with an average age of 54.40 �
11.07, were not diagnosed with DVT or PE. In the VTE group, 142
(41.8%) patients were male. In the non-VTE group, 343 (45.1%) patients
were male. Patient characteristics are shown in Appendix B. Missing data
were available for 204 of the participants. Details of missing data pro-
cessing are provided in Appendix A of the supplement.

Feature selection and development of models

We deleted invalid features and imputed missing data for some fea-
tures (in Appendix A). After data pre-processing, 108 features were
retained for feature selection. The top 90 (90/108) most important fea-
tures were chosen using univariate analysis (in Appendix B and C). After
RFE, 33, 24, 32, and 35 features were selected for the logistic regression,
SVM, RF, and XGBoost models, respectively. Appendix D shows the re-
sults of the feature selection for the four classifiers. Appendix E shows the
optimal parameters for model performance in the four models.
odels in the testing set. SVM, support vector machine mode; RF, random forest
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Performance and validation of models

Table 1 presents the performance results of the four models. Overall,
the XGBoost model achieved the best performance, with the highest
values of F1 (0.750), G-mean (0.816), AUROC (0.818), accuracy (0.845),
precision (0.750), and recall (0.750). Table 2 shows the AUROC of the
training and testing sets. Overfitting occurred in the RF model in the
training set. No overfitting occurred in the other models, which indicated
that the models had a high generalization ability. Fig. 2 shows the
AUROC curves generated using the four models for the testing set.
Among these four models, the XGBoost model had the largest AUROC.

Feature rankings in XGBoost model

The relative scaled importance of the features in the XGBoost model is
shown in Fig. 3 and Appendix F. After ranking the importance of features,
the results showed that D-dimer level, diabetes, hypertension, pleural
Fig. 3. Permutation score of the most important features in the XGBoost model i
degradation products; INR, international normalized ratio; BMI, body mass index; W

5

metastasis, and hematological malignancies were the top five important
risk factors for VTE in hospitalized cancer patients.

Discussion

In this study, ML models were used to assess VTE risk in hospitalized
cancer patients in the Chinese population. To our knowledge, this is one
of the earliest studies to use ML to evaluate VTE risk in hospitalized
cancer patients. According to the validation of the predictive perfor-
mance of the models, all models could effectively predict the risk of VTE.
Our results demonstrated that ML offers a novel solution for early fore-
casting and evaluation of VTE risk in inpatients with cancer. We also
found that the XGBoost model had the best predictive performance
among the four models based on the AUROC.

The logistic regression, SVM, RF, and XGBoost models included 33,
24, 32, and 35 features, respectively. This demonstrates that the ML
model has advantages when dealing with numerous clinical features.
n descending order. G-CSF, granulocyte colony-stimulating factor; FDP, fibrin
BC, white blood cell.
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Although there are many features in the model, most of them can be
captured from the HIS. It is feasible to incorporate a predictive model into
the HIS to automatically calculate the risk value. This reduces the clinical
burden of assessing VTE risk, thus improving the efficiency of
assessment.

The results provide some risk predictors for VTE in hospitalized pa-
tients with cancer. There were some common features in each ML model,
including diabetes, renal failure, distant metastasis, lymph node metas-
tasis, frequency of chemotherapy, D-dimer, fibrin degradation products,
international normalized ratio, vascular access carrier, pleural metas-
tasis, hematological malignancies, gynecological tumor, and squamous
cell carcinoma. Diabetes and renal failure are essential risk factors for
VTE, which is consistent with the previous evidence.35,36 The results
showed that cancer-related features, such as distant metastasis (partic-
ularly pleural metastasis), lymph node metastasis, type of tumor
(particularly hematological malignancies and gynecological tumor),
squamous cell carcinoma, and time of chemotherapy, influenced VTE risk
in the cancer population. It's supported by Weitz et al.37 Coagulation
indicators (such as fibrin degradation products, international normalized
ratio, and D-dimer) revealed the predictive performance for VTE, which
is consistent with the findings of Posch et al.38

Several studies have demonstrated that the KS is a useful risk strati-
fication tool for cancer inpatients in Canadian and American populations,
etc.39,40 Compared to KS, our XGBoost model has some advantages. First,
our model includes more patient characteristics, such as surgery,
anti-cancer treatment, and comorbidities, which are associated with the
occurrence of VTE in hospitalized cancer patients, as supported by pre-
vious studies.41–43 It is important to incorporate more associated vari-
ables to improve prediction modeling. Second, laboratory indicators on
admission were collected as features rather than as those before
chemotherapy. We evaluated the risk of cancer-associated VTE based on
laboratory indicators on admission. This solved the problem of obtaining
data before chemotherapy to calculate the KS. Third, ML techniques may
be more effective in developing a prediction model compared to the lo-
gistic regression used in the KS. MLs can handle complex and nonlinear
large datasets. Moreover, they have the unique ability to model data by
appling Boolean logic, absolute conditionality, conditional probabilities,
and other unconventional strategies while they still could draw heavily
on statistics and probabilities.44

Limitations

First, several variables were deleted because their missing values
exceeded 20%. The deletion of variables may neglect their potential ef-
fects on models, resulting in reduced predictive performance. Examples
of these variables include hemorrhage and coagulation disorder, acute
spinal cord injury, and carbohydrate antigen-125. It would be interesting
to explore the potential effects of such features in future research. Sec-
ond, ML models lack transparency, manifesting in interpretable algo-
rithms, and invisible training set data. Thus, it is difficult to interpret the
effects of selected features on the model. However, the effect of each
feature on model performance can be visualized by permutation scores.
Finally, the outcome variable was identified retrospectively using
discharge diagnosis codes. In most cases, asymptomatic VTE events are
not detected. Therefore, the predictive model may have a limited ability
to identify asymptomatic VTE. External validation is required to evaluate
the generalization ability of the models.

ML models can evaluate the VTE risk of hospitalized cancer patients
manually, which provides support for practitioners’ decisions. Ranking
the importance of the selected features could help nurses and patients to
understand the effect of such features on the occurrence of VTE. ML
models can be conveniently applied in clinical practice if they are
incorporated into the HIS. However, their application in clinical practice
is suitable only when the ML models have extremely high stability and
accuracy. Future efforts to optimize the performance of the models using
different methods are needed, such as training the models with larger
6

databases, adjusting the parameters in the models, and developing
models with a combination of multiple ML algorithms.

Conclusions

Using ML methods, four predictive models were used to evaluate the
VTE risk among hospitalized cancer patients. The XGBoost model was
found to best predict VTE risk compared with the other three models.
This study indicates that MLs may play an important role in risk esti-
mation in this era of big data. ML models could provide a reference for
clinicians and nurses to assess the risk levels of hospitalized patients with
cancer.
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