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Abstract: The current treatment of autoimmune and chronic inflammatory diseases entails systemic
immune suppression, which is associated with increased susceptibility to infections. To restore
immune tolerance and reduce systemic side effects, a targeted approach using tolerogenic dendritic
cells (tolDCs) is being explored. tolDCs are characterized by the expression of CD11c, the major
histocompatibility complex (MHC)II and low levels of co-stimulatory molecules CD40 and CD86. In
this study, tolDCs were generated using a human-proteoglycan-derived peptide (hPG) and all-trans
retinoic acid (RA). RA-tolDCs not only display a tolerogenic phenotype but also can induce an antigen-
specific regulatory T cell (Treg) response in vitro. However, further analysis showed that RA-tolDCs
make up a heterogeneous population of DCs, with only a small proportion being antigen-associated
tolDCs. To increase the homogeneity of this population, 1,2-distearoyl-sn-glycero-3-phosphoglycerol
(DSPG)-containing liposomes were used to encapsulate the relevant antigen together with RA. These
liposomes greatly enhanced the proportion of antigen-associated tolDCs in culture. In addition, in
mice, we showed that the liposomal co-delivery of antigen and RA can be a more targeted approach
to induce antigen-specific tolerance compared to the injection of RA-tolDCs, and that these liposomes
can stimulate the generation of antigen-specific Tregs. This work highlights the importance of the co-
delivery of an antigen and immunomodulator to minimize off-target effects and systemic side effects
and provides new insights in the use of RA for antigen-specific immunotherapy for autoimmune and
chronic inflammatory diseases.
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1. Introduction

Autoimmune diseases and chronic inflammatory diseases are major public health
concerns in Europe [1]. As there is no cure for these diseases, patients often require life-long
treatment with immune-suppressing medication, which may be accompanied by severe
side effects. In addition, the use of immunosuppressive drugs can increase the risk of
infection [2]. Therefore, there is a great need to develop more effective treatments for
autoimmune and chronic inflammatory diseases. In several autoimmune disorders, an
imbalance in immune homeostasis is observed. This imbalance can be attributed to a
loss of function or the reduced presence of antigen-specific suppressive immune cells,
resulting in a breach of immune tolerance [3]. Immune tolerance is generally maintained
by a variety of immune cells, including subsets of dendritic cells (DCs), T and B cells [4–6].
In autoimmune disorders, these cells recognize autoantigens as non-self and elicit a pro-
inflammatory immune response. To date, several autoimmune disorders have been linked
to specific autoantigens [7]. Antigen recognition is mediated by antigen-presenting cells
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(APCs), such as DCs. These cells continuously sense their environment through pattern
recognition receptors on their cell surface [8]. Under inflammatory conditions, the detection
of an antigen by these receptors causes DCs to become activated and migrate to draining
lymph nodes. This dendritic cell maturation results in an upregulation of the antigen-
presenting MHC molecules, chemokine receptors and an increase in pro-inflammatory
cytokine secretion [9]. Naive T cells reside in the draining lymph nodes, where DCs can
initiate effector T-cell responses through antigen presentation, co-stimulation and cytokine
secretion [10]. However, some specialized sub-types of immune cells, such as tolerogenic
dendritic cells (tolDCs), can help maintain immune tolerance. tolDCs are derived from
immature dendritic cells upon encountering a tolerogenic stimulus and an activation
stimulus [11,12]. These tolDCs can induce T-cell anergy, inhibit the proliferation of effector
T cells (such as the pro-inflammatory CD4+ T helper subsets Th1, Th2 and Th17) and can
promote regulatory T cell (Treg) differentiation [13]. tolDCs are characterized by a semi-
mature phenotype, in which they show a reduced expression of co-stimulatory molecules
(CD40, CD86) as compared to mature DCs (mDCs) on their cell surface and can secrete
anti-inflammatory molecules, such as IL-10, to mediate immune suppression. Therefore,
these cells are of great interest when developing treatments for autoimmune and chronic
inflammatory diseases, in which immune tolerance needs to be restored. Previously, our
lab and others have cultured tolDCs using a variety of immunomodulators, including
dexamethasone and vitamin D3 [11]. In this study, we used all-trans retinoic acid (RA) for
the culture of tolDCs, as has been described before [14–16].

RA is an active metabolite of vitamin A (all-trans retinol) that has been shown to play
a significant role in the induction and maintenance of gut immune tolerance. The gut is
host to a subpopulation of specialized DCs, which are able to metabolize food-derived
vitamin A to RA [17]. RA can prime other gut-associated DCs to become RA-producing
CD103+ DCs [18]. These DCs can subsequently convert naive T cells into Tregs [19–21]. This
tolerance-inducing ability makes tolDCs interesting targets for the development of antigen-
specific immunotherapy for autoimmune and chronic inflammatory diseases. Ex vivo
culturing of patient DCs, converting them to tolDCs that present a disease-specific antigen
and reinjecting them into the patient has already shown to be promising in clinical trials for
several autoimmune diseases [22]. However, the process of isolating DC precursors from
patients, stimulating the cells ex vivo and injecting them back into patients will remain
not only labor intensive, but is also restricted to highly specialized cell culture facilities,
thereby limiting the number of patients to be treated. Therefore, we propose that a delivery
system such as nanoparticles can be a suitable alternative to tolDC culture. The use of
nanoparticles, such as liposomes, shows great promise for in vivo immunomodulation, and
liposomes have been widely used as a delivery vehicle for antigens and adjuvants [23,24].
In this study, we selected anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG)-
containing liposomes of around 200 nm in size as a delivery system, since these liposomes
were shown to be inherently tolerogenic [25], and RA is lipophilic, so would be readily
encapsulated into the lipid bilayer. To assess the antigen specificity of these nanocarriers,
a mouse model in which the T cells of the animal only express T-cell receptors specific
for human proteoglycan (hPG) was used. The hPG antigen has been widely used for
the induction of proteoglycan-induced arthritis (PGIA) in mice [12], which is a model for
autoimmunity. This study aimed to see whether liposomes can be suitable carriers for the
hPG antigen and RA and if these liposomes are as effective in vivo as using antigen-specific
RA tolDCs.

2. Materials and Methods
2.1. Synthesis of Peptides and Conjugates

Dimethylformamide, N,N′-diisopropyl carbodiimide, piperidine and acetonitrile were
purchased from Biosolve BV, Valkenswaard, Netherlands. 9-fluorenylmethyloxycarbonyl
(Fmoc)-protected amino acids, Fmoc-Lys (Boc)-Wang resin and trifluoroacetic acid were
purchased from Novabiochem GmbH, Darmstadt, Germany. The peptide epitope se-
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quences were synthesized by microwave-assisted solid-phase peptide synthesis using an
H12 liberty blue peptide synthesizer (CEM Corporation, Stallings, NC, USA). Dimethylfor-
mamide was used as the coupling and washing solvent for the whole synthesis process.
For each coupling step, Fmoc-protected amino acids were activated by five eq of Oxyma
pure (Manchester Organics, Runcorn, UK) and N,N′-diisopropyl carbodiimide to react
with the free N-terminal amino acids in preloaded resin for 1 min at 90 ◦C. After each
coupling step, the Fmoc group was removed by treatment with 20% piperidine for 1 min
at 90 ◦C. Fluorescein (FAM, ThermoFisher, Landsmeer, Netherlands) was coupled to the
N-terminal of the peptide as with other Fmoc-protected amino acids. Trifluoroacetic
acid/water/triisopropylsilane (Sigma-Aldrich, Zwijndrecht, Netherlands) (95/2.5/2.5)
was used to simultaneously cleave the peptide off the resin and remove the side chain
protecting groups. Peptides were purified by Prep-HPLC using a Reprosil-Pur C18 col-
umn (10 µm, 250 × 22 mm) eluted with water–acetonitrile gradients from 5% to 80%
acetonitrile (0.1% formic acid, Sigma-Aldrich) in 30 min at a flowrate of 15.0 mL/min
with UV detection at 220 nm. Mass spectrometry analysis was performed using a Bruker
micrOTOF-Q instrument in positive mode to confirm the identity of the synthetic products
(Supplementary Materials Figure S1). The epitope was derived from the hPG antigen
with sequence the ATEGRVRVNSAYQDK. For coupling to FAM for flow cytometry and
microscopy experiments, a lysine tetramer linker was added to the N-terminal of the se-
quence to compensate for the reduced solubility caused by dye conjugation, (i.e., hPG-FAM:
FAM-KKKKATEGRVRVNSAYQDK).

2.2. Liposome Preparation

The phospholipids 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-distearoyl
-sn-glycero-3-phosphoglycerol (DSPG), were purchased from Avanti Polar Lipids, Birming-
ham,AL, USA. Cholesterol (CHOL) and RA were purchased from Sigma-Aldrich. Lipo-
somes were prepared using the thin film dehydration–rehydration method, as described
previously [25]. Briefly, phospholipids and CHOL (40 µmol, 4 mL) were dissolved in
chloroform and methanol 1:1 and mixed in a 100 mL round-bottom flask at a molar ratio
of 4:1:2DSPC:DSPG:CHOL. To prepare RA-encapsulating liposomes, 60 nmol of RA was
added in this step. To prepare fluorescently labeled liposomes, 0.02 mol% of total lipid
of 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt
(DiD, ThermoFisher) was added in this step. The solvents were evaporated under vac-
uum in a rotary evaporator for 1 h at 40 ◦C. The resulting lipid film was rehydrated with
1000 µg of hPG, hPG-K4 or hPG-K4-FAM dissolved in 4 mL of 10 mM 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES, pH 7.2) buffer and homogenized by rotation in a
water bath at 40 ◦C for 1 h. The multilamellar vesicle suspension was sized by high-pressure
extrusion (LIPEX Extruder, Northern Lipids Inc., Burnaby, BC, Canada) by passing the dis-
persion four times through stacked 400 nm and 200 nm pore size membranes (Whatman®

NucleoporeTM, GE Healthcare, Amersham, UK). To separate non-encapsulated cargo
from the liposomes, liposomes were pelleted by ultracentrifugation (Type 70.1 Ti rotor)
for 50 min at 55,000 rpm at 4 ◦C. This was repeated three times. Liposomes were stored
at 4 ◦C and their stability was measured periodically. Liposomes were determined to be
unchanged for up to at least 1 year. Liposomes were used within 2 months for in vitro
experiments and within 2 weeks for in vivo experiments.

2.3. Liposome Characterization

The Z-average diameter and polydispersity index (PDI) of the liposomes were mea-
sured by dynamic light scattering (DLS) using a NanoZS Zetasizer (Malvern Ltd., Malvern,
UK). ζ-potential was measured by laser Doppler electrophoresis (Malvern Ltd.). For this,
the liposomes were diluted 100-fold in HEPES buffer pH 7.2 to a total volume of 1 mL.
To determine the concentration of loaded hPG and RA, the content of the liposomes was
measured using RP-UPLC. For this, 10 uL of liposome suspension was dissolved in 190 uL
of methanol, and the sample was vortexed. Sample injections were 5 µL in volume and
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the column used was a 1.7 µm BEH C18 column (2.1 × 50 mm, Waters ACQUITY UPLC,
Waters, MA, USA). Column and sample temperatures were 40 ◦C and 20 ◦C, respectively.
The mobile phases were Milli-Q water with 0.1% TFA (solvent A) and acetonitrile with
0.1% TFA (solvent B). For separation, the mobile phases were applied in a linear gradient
from 5% to 95% solvent B over 6.5 min at a flow rate of 0.25 mL/min. hPG was detected by
absorbance at 280 nm using an ACQUITY UPLC TUV detector (Waters ACQUITY UPLC,
Waters, MA, USA). RA was detected at 351 nm.

2.4. Mice

Female Balb/cAnNCrl mice were purchased from Charles River Laboratories (Freiburg,
Germany). Female mice were used as they are more susceptible to develop arthritis in the
proteoglycan-induced arthritis model [26]. hPG T-cell receptor (TCR) transgenic Thy1.1+

mice [27] were bred in-house at Utrecht University under standard laboratory conditions.
Mice were provided with food and water ad libitum.

2.5. Bone Marrow-Derived DC (BMDC) Culture

Penicillin, streptomycin and β-mercaptoethanol were purchased from Gibco (Ther-
moFisher, Landsmeer, Netherlands). Bone marrow was obtained from the femurs and tibias
of Balb/cAnNCrl mice. Cells were cultured at 37 ◦C, 5% CO2 in a 6-well plate (Corning,
Amsterdam, The Netherlands), at a density of 900,000 cells/mL, in IMDM (Gibco, Thermo
Fisher Scientific), supplemented with 10% FCS (Bodinco, Alkmaar, The Netherlands),
100 units/mL of penicillin, 100 ug/mL of streptomycin and 0.5 µM β-mercaptoethanol in
the presence of 20 ng/mL of granulocyte-macrophage colony-stimulating factor (GM-CSF,
in house produced). Fresh medium and GM-CSF was added on day 2, and extra GM-CSF
was supplemented to the culture on day 5. On day 7, cells were matured in the presence
of 10 ng/mL of lipopolysaccharide (LPS, O111:B4; Sigma-Aldrich) and treated with free
or encapsulated RA and hPG antigen, or controls. After 16 h, DCs were harvested for
phenotypic characterization by flow cytometry or microscopy, for co-culture with T cells,
or for in vivo transfer in mice.

2.6. T Cell Isolation and Co-Culture with BMDCs

Single-cell suspensions of splenocytes were obtained by mashing spleens of hPG TCR
transgenic mice through a 70 µM filter, and erythrocytes were lysed with Ammonium–
Chloride–Potassium (ACK) lysis buffer (0.15 M NH4Cl, 1 mM KHCO3, 0.1 mM Na2EDTA;
pH 7.3). Subsequently, CD4+ T cells were negatively selected using Dynabeads™ (sheep
anti-rat IgG, ThermoFisher) and anti-CD8 (YTS169), anti-CD11b (M1/70), anti-MHCII
(M5/114) and anti-B220 (RA3-6B2) as described previously [12]. Enriched CD4+ T cells
were labeled with carboxyfluorescein succinimidyl ester (CFSE, 0.5 nM) according to the
manufacturer’s protocol (ThermoFisher). Selected T cells were co-cultured in a 2:1 ratio
with DCs for 3 days at 37 ◦C and 5% CO2 and subsequently harvested for phenotypic
characterization.

2.7. Adoptive Transfer of hPG TCR-Specific T Cells

CD4+CD25− T cells were magnetically isolated from spleens of hPG TCR transgenic
Thy1.1+ Balb/cAnNCrl mice as described above, with the addition of anti-CD25 (PC61, in-
house produced) to the antibody mix to deplete activated T cells [28]. Enriched CD4+CD25−

T cells were labeled with 0.5 nM CFSE (ThermoFisher), resuspended in 200 uL of phosphate-
buffered saline (PBS), and 300,000 cells were injected intravenously via the tail vein into
wildtype Balb/cAnNCrl acceptor mice within 1 h. After 24 h, 1 × 106 DCs pulsed with RA
and hPG (tolDCs), free RA and hPG or liposomes encapsulating RA and hPG were injected
into the acceptor mice. The concentrations of hPG and RA were 1 nmol and 0.2 nmol,
respectively. After 72 h, acceptor mice were sacrificed, and spleens were harvested.
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2.8. Flow Cytometry

For all flow cytometry experiments, the cell suspension was first blocked with Fc
Block (2.4G2, in house produced). Extracellular staining was performed with a cocktail of
antibodies in FACS Buffer (1X PBS supplemented with 2% FCS). For intracellular staining,
the FoxP3 transcription factor staining set was used (eBioscience, San Diego, CA, USA). For
all flow cytometric analyses, appropriate single-stain and fluorescence minus one controls
were used. Flow cytometry was performed using the Beckman Coulter Cytoflex LX at
the Flow Cytometry and Cell Sorting Facility at the Faculty of Veterinary Medicine at
Utrecht University. Acquired data were analyzed using FlowJo Software v.10.7 (FlowJo
LLC, Ashland, OR, USA).

On day 8, BMDCs were stained with monoclonal antibodies CD11c-APC (N418, eBio-
science, Thermo Fisher Scientific), MHCII-eFluor450 (M5/114.15.2, eBioscience, Thermo
Fisher Scientific), CD40-PE (3/23, BD Biosciences, Franklin Lakes, NJ, USA), CD86-FITC
(GL-1, BD Biosciences) and ViaKrome808 (Beckman Coulter, Indianapolis, IN, USA).

For the co-cultures, CD4+ T cells were harvested and transferred to a 96-well V-bottom
plate for staining. T cells were stained with monoclonal antibodies CD4-BV785 (RM4-5,
BioLegend, San Diego, CA, USA), CD25-PerCPCy5.5 (PC61.5, eBioscience, ThermoFisher,
Landsmeer, Netherlands), CD49b-APC (DX5, BioLegend, USA), Lag-3-PE (C9B7W, eBio-
science, Thermo Fisher Scientific), FoxP3-eFluor450 (FJK-16s, eBioscience, Thermo Fisher
Scientific) and ViaKrome808 (Beckman Coulter, Indianapolis, IN, USA).

For adoptive T-cell transfer experiments, spleens of acceptor mice were harvested 72 h
post-treatment, as described above. Spleens were mashed through a 70 µM filter and ery-
throcytes were lysed with ACK lysis buffer. Acquired splenocytes were stained with mono-
clonal antibodies CD4-BV785 (RM4-5, BioLegend, San Diego, CA, USA), Thy1.1 (CD90.1)-
PerCP-Cy5.5 (HIS51, eBioscience, Thermo Fisher Scientific), CD44-APC (IM7, eBioscience,
Thermo Fisher Scientific), CD62L-PE (MEL-14, BD Biosciences), CTLA-4 (CD152)-BV605
(UC10-4B9, eBioscience, Thermo Fisher Scientific), FoxP3-eFluor450 (FJK-16s, eBioscience,
Thermo Fisher Scientific), RORγT-PE (AFKJS-9, eBioscience, Thermo Fisher Scientific),
GATA-3-PE-Cy7 (TWAJ, eBioscience, Thermo Fisher Scientific), T-Bet-APC (4B10, eBio-
science, Thermo Fisher Scientific), CD11c-APC (N418, eBiosciences, Thermo Fisher Sci-
entific), CD11b-PerCP-Cy5.5 (M1/70, eBioscience, Thermo Fisher Scientific), MHCII(I-
A/I-E)-PE-Cy5 (M5/114.15.2, eBioscience, Thermo Fisher Scientific), CD40-PE (3/23, BD
Biosciences), CD8α-V500 (53–6.7, BD Biosciences) and ViaKrome808 Beckman Coulter,
Indianapolis, IN, USA) in different flow cytometry panels to avoid spectral overlap.

2.9. Live Cell Imaging

On day 7, BMDCs were harvested and 75,000 cells per well were added to 35 mm
glass-bottom cell culture dishes (CELLview™, Greiner Bio-One, Kremsmünster, Austria).
Amounts of 1 µg/mL of hPG-FAM, free or in liposomes, or controls were added to the
cells, together with 10 ng/mL of LPS. Cells were cultured overnight at 37 ◦C and 5%
CO2. Before imaging, cells were carefully washed to remove unbound liposomes and/or
hPG-FAM. An amount of 5 µg/mL of membrane permeable DNA stain Hoechst 33342
(Thermo Fisher) was added to each well shortly before imaging. Microscopy and analysis
were performed at the Center for Cell Imaging at the Faculty of Veterinary Medicine at
Utrecht University. Images were acquired using a NIKON A1R confocal microscope with
a 40x Plan Apo objective (NA 1.3). Standard lasers and filter settings were used to detect
Hoechst, FAM and DiD. Representative images were processed in NIS elements 5.02 (Nikon
Microsystems, Europe).

3. Results
3.1. RA Induces a tolDC Phenotype in BMDCs In Vitro

tolDCs are generally described as having an immature phenotype and express the
pan-DC marker CD11c, the antigen-presenting molecule MHCII, and have low expression
of the co-stimulatory molecules CD40 and CD86. To assess whether the vitamin-A-derived
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RA could induce this tolDC phenotype in vitro, we tested different concentrations of RA on
BMDCs. Cells were simultaneously incubated with LPS. The expression of each marker is
presented as the geometric mean fluorescence intensity (MFI) and was determined by flow
cytometry analysis. The addition of RA results in a significant decrease in the expression of
MHC II (Figure 1A) and co-stimulatory molecules CD40 (Figure 1B) and CD86 (Figure 1C)
on the cell surface of BMDCs. Increasing the dose of RA that was administered to the cells
10-fold did not result in significant reductions in the expression of the measured surface
proteins compared to the lower concentrations of RA (Figure 1). The addition of RA to a
BMDC culture therefore seems to be a promising way of inducing tolDCs.
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Figure 1. Addition of RA results in a tolDC phenotype in vitro. BMDCs were cultured from the bone marrow of Balb/c
mice. BMDCs were stimulated with LPS (mDC) or LPS and different concentrations of RA (tolDC; 1 or 10 uM RA). The
concentration of LPS was constant for all groups. After 24 h of incubation, cells were washed thoroughly to remove stimuli
and analyzed via flow cytometry. Relative MFI normalized to mDC of (A) MHCII expression (B) CD40 expression, and
(C) CD86 expression on live CD11c+ BMDCs. Combined data of three independent experiments. n = 3. Means + SD,
* p < 0.05, ** p < 0.01 compared to mDC, as determined by one-way ANOVA and Tukey’s multiple comparisons test.

3.2. RA Can Be Efficiently Encapsulated into Liposomes and Retains tolDC Inducing Effects

To assess whether RA remains able to induce tolDCs when encapsulated in liposomes,
DSPC:DSPG:CHOL liposomes were loaded with hPG with or without RA. The liposomes
were characterized using DLS and laser Doppler electrophoresis (Table 1). To assess
liposome uptake by DCs in vitro, liposomes were fluorescently labeled using DiD and
added to BMDCs. After 24 h of incubation, around 30% of all BMDCs were able to take
up hPG-loaded liposomes or hPG/RA-loaded liposomes (Figure 2A). To address whether
the liposomes were able to induce phenotypic tolDCs, BMDCs were stimulated in the
presence of LPS with free hPG, free hPG and RA, hPG-loaded liposomes and hPG/RA-
loaded liposomes. DCs treated with RA, free or in liposomes, show a reduced expression
of CD86 (Figure 2B) and CD40 (Figure 2C) on their cell surface compared to the control
hPG, indicating the inhibition of maturation. The expression of MHCII (Figure 2D) and
PD-L1, involved in T cell suppression [29] (Figure 2E), seemed to remain similar for all
DCs regardless of stimulation. The expression of chemokine receptor CCR7, essential for
homing to secondary lymph nodes [30], was upregulated in tolDCs generated with free
RA or RA liposomes (Figure 2F).
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Table 1. Properties of liposomes, means ± SD.

Formulation Z-Average
Diameter (nm)

ζ-Potential
(mV) PDI Encapsulation

hPG (%)
Encapsulation

RA (%)

hPG 186.8 ± 11.2 −47.7 ± 2.1 0.10 ± 0.05 57.3 ± 3.3 -

hPG/RA 183.7 ± 4.9 −45.9 ± 0.9 0.07 ± 0.01 43.9 ± 4.5 79.5 ± 29.0
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Figure 2. RA, free or encapsulated in liposomes, induces a tolDC phenotype in BMDCs. BMDCs were stimulated with LPS
and cultured in the presence of hPG, hPG + RA, hPG liposomes or hPG/RA liposomes. The hPG and RA concentrations
were constant in all groups. After 24 h of incubation, cells were washed thoroughly to remove unbound liposomes and
analyzed via flow cytometry. (A) Percentage of live BMDCs positive for the fluorescent label in the liposomes. (B–F) Relative
MFIs (compared to hPG control) of several DC markers. Combined data of four independent experiments. Means + SD,
**** p < 0.0001, *** p < 0.001, * p < 0.05 compared to free hPG determined by mixed-effects analysis and Dunnett’s multiple
comparisons test.

3.3. Liposomal Co-Delivery of hPG and RA Leads to Aantigen-Associated tolDC Induction In Vitro

To assess whether the liposomes affected antigen delivery, the hPG antigen was
modified to include the fluorescent label FAM. Liposomes were prepared using hPG-
FAM and this modification did not affect liposomal properties (Supplementary Materials
Table S1). BMDCs were incubated with LPS in the presence of hPG-FAM, hPG-FAM and
RA, hPG-FAM liposomes or hPG-FAM/RA liposomes for 24 h. The free hPG-FAM readily
associated with cells (Figure 3C), and microscopy showed that most of the antigen was
located at the surface of the BMDCs (Figure 4). In contrast, while flow cytometry showed
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that fewer cells were positive for the FAM label when the antigen was encapsulated in
liposomes (Figure 3C), microscopy showed that the FAM label was mostly present inside
the cells (Figures 4 and S2). Interestingly, the presence of RA reduces the uptake of the
antigen (Figure 3C). Next, we aimed to determine whether antigen-associated cells were
also phenotypically tolDCs. For this, the expression of CD86 and CD40 was measured in
the hPG-FAM+ DCs. hPG-FAM liposomes and hPG-FAM/RA liposomes induced more
tolDCs (as defined by CD40− or CD86−CD11c+ DCs) than free hPG-FAM or free hPG-FAM
and RA within antigen-associated cells (Figure 3A,B). Interestingly, only the free hPG-FAM
and RA increased non-antigen-loaded tolDCs (Figure 3D,E).
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Figure 3. Encapsulation of hPG in liposomes skews towards tolDCs within antigen-associated BMDCs. BMDCs were
stimulated with LPS and cultured in the presence of hPG-FAM, hPG-FAM + RA, hPG-FAM liposome or hPG-FAM/RA
liposomes. After 24 h of incubation, cells were washed thoroughly and analyzed by flow cytometry. (A) Relative % CD86−

(normalized to hPG-FAM control) and (B) CD40− tolDCs within hPG-FAM+ cells. (C) Percentage of live BMDCs positive
for FAM. (D) Relative %CD86− (normalized to hPG-FAM control) and (E) CD40− tolDCs within hPG-FAM− cells. Means +
SD, **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05 compared to hPG-FAM determined by one-way ANOVA and Tukey’s
multiple comparisons test. The data shown are combined normalized data from three independent experiments.
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Figure 4. Peptide encapsulation in liposomes enhances uptake by BMDCs in vitro. BMDCs were stimulated with LPS and
cultured in the presence of hPG-FAM added freely or encapsulated in DiD-labeled liposomes. After 24 h of incubation, cells
were washed to remove unbound antigen and liposomes. The blue signal shows the Hoechst staining, the green signal
indicates the presence of hPG-FAM and in red is the liposomal dye. The scale bar shows 10 µm. N = 1.

3.4. tolDCs Generated with hPG/RA Liposomes Skew T Cells towards a Regulatory Phenotype
In Vitro

hPG/RA liposomes can inhibit CD40 and CD86 expression in DCs to the same extent
as free hPG and RA, but the question about the functionality of these DCs remains. To
assess the ability of these liposome-induced tolDCs to reduce effector T cells (Teff) and
stimulate regulatory T-cell (Treg) proliferation, purified hPG-TCR transgenic CD4+ T cells
were co-cultured with DCs pulsed with different conditions. tolDCs generated using
free hPG and RA and DCs that were induced through hPG/RA liposome stimulation
induced significantly less CD4+ T cell proliferation compared to the pro-inflammatory
mDCs control (Figure 5A). All groups induced Tregs (Figure 5B), as shown by the increase
in the expression of CD25+ FoxP3+ T cells. Additionally, reduced populations of Tbet+
Teffs (Figure 5C) were observed in all treatments compared to the control group, suggesting
a decrease in the inflammatory Th1 cell population.

3.5. hPG and RA Delivered by tolDCs, Liposomes or Free Affect Splenic CD11c+ Cell Populations
In Vivo

To observe whether hPG and RA-induced tolDCs, hPG/RA liposomes or free hPG/RA
had effects on splenic DC population phenotype, mice were injected intravenously with
the different formulations. Three days after injection, we characterized CD11c+ cells in
the spleen using flow cytometry. Within splenic CD11c+ cells, we found no differences
in the % of CD11bhi and MHC-IIlo cells (Figure 6B,C). However, %CD8α+CD11c+ cells
were significantly increased in mice receiving tolDCs compared to mice receiving hPG/RA
liposomes (Figure 6D). Furthermore, mice receiving the liposomes had significantly fewer
MHC-IIhiCD40hi-activated cells compared to mice that received free hPG/RA (Figure 6E).
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Figure 5. RA, free or encapsulated in liposomes, skew T cells towards a regulatory phenotype. BMDCs were stimulated
with LPS and cultured in the presence of hPG (mDCs), hPG + RA (tolDCs) or hPG-containing liposomes with or without RA
(hPG liposome DCs and hPG/RA liposome DCs, respectively). The hPG and RA concentrations were constant in all groups.
After 24 h of incubation, the BMDCs were washed and hPG-TCR-specific CD4+ T cells were added. T-cell activation was
analyzed by flow cytometry after 72 h of co-culture. (A) Relative % proliferated cells compared to mDC control. (B) Relative
% CD25+Foxp3+ and (C) % T-bet+ in all CD4+ T cells, normalized to mDCs. Means + SD, **** p < 0.0001, *** p < 0.001,
** p < 0.01, * p < 0.05 compared to mDC determined by one-way ANOVA and Tukey’s multiple comparisons test. The data
shown are combined normalized data from three independent experiments.

3.6. hPG and RA Delivered by tolDCs, Liposomes or Free Affect Splenic CD4+ T Cell Populations
In Vivo

To assess the effect on antigen specific T-cell responses by hPG and RA adminis-
tration, we performed an in vivo adoptive transfer study. Mice received CFSE-labeled
Thy1.1+CD4+CD25− T cells isolated from hPG-TCR transgenic mice, followed by an in-
travenous injection of tolDCs, hPG/RA liposomes or free hPG/RA. Both the Thy1.1+

hPG-specific and the bystander Thy1.1− CD4+ T cell populations were evaluated by flow
cytometry. Strikingly, tolDCs showed the highest activation of antigen-specific CD4+ T
cells, as measured by % Thy1.1+ cells, % CFSE− cells and % CD25+ cells (Figure 7A–C).
This proliferation was due to the presence of the antigen, since mice that received only PBS
showed no or hardly any CFSE- Thy1.1+ CD4+ T cells (data not shown). Within memory T-
cell subsets, there were no differences between the groups within the antigen-specific T-cell
populations (Figure 7D–F). However, in the Thy1.12− population, tolDCs reduced the % of
naïve CD4+ T cells compared to the other groups (Figure 7D). Within the antigen-specific
immune cell subsets, there were no differences in the induction of CD25+FOXP3+ (Treg),
T-bet+ (Th1), GATA-3+ (Th2), and RORγT+ (Th17) CD4+ T cells (Figure 8A–D). However,
the %CTLA-4+ cells were significantly lower in the tolDC group compared to the other
groups (Figure 8E). CTLA-4 is a negative regulator of T cell activation [31]. Comparing
the Thy1.1+ vs. Thy1.1− effects within each group, we observed increased CD25+FOXP3+

and CTLA-4+ cells regardless of delivery method (Figure 8A,E), and tolDCs reduced T-bet+

cells (Figure 8B). Interestingly, bystander RORγT cells were significantly higher in mice
receiving tolDCs compared to mice receiving liposomes (Figure 8D).
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tions In Vivo 

To assess the effect on antigen specific T-cell responses by hPG and RA administra-
tion, we performed an in vivo adoptive transfer study. Mice received CFSE-labeled 
Thy1.1+CD4+CD25- T cells isolated from hPG-TCR transgenic mice, followed by an intra-
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Figure 6. Effect of RA and hPG delivery on splenic DCs in vivo. (A) After adoptive transfer of Thy1.1+CD4+CD25− T
cells, mice received intravenous injections of either tolDCs pulsed with hPG + RA (tolDCs), liposomes encapsulating hPG
+ RA (hPG/RA liposomes), or free hPG + RA (free hPG + RA). Three days after injection, splenic DC populations (in
live CD11c+ cells) were assessed by flow cytometry. The % of (B) CD11bhi DCs, (C) MHC-IIlo DCs, (D) CD8α+ DCs and
(E) MHC-IIhiCD40hi DCs were determined. n = 6 for tolDCs and hPG/RA Liposomes, n = 4 for free hPG + RA control.
Means ± SD, * p < 0.05 determined by one-way ANOVA and Tukey’s multiple comparisons test.
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Figure 7. Effect of RA and hPG delivery on the activation of splenic CD4+ T cells in vivo. WT Balb/c mice received
CFSE-labeled Thy1.1+CD4+CD25− T cells isolated from the spleens of hPG-TCR transgenic mice via intravenous injection.
24 h after injection, mice received intravenous injections of either tolDCs pulsed with hPG and RA (tolDCs), liposomes
encapsulating hPG and RA (hPG/RA Liposomes), or free hPG + RA. Three days after injection, splenic CD4+ T cells were
assessed by flow cytometry. (A) % of antigen-specific Thy1.1+ CD4+ T cells, and (B) % of proliferated CFSE− cells within
this population. (C) CD25+, (D) naïve CD62L+CD44−, (E) central memory CD62L+CD44+, (F) and effector CD62L−CD44+

cells within the Thy1.1+ and Thy1.1− CD4+ T cell populations. n = 6 for tolDCs and hPG/RA Liposomes, n = 4 for free hPG
+ RA control. Means ± SD, **** p < 0.0001, ** p < 0.01, * p < 0.05. #### p < 0.0001, # p < 0.05 comparing Thy1.1+ to Thy1.1−.
Statistics were performed by one-way or two-way ANOVA and Bonferroni’s multiple comparisons test.
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vitro, we show that RA can induce a semi-mature phenotype that is characteristic of 
tolDCs (Figures 1 and 2), which is in line with other studies [14–16]. These tolDCs were 
functional and could inhibit antigen-specific T-cell proliferation while increasing the rel-
ative population of Tregs and reducing the Th1 population (Figure 5). Uptake studies with 
fluorescently labeled hPG-FAM in BMDCs revealed that the incubation of these cells with 
free hPG-FAM and RA leads to a heterogeneous population (Figure 3), suggesting that 
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Figure 8. Effect of RA and hPG delivery on the splenic CD4+ T cell subsets in vivo. WT Balb/c mice received CFSE-labeled
Thy1.1+CD4+CD25− T cells isolated from the spleens of hPG-TCR transgenic mice via intravenous injection. 24 h after
injection, mice received intravenous injections of either tolDCs pulsed with hPG and RA (tolDCs), liposomes encapsulating
hPG and RA (hPG/RA Liposomes), or free hPG + RA. Three days after injection, splenic CD4+ T cells were assessed by flow
cytometry. (A) %CD25+FOXP3+ (B) %T-bet+ (C) %GATA3+, (D) %RORγT+ (E) and % CTLA-4+ cells within the Thy1.1+

and Thy1.1− CD4+ T cell populations. n = 6 for tolDCs and hPG/RA Liposomes, n = 4 for free hPG + RA control. Means ±
SD, **** p < 0.0001, * p < 0.05. #### p < 0.0001, ### p < 0.001, ## p < 0.01, # p < 0.05 comparing Thy1.1+ to Thy1.1−. Statistics
performed by two-way ANOVA and Bonferroni’s multiple comparisons test.

4. Discussion and Conclusions

The restoration of antigen-specific tolerance is essential for the development of a
curative therapy for autoimmune diseases. tolDCs have shown promising results in the
induction of antigen-specific tolerance in animal models and positive results in clinical
trials [22]. Here, we focused on the naturally occurring tolerance-inducing compound RA
and evaluated several methods for delivering RA to dendritic cells in vitro and in vivo.
In vitro, we show that RA can induce a semi-mature phenotype that is characteristic
of tolDCs (Figures 1 and 2), which is in line with other studies [14–16]. These tolDCs
were functional and could inhibit antigen-specific T-cell proliferation while increasing
the relative population of Tregs and reducing the Th1 population (Figure 5). Uptake
studies with fluorescently labeled hPG-FAM in BMDCs revealed that the incubation of
these cells with free hPG-FAM and RA leads to a heterogeneous population (Figure 3),
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suggesting that not all cells that take up antigens also become tolerogenic and vice versa.
When this heterogeneous population of cultured RA-tolDCs was injected intravenously
in mice, we observed not only antigen-specific effects, but also found changes in non-
antigen-specific T-cell subsets (Figure 7). We also studied several subsets of splenic DCs
that might give more insight into the general immune environment of the spleen after the
different treatments. We found no differences in the immunosuppressive CD11b+CD11c+

population [32]; however, the injection of tolDCs increased the proportion of CD8α+CD11c+

cells in the spleens of mice (Figure 6D). CD8α+ DCs have been described to take up
apoptotic cells in lymphoid tissues and are highly efficient at cross-presentation in MHC-
I [33], which is important for the induction of CD8 T cells. CD8α+ DCs are also considered
to be vital for maintaining immune tolerance [34,35]; however, there is a report of these
cells accelerating the progression of collagen-induced arthritis in mice [36], which is a
murine model for autoimmune disease. Further studies on the involvement of different
DC subsets in the regulation of autoimmune diseases are needed to clarify the role of
these cells in tolerance induction. To mitigate the observed effect on non-antigen-specific
T cells, we theorized that co-delivery of the antigen and RA by a nanoparticle, such as a
liposome, would be a better strategy for inducing antigen-specific tolerance and limiting
off-target effects.

The liposomes we selected have been previously shown to induce Tregs in vivo [25,37],
but their effect on DCs had not been studied. BMDCs incubated with LPS and hPG behaved
similarly to cells incubated with LPS and hPG-containing liposomes (Figure 2). These hPG-
containing liposomes only had a small effect on CD4+ T-cell proliferation in a co-culture
assay (Figure 5A). However, we did observe an in vitro effect of liposome-pulsed BMDCs
on the induction of antigen-specific Tregs and Th1 cells (Figure 5B,C). Furthermore, after
in vitro incubation with BMDCs, we saw striking differences between hPG-FAM that was
given freely to these cells and hPG-FAM encapsulated in liposomes (Figures 3 and 4). The
liposomal delivery of the antigen reduced the % of cells which had taken up antigens
from 69 ± 5% to 8 ± 1% (p < 0.0001), which was possibly due to the cationic charge of
the antigen (isoelectric point 10.88) compared to the anionic charge of the liposomes [38].
Even without the addition of RA, the hPG-containing liposomes themselves can induce
antigen-specific tolDCs and Tregs (Figure 5). This was also observed in previous studies
whereby antigen-loaded DSPC:DSPG:CHOL liposomes induced antigen-specific Tregs
and mitigated the progression of atherosclerosis in mice [25]. While this is promising,
we hypothesized that the addition of RA in the hPG liposomes would enhance tolerance
induction even further.

The co-encapsulation of RA and hPG in liposomes did not alter their physicochemical
properties as compared to hPG alone (Table 1). This is likely because the hPG is localized
in the aqueous core of the liposomes, while the hydrophobic RA is incorporated into
the lipid bilayer of the liposomes. RA induced tolDCs equally efficiently when given
freely to BMDCs or when encapsulated in liposomes (Figure 2). This suggested that
while liposomes do not affect the ability of RA to induce tolDCs, they had no advantage
over free RA. This was also reflected in in vitro co-culture assays with antigen-specific
CD4+ T cells; free RA had the same effects as RA encapsulated in liposomes (Figure 5).
Capurso et al. similarly observed an equivalent effect between free RA or RA encapsulated
in poly(lactic-co-glycolic acid) nanoparticles [39]. These results are expected since the
in vitro system cannot reproduce the complex parameters that direct the (co-)delivery of
compounds to APCs in vivo, such as administration route, clearance rate, biodistribution
and stability. Within the antigen-associated subset of cells, the liposomal delivery of RA led
to a significantly higher proportion of tolDCs in vitro as compared to free RA (Figure 3A,B),
while the opposite was observed in non-antigen-specific tolDCs (Figure 3D,E). Comparing
hPG/RA liposomes with hPG liposomes, the hPG/RA liposomes caused a larger decline
in proliferated CD4+ T cells (Figure 5). In the in vivo experiment, the liposomes had
the lowest %MHC-IIhiCD40hi cells in the CD11c+ population in the spleen, suggesting
that the liposomes are (indirectly) interacting with splenic CD11c+ cells to inhibit their
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activation. In addition, the injection of hPG/RA liposomes mitigated bystander effects in
non-antigen-specific T cells (Figures 7 and 8) but had no effect compared to the other groups
on antigen-specific T cells. Similarly, Phillips et al. found that, after the subcutaneous
injection of microparticles consisting of human insulin peptide B9-23, RA and TGF-β, there
was no change in Tregs in mice compared to controls. However, they did find a significant
increase in regulatory B cells in the mesenteric lymph nodes 3 days after microparticle
injection, and the mice in this group had a significant reduction in diabetes progression [40].
These data combined show that nanoparticle delivery of RA can be a more specific method
to induce antigen-specific tolerance compared to tolDCs.

While there were some differences in T cell subsets between the groups in vivo, it
should be stressed that the proportion of antigen-specific Tregs in all mice were signifi-
cantly enhanced compared to the background and effector T cells (Figure 8). While Treg
induction was the main goal of the current study, it would be interesting to further study
the mechanisms whereby tolDCs and liposomes induce tolerance in more detail. While our
hPG-FAM experiments do give some insights into this, the effect will likely be different
in an in vivo system. This could be achieved by injecting fluorescently labeled (antigens
in) tolDCs and liposomes and tracking their biodistribution over time. Tracking tolDCs
or liposomes would also give more information about the in vivo phenotypical stability
of the tolDCs and the phenotype of antigen- or liposome-associated cells in vivo. Finally,
other dosage schemes or administration routes could improve the effects of RA liposomes
on Treg induction.

In conclusion, we show that RA is a potent immunomodulator for the induction of
antigen-specific tolerance and that DSPC:DSPG:CHOL liposomes are a suitable carrier
system for the co-delivery of an antigen with RA in vitro. Additionally, we show the
strong induction of antigen-specific Tregs, with no off-target effects when using these
liposomes. Although the in vitro data seems very promising, generating the same effects
in vivo remains challenging. In this work, we looked at the heterogeneous populations of
DCs that arise in a tolDC culture in vitro and the bystander effect of immunosuppressive
therapy in vivo. This stresses the importance of not only measuring antigen-specific effects,
but also considering off-target effects. The optimization of in vivo administration and
thorough examination of off-target effects of RA-tolDC or RA-liposome treatment could
provide new insights in the use of RA for antigen-specific immunotherapy for autoimmune
and chronic inflammatory diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13111949/s1, Figure S1: Mass spectrometry analysis of the synthesized peptide
products, Figure S2: Background fluorescence from unlabeled hPG. BMDCs were cultured from the
bone marrow of Balb/c mice. BMDCs were stimulated with LPS and cultured in the presence of
1 µg/mL hPG. After 24 hours incubation, cells were washed carefully to remove unbound liposomes.
Briefly before imaging, 5 µg/mL Hoechst dye was added to each well, Table S1: properties of
hPG-FAM liposomes, means.
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16. Koprivica, I.; Gajić, D.; Saksida, T.; Cavalli, E.; Auci, D.; Despotović, S.; Pejnović, N.; Stošić-Grujičić, S.; Nicoletti, F. Orally
delivered all-trans-retinoic acid- and transforming growth factor-beta-loaded microparticles ameliorate type 1 diabetes in mice.
Eur. J. Pharmacol. 2019, 864, 172721. [CrossRef]

17. Iwata, M.; Yokota, A. Retinoic Acid Production by Intestinal Dendritic Cells. Vitam. Horm. 2011, 86, 127–152. [CrossRef]
18. Theodosiou, M.; Laudet, V.; Schubert, M. From carrot to clinic: An overview of the retinoic acid signaling pathway. Cell Mol. Life

Sci. 2010, 67, 1423–1445. [CrossRef]
19. Benson, M.J.; Pino-Lagos, K.; Rosemblatt, M.; Noelle, R.J. All-trans retinoic acid mediates enhanced T reg cell growth, differentia-

tion, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 2007, 204, 1765–1774. [CrossRef]
20. Sun, C.-M.; Hall, J.A.; Blank, R.B.; Bouladoux, N.; Oukka, M.; Mora, J.R.; Belkaid, Y. Small intestine lamina propria dendritic cells

promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 2007, 204, 1775–1785. [CrossRef] [PubMed]

http://doi.org/10.1007/s40264-020-01031-1
http://doi.org/10.1016/j.ejmech.2018.09.027
http://doi.org/10.1016/j.jaci.2009.12.980
http://www.ncbi.nlm.nih.gov/pubmed/20176265
http://doi.org/10.4049/jimmunol.1601629
http://doi.org/10.1038/s41419-017-0152-y
http://doi.org/10.1016/j.cell.2008.05.009
http://doi.org/10.3389/fimmu.2015.00322
http://www.ncbi.nlm.nih.gov/pubmed/26136751
http://doi.org/10.1016/j.it.2007.05.002
http://www.ncbi.nlm.nih.gov/pubmed/17537673
http://doi.org/10.1016/S0952-7915(00)00180-1
http://doi.org/10.1038/nri.2016.116
http://www.ncbi.nlm.nih.gov/pubmed/27890914
http://doi.org/10.1189/jlb.0608374
http://doi.org/10.3389/fimmu.2019.02068
http://doi.org/10.3389/fimmu.2017.01690
http://www.ncbi.nlm.nih.gov/pubmed/29250070
http://doi.org/10.1016/j.autrev.2016.07.032
http://www.ncbi.nlm.nih.gov/pubmed/27485011
http://doi.org/10.4049/jimmunol.1303073
http://doi.org/10.1016/j.ejphar.2019.172721
http://doi.org/10.1016/b978-0-12-386960-9.00006-x
http://doi.org/10.1007/s00018-010-0268-z
http://doi.org/10.1084/jem.20070719
http://doi.org/10.1084/jem.20070602
http://www.ncbi.nlm.nih.gov/pubmed/17620362


Pharmaceutics 2021, 13, 1949 17 of 17

21. Coombes, J.; Siddiqui, K.R.; Arancibia-Cárcamo, C.V.; Hall, J.; Sun, C.-M.; Belkaid, Y.; Powrie, F. A functionally specialized
population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J.
Exp. Med. 2007, 204, 1757–1764. [CrossRef]

22. Suuring, M.; Moreau, A. Regulatory Macrophages and Tolerogenic Dendritic Cells in Myeloid Regulatory Cell-Based Therapies.
Int. J. Mol. Sci. 2021, 22, 7970. [CrossRef] [PubMed]

23. Schmidt, S.T.; Foged, C.; Korsholm, K.S.; Rades, T.; Christensen, D. Liposome-Based Adjuvants for Subunit Vaccines: Formulation
Strategies for Subunit Antigens and Im-munostimulators. Pharmaceutics 2016, 8, 7. [CrossRef] [PubMed]

24. Krienke, C.; Kolb, L.; Diken, E.; Streuber, M.; Kirchhoff, S.; Bukur, T.; Akilli-Öztürk, Ö.; Kranz, L.M.; Berger, H.; Petschenka,
J.; et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 2021, 371,
145–153. [CrossRef]

25. Benne, N.; van Duijn, J.; Vigario, F.L.; Leboux, R.; van Veelen, P.; Kuiper, J.; Jiskoot, W.; Slütter, B. Anionic 1,2-distearoyl-sn-
glycero-3-phosphoglycerol (DSPG) liposomes induce antigen-specific regulatory T cells and prevent atherosclerosis in mice. J.
Control. Release 2018, 291, 135–146. [CrossRef] [PubMed]

26. Angum, F.; Khan, T.; Kaler, J.; Siddiqui, L.; Hussain, A. The Prevalence of Autoimmune Disorders in Women: A Narrative Review.
Cureus 2020, 12, e8094. [CrossRef]

27. Berlo, S.E.; van Kooten, P.J.; Brink, C.B.T.; Hauet-Broere, F.; Oosterwegel, M.A.; Glant, T.T.; Van Eden, W.; Broeren, C.P. Naive
transgenic T cells expressing cartilage proteoglycan-specific TCR induce arthritis upon in vivo activation. J. Autoimmun. 2005, 25,
172–180. [CrossRef]

28. Reddy, M.; Eirikis, E.; Davis, C.; Davis, H.M.; Prabhakar, U. Comparative analysis of lymphocyte activation marker expression
and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: An in vitro model to monitor
cellular immune function. J. Immunol. Methods 2004, 293, 127–142. [CrossRef]

29. Peng, Q.; Qiu, X.; Zhang, Z.; Zhang, S.; Zhang, Y.; Liang, Y.; Guo, J.; Peng, H.; Chen, M.; Fu, Y.-X.; et al. PD-L1 on dendritic cells
attenuates T cell activation and regulates response to immune checkpoint blockade. Nat. Commun. 2020, 11, 4835. [CrossRef]

30. Braun, A.; Worbs, T.; Moschovakis, G.L.; Halle, S.; Hoffmann, K.; Bölter, J.; Münk, A.; Forster, R. Afferent lymph–derived T cells
and DCs use different chemokine receptor CCR7–dependent routes for entry into the lymph node and intranodal migration. Nat.
Immunol. 2011, 12, 879–887. [CrossRef]

31. Ueda, H.; Howson, J.M.; Esposito, L.; Heward, J.; Chamberlain, G.; Rainbow, D.B.; Hunter, K.M.; Smith, A.N.; Di Genova, G.;
Herr, M. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003, 423, 506–511.
[CrossRef]

32. Li, H.; Zhang, G.-X.; Chen, Y.; Xu, H.; Fitzgerald, D.C.; Zhao, Z.; Rostami, A. CD11c+CD11b+ dendritic cells play an important role
in intravenous tolerance and the suppression of experimental auto-immune encephalomyelitis. J. Immunol. 2008, 181, 2483–2493.
[CrossRef]

33. Dudziak, D.; Kamphorst, A.O.; Heidkamp, G.F.; Buchholz, V.R.; Trumpfheller, C.; Yamazaki, S.; Cheong, C.; Liu, K.; Lee, H.-W.;
Park, C.G.; et al. Differential Antigen Processing by Dendritic Cell Subsets in Vivo. Science 2007, 315, 107–111. [CrossRef]

34. Belz, G.T.; Behrens, G.M.; Smith, C.M.; Miller, J.F.; Jones, C.; Lejon, K.; Fathman, C.G.; Mueller, S.; Shortman, K.; Carbone, F.R.;
et al. The CD8α+ Dendritic Cell Is Responsible for Inducing Peripheral Self-Tolerance to Tissue-associated Antigens. J. Exp. Med.
2002, 196, 1099–1104. [CrossRef] [PubMed]

35. Bilsborough, J.; George, T.C.; Norment, A.; Viney, J.L. Mucosal CD8alpha+ DC, with a plasmacytoid phenotype, induce
differentiation and support function of T cells with regulatory properties. Immunology 2003, 108, 481–492. [CrossRef] [PubMed]

36. Jung, Y.O.; Min, S.-Y.; Cho, M.-L.; Park, M.-J.; Jeon, J.-Y.; Lee, J.-S.; Oh, H.-J.; Kang, C.-M.; Park, H.-S.; Park, K.-S.; et al. CD8alpha+
dendritic cells enhance the antigen-specific CD4+ T-cell response and accelerate development of colla-gen-induced arthritis.
Immunol. Lett. 2007, 111, 76–83. [CrossRef]

37. Benne, N.; Leboux, R.J.; Glandrup, M.; van Duijn, J.; Vigario, F.L.; Neustrup, M.A.; Romeijn, S.; Galli, F.; Kuiper, J.; Jiskoot, W.;
et al. Atomic force microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity on antigen-specific
regulatory T cell responses. J. Control. Release 2020, 318, 246–255. [CrossRef]

38. Nagy, N.A.; de Haas, A.M.; Geijtenbeek, T.B.H.; van Ree, R.; Tas, S.W.; van Kooyk, Y.; de Jong, E.C. Therapeutic Liposomal
Vaccines for Dendritic Cell Activation or Tolerance. Front. Immunol. 2021, 12, 674048. [CrossRef] [PubMed]

39. Capurso, N.A.; Look, M.; Jeanbart, L.; Nowyhed, H.; Craft, J.; Abraham, C.; Fahmy, T.M. Development of a nanoparticulate
formulation of retinoic acid that suppresses Th17 cells and upregulates regulatory T cells. Self/Nonself 2010, 1, 335–340. [CrossRef]
[PubMed]

40. Phillips, B.E.; Garciafigueroa, Y.; Engman, C.; Liu, W.; Wang, Y.; Lakomy, R.J.; Meng, W.S.; Trucco, M.; Giannoukakis, N. Arrest
in the Progression of Type 1 Diabetes at the Mid-Stage of Insulitic Autoimmunity Using an Autoanti-gen-Decorated All-trans
Retinoic Acid and Transforming Growth Factor Beta-1 Single Microparticle Formulation. Front. Immunol. 2021, 12, 586220.
[CrossRef] [PubMed]

http://doi.org/10.1084/jem.20070590
http://doi.org/10.3390/ijms22157970
http://www.ncbi.nlm.nih.gov/pubmed/34360736
http://doi.org/10.3390/pharmaceutics8010007
http://www.ncbi.nlm.nih.gov/pubmed/26978390
http://doi.org/10.1126/science.aay3638
http://doi.org/10.1016/j.jconrel.2018.10.028
http://www.ncbi.nlm.nih.gov/pubmed/30365993
http://doi.org/10.7759/cureus.8094
http://doi.org/10.1016/j.jaut.2005.09.017
http://doi.org/10.1016/j.jim.2004.07.006
http://doi.org/10.1038/s41467-020-18570-x
http://doi.org/10.1038/ni.2085
http://doi.org/10.1038/nature01621
http://doi.org/10.4049/jimmunol.181.4.2483
http://doi.org/10.1126/science.1136080
http://doi.org/10.1084/jem.20020861
http://www.ncbi.nlm.nih.gov/pubmed/12391021
http://doi.org/10.1046/j.1365-2567.2003.01606.x
http://www.ncbi.nlm.nih.gov/pubmed/12667210
http://doi.org/10.1016/j.imlet.2007.05.005
http://doi.org/10.1016/j.jconrel.2019.12.003
http://doi.org/10.3389/fimmu.2021.674048
http://www.ncbi.nlm.nih.gov/pubmed/34054859
http://doi.org/10.4161/self.1.4.13946
http://www.ncbi.nlm.nih.gov/pubmed/21487509
http://doi.org/10.3389/fimmu.2021.586220
http://www.ncbi.nlm.nih.gov/pubmed/33763059

	Introduction 
	Materials and Methods 
	Synthesis of Peptides and Conjugates 
	Liposome Preparation 
	Liposome Characterization 
	Mice 
	Bone Marrow-Derived DC (BMDC) Culture 
	T Cell Isolation and Co-Culture with BMDCs 
	Adoptive Transfer of hPG TCR-Specific T Cells 
	Flow Cytometry 
	Live Cell Imaging 

	Results 
	RA Induces a tolDC Phenotype in BMDCs In Vitro 
	RA Can Be Efficiently Encapsulated into Liposomes and Retains tolDC Inducing Effects 
	Liposomal Co-Delivery of hPG and RA Leads to Aantigen-Associated tolDC Induction In Vitro 
	tolDCs Generated with hPG/RA Liposomes Skew T Cells towards a Regulatory Phenotype In Vitro 
	hPG and RA Delivered by tolDCs, Liposomes or Free Affect Splenic CD11c+ Cell Populations In Vivo 
	hPG and RA Delivered by tolDCs, Liposomes or Free Affect Splenic CD4+ T Cell Populations In Vivo 

	Discussion and Conclusions 
	References

