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Reduced renal sympathetic nerve activity
contributes to elevated glycosuria and improved
glucose tolerance in hypothalamus-specific
Pomc knockout mice
Kavaljit H. Chhabra 1, Donald A. Morgan 2, Benjamin P. Tooke 1,3, Jessica M. Adams 1,4, Kamal Rahmouni 2,
Malcolm J. Low 1,5,*
ABSTRACT

Objective: Hypothalamic arcuate nucleus-specific pro-opiomelanocortin deficient (ArcPomc�/�) mice exhibit improved glucose tolerance
despite massive obesity and insulin resistance. We demonstrated previously that their improved glucose tolerance is due to elevated glycosuria.
However, the underlying mechanisms that link glucose reabsorption in the kidney with ArcPomc remain unclear. Given the function of the
hypothalamic melanocortin system in controlling sympathetic outflow, we hypothesized that reduced renal sympathetic nerve activity (RSNA) in
ArcPomc�/� mice could explain their elevated glycosuria and consequent enhanced glucose tolerance.
Methods: We measured RSNA by multifiber recording directly from the nerves innervating the kidneys in ArcPomc�/� mice. To further validate
the function of RSNA in glucose reabsorption, we denervated the kidneys of WT and diabetic db/dbmice before measuring their glucose tolerance
and urine glucose levels. Moreover, we performed western blot and immunohistochemistry to determine kidney GLUT2 and SGLT2 levels in either
ArcPomc�/� mice or the renal-denervated mice.
Results: Consistent with our hypothesis, we found that basal RSNA was decreased in ArcPomc�/� mice relative to their wild type (WT) lit-
termates. Remarkably, both WT and db/db mice exhibited elevated glycosuria and improved glucose tolerance after renal denervation. The
elevated glycosuria in obese ArcPomc�/�, WT and db/db mice was due to reduced renal GLUT2 levels in the proximal tubules. Overall, we show
that renal-denervated WT and diabetic mice recapitulate the phenotype of improved glucose tolerance and elevated glycosuria associated with
reduced renal GLUT2 levels observed in obese ArcPomc�/� mice.
Conclusion: Hence, we conclude that ArcPomc is essential in maintaining basal RSNA and that elevated glycosuria is a possible mechanism to
explain improved glucose tolerance after renal denervation in drug resistant hypertensive patients.

� 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

The central melanocortin system is essential in maintaining energy
balance [1]. Hypothalamic pro-opiomelanocortin (POMC) and agouti
gene-related protein (AgRP) as well as their downstream receptor
targets comprise the melanocortin system [2e11]. POMC is a pre-
cursor polypeptide that is synthesized in the pituitary gland as well as
the arcuate nucleus (Arc) of the hypothalamus. POMC is enzymatically
cleaved to generate small bioactive peptides including a-melanocyte
stimulating hormone (MSH), which acts through melanocortin re-
ceptors 3 and 4 (MC3/4R) to control energy homeostasis [12,13].
Moreover, the melanocortin system is a downstream target for the
hunger suppressing hormone leptin [14e19]. Deficiency of either
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POMC, MC4R or leptin causes obesity in rodents and humans due to a
combination of increased food intake and reduced energy expenditure
[4,10,11,20e27]. MC3R deficiency increases fat mass, but not overall
body weight, in mice [28] and is an important regulator of the fasting
response [29]. Altogether, the components of the melanocortin system
play a critical role in body weight regulation.
We recently identified the function of hypothalamic ArcPOMC in renal
proximal tubular glucose reabsorption [30]. We demonstrated that
obese and insulin resistant ArcPomc�/�mice exhibit improved glucose
tolerance associated with a decreased blood glucose threshold for
glycosuria and reduced renal GLUT2, but not SGLT2 glucose trans-
porter levels. However, the molecular mechanisms that couple glucose
reabsorption with hypothalamic POMC remain unclear. It is known that
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hypothalamic melanocortin signaling via MC4R is critical in maintaining
sympathetic outflow in rodents [31e36] and humans [37]. Conse-
quently, MC4R-deficient mice and humans do not display hypertension
despite obesity and insulin resistance [31,34]. Similarly, pharmaco-
logical activation and inhibition of MC4R increases and reduces blood
pressure, respectively [38e40]. Moreover, MC4R mediates a leptin-
induced increase in renal sympathetic nerve activity (RSNA) in mice
[39]. MC4R is also involved in early life programming of hypertension
resulting either from maternal obesity or exposure to hyperleptinemia
[41]. In addition to MC4R, POMC neurons are implicated in mediating
leptin-induced hypertension [42], and administration of POMC peptides
such as a-MSH and ACTH increases blood pressure [43]. Overall,
these reports indicate a direct role of ArcPOMC in regulating sympa-
thetic outflow.
Reduced RSNA, accomplished by renal denervation, improves glucose
tolerance in drug-resistant hypertensive patients [44,45]. However, the
mechanisms underlying this beneficial effect are unclear. Our previous
report [30] indicates that ArcPomc�/� mice exhibit improved glucose
tolerance due to elevated glycosuria. Given the function of the central
melanocortin system in the regulation of sympathetic outflow [31e
37,43], we hypothesized that reduced RSNA leads to elevated
glycosuria in ArcPomc�/� mice. To test this hypothesis, we measured
RSNA in ArcPomc�/� mice and determined glucose regulation in
renal-denervated wild type (WT) and diabetic db/db mice. We also
delineated the impact of renal denervation on levels of the renal
proximal tubular glucose transporters GLUT2 and SGLT2 using western
blotting and immunohistochemistry.

2. METHODS

2.1. Animal care and high-fat diet protocol
All procedures were approved by the Institutional Animal Care and Use
Committees at the University of Michigan and University of Iowa and
followed the Public Health Service guidelines for the humane care and
use of experimental animals. Mice were housed in ventilated cages
under a controlled temperature (w23 �C) and photoperiod (12 h light/
dark cycle, lights on from 6:00 a.m. to 6:00 p.m.) and fed tap water
and laboratory chow (5L0D; LabDiet) containing 28.5 kcal% protein,
13.5 kcal% fat, and 58 kcal% carbohydrate. A separate cohort of mice
was fed with either the regular chow or high-fat diet (HFD, OpenSource
Diets�, D12451 e 20 kcal% protein, 45 kcal% fat, and 35 kcal%
carbohydrate) immediately after weaning for 16 weeks. Moreover, a
group of female ArcPomc�/� mice was weight-matched to that of WT
mice by calorie restriction as described previously [30].
The generation and breeding of ArcPomc�/� mice have been reported
previously [11,30]. ArcPomc�/� mice were backcrossed for at least
ten generations onto the C57BL/6J genetic background, and these
congenic mice were used throughout the study. Male db/db mice and
their db/m littermate controls were purchased from The Jackson
Laboratory (Stock number: 000642). Mice were randomly assigned to
different experimental groups throughout the study.
We utilized female ArcPomc�/� mice and their littermates for blood
pressure and renal sympathetic nerve activity (RSNA) measurements,
kidney histology and urine analysis, and HFD study. Male mice were
included for studies involving renal denervation and corresponding
urine analysis.

2.2. Measurement of blood pressure and RSNA
Mice were anesthetized with an intraperitoneal injection of a ketamine
(91 mg/kg)/xylazine (9.1 mg/kg) cocktail. Each mouse was intubated
using polyethylene tubing (PE-50) to allow spontaneous breathing of
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oxygen-enriched air throughout the experimental procedure. Next, a
tapered micro-renathane tubing (MRE-040; Braintree Scientific, Inc.
Braintree, MA) was inserted into the right jugular vein from which a-
chloralose was infused at an initial dose of 12 mg/kg during the
surgical preparation then at a sustaining dose of 6 mg/kg/h; until
completion of the study. Another tapered MRE-040 tubing was inserted
into the left carotid artery for continuous measurement of arterial
pressure. The carotid cannula was connected to a low-volume pres-
sure transducer (BP-100; iWorks System, Inc., Dover, NH) that led to
an ETH-250 Bridge/Bio Amplifier (CB Sciences; Milford, MA). The
filtered, amplified pulsatile pressure signal was directed to an analoge
digital acquisition system (MacLab 8S; see below) for continuous
display of not only phasic arterial pressure and heart rate but also
sympathetic nerve activity on a computer monitor. Core body tem-
perature of the mouse was measured using a rectal probe (YSI 4000A
Precision Thermometer; Yellow Springs, OH) and maintained constant
at 37.5 �C using a custom-made heated surgical platform.
RSNA was measured by multifiber recording directly from the nerves
innervating the kidneys as described previously [46,47]. Briefly, nerves
innervating the left kidney were identified, dissected free, and placed
on a bipolar 36-gauge platinumeiridium electrode (A-M Systems;
Carlsborg, WA). The electrode was connected to a high impedance
probe (HIP-511; Grass Instruments Co., Quincy, MA), and the nerve
signal was amplified 105 times with a Grass P5 AC pre-amplifier and
filtered at low and high frequency cutoffs of 100 Hz and 1000 Hz,
respectively. This nerve signal was directed to a speaker system and to
an oscilloscope (54501A, HewlettePackard Co., Palo Alto, CA) for
auditory and visual monitoring of the nerve activity. The signal was
then directed to a resetting voltage integrator (B600C, University of
Iowa Bioengineering) that sums the total voltage output in units of 1 V *
sec before resetting to zero and counting the number of spikes per
second. The final neurograms were continuously routed to a MacLab
analogueedigital converter (8S, AD Instruments Castle Hill, New South
Wales, Australia) for permanent recording and data analysis on a
Macintosh computer. RSNA was corrected for post-mortem back-
ground activity to eliminate background electrical noise in the
assessment of sympathetic outflow in the integrated voltage.

2.3. Renal denervation
Mice were placed in the prone position under general anesthesia with
isoflurane. To minimize the invasive approach to the kidneys, a single
skin incision was made in the dorsal midline. After exposing the kid-
neys, renal blood vessels were identified and all visible nerves along
the vessels were severed. Furthermore, the vessels were painted with
a solution of 10% phenol in absolute ethanol using a fine brush. This
treatment did not affect the vessels. After surgery, the paravertebral
muscle layers and skin were closed with nylon sutures. Carprofen was
administered prior to skin incision and post-operatively for analgesia.
Mice were allowed to recover for a week before subjecting them to any
experiments. To confirm reduced RSNA post renal denervation pro-
cedure, kidney norepinephrine levels were measured as described
previously [30] after the completion of all the experiments.

2.4. Glucose and insulin measurements
Oral glucose tolerance and intraperitoneal insulin tolerance tests were
performed as described previously [30]. A fixed dose of glucose
(G5767; Sigma, 60 mg/mouse in 300 ml water) was administered
rather than a dose adjusted by body weight to eliminate the con-
founding effects of obesity. For insulin tolerance tests, insulin (Humulin
R; Eli Lilly, 0.5 units/kg lean mass) i.p. was administered. The total
area under the curve (AUC) was calculated using the trapezoidal rule.
pen access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1275
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A glucose-stimulated insulin secretion assay was performed according
to our published protocol [48].

2.5. Urine glucose and electrolytes
For 24 h urine collections, mice were housed individually in metabolic
cages (Tecniplast) and were allowed to adapt to the cages for 1 week
prior to sample collection. Urine was collected for 24 h, and urine
glucose was measured by a colorimetric assay as per manufacturer’s
instructions (81692; Crystal Chem). Urine sodium, potassium, and
chloride levels were measured using indirect ion-selective electrodes
on ADVIA 1800.

2.6. Western blotting and kidney histology
Western blots were carried out as per our published protocol [30].
Rabbit polyclonal anti-GLUT2 (600-401-GN3; Rockland Immuno-
chemicals) and goat polyclonal anti-SGLT2 (sc-47402; Santa Cruz
Biotechnology) primary antibodies were used at 1:2,000 and 1:1,000
dilutions, respectively, in tris-buffered saline with Tween 20 (TBST)
containing 5% powdered milk. Secondary antibodies anti-rabbit
(NA934; GE Healthcare) and anti-goat IgGs (sc-2768; Santa Cruz
Biotechnology) coupled to horseradish peroxidase were used to detect
the corresponding primary antibodies bound to their respective target
proteins. Vinculin (ab73412; Abcam) levels were quantified on the
same membranes as target proteins to confirm equal loading of
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Figure 1: Improved glucose tolerance and elevated glycosuria associated with reduced r
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samples. Luminescence was generated with the Amersham ECL
Advance Western Blotting Detection Kit (GE Healthcare) and recorded
on a Fotodyne Imaging System.
For immunohistochemistry, kidneys were removed 45 min after oral
glucose administration, cut longitudinally into two equal halves, and
fixed overnight in 10% neutral buffered formalin. The fixed kidneys
were embedded in paraffin and 5 mm sections collected with a
microtome. The sections were mounted onto slides, deparaffinized
and rehydrated before an antigen retrieval procedure of incubating the
slides in sodium citrate buffer (pH 6.0) at 80 �C in a water bath for 1 h.
Following this antigen retrieval step, the slides were washed 3 times
(10 min/wash) in TBST. The sections were blocked in 10% normal
goat serum for 2 h before incubating them with primary antibodies,
rabbit anti-GLUT2 (600-401-GN3; Rockland Immunochemicals, 1:500
dilution) or rabbit anti-SGLT2 (ab85626; Abcam, 1:500 dilution),
overnight at 4 �C. Following the incubation period, the sections were
washed 3 times (10 min/wash) in TBST and then incubated with
secondary goat-anti-rabbit serum conjugated to Alexa Fluor 488 (A-
11034; Invitrogen, 1:500 dilution) for 1 h at room temperature. The
sections were washed again 3 times (10 min/wash) in TBST and
counterstained with DAPI (D9542; Sigma, 0.1 mg/ml). After a 5 min
wash, the slides were air-dried and coverslipped using ProLong
Antifade mounting medium (P36930; Molecular Probes). Images were
captured using a Nikon 90i upright microscope (Nikon, Tokyo, Japan)
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equipped with an X-Cite 120Q fluorescent light source (Lumen Dy-
namics, Mississauga, Ontario, Canada), and a CoolSNAP HQ2 CD
camera (Photometrics, Tucson, AZ).
Hematoxylin and Eosin (H&E) staining was performed on mouse kidney
sections to determine changes in glomerular morphology. The sections
were mounted onto slides, deparaffinized and rehydrated as described
above. The sections were air-dried and incubated in hematoxylin so-
lution (MHS16; Sigma) for 15 min followed by a 15 min wash with
running tap water. Thereafter, the slides were counterstained with
alcoholic eosin Y solution (HT110116; Sigma) for 1 min, rinsed with tap
water, and coverslipped using ProLong Antifade mounting medium.
The quantitative analysis of histological images was performed using
Nikon software NIS-Elements AR. Investigators were blinded to the
identity of different samples during the analysis.

2.7. Statistics
All data are presented as mean � SEM. The data were analyzed by
Student’s unpaired 2-tailed t-test, or by 2-way or repeated measures
(RM) 2-way ANOVA followed by Tukey’s multiple comparison test as
appropriate with GraphPad Prism 7 software. P< 0.05 was considered
significant.

3. RESULTS

3.1. Obese ArcPomc�/� mice have normal blood pressure and
reduced RSNA concomitantly with improved glucose tolerance and
elevated glycosuria
First, we performed OGTT and measured 24 h urine glucose on two
separate occasions in obese ArcPomc�/� mice (Bodyweight:
Figure 2: Immunofluorescence detection of GLUT2 and SGLT2 levels in 24-wk ArcPom
distribution or location, in ArcPomc�/� mice; B) No change in proximal tubular SGLT2 leve
n ¼ 6. Error bars reflect mean � SEM. Scale bar ¼ 33 mm; images were taken under
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ArcPomc�/� mice, 55.4 � 1.7 vs. WT mice, 22.9 � 0.7 g, P < 0.01).
In agreement with our previous study [30], ArcPomc�/�mice exhibited
improved glucose tolerance (Figure 1A) and elevated glycosuria
(Figure 1B). Moreover, to determine a mechanism responsible for
elevated glycosuria in ArcPomc�/� mice, we measured RSNA in
ArcPomc�/� mice and littermate controls. Obese ArcPomc�/� mice
had normal blood pressure (Figure 1C) and reduced RSNA (Figure 1D),
suggesting an essential role of ArcPOMC in maintaining basal renal
sympathetic tone. Together, these data indicate an association of
RSNA with glucose reabsorption.

3.2. Obese ArcPomc�/� mice have decreased proximal tubular
GLUT2 levels without any changes in subcellular distribution
Using a western blotting approach in our previous report [30], we
attributed elevated glycosuria to reduced renal cortical GLUT2, but not
SGLT2, levels in ArcPomc�/� mice. However, it was unclear if
changes in proximal tubular subcellular GLUT2 distribution also
accounted for decreased glucose reabsorption in ArcPomc�/� mice.
Even though we did not see any changes in total SGLT2 levels, there
was a possibility that translocation of SGLT2 away from the apical
membrane brush border of the proximal tubular cells led to reduced
glucose reabsorption. To address these possibilities, we performed
immunohistochemistry on kidney sections from WT as well as
ArcPomc�/� mice. Consistent with our previous report, ArcPomc�/�

mice exhibited decreased GLUT2 (Figure 2A), but not SGLT2
(Figure 2B), immunofluorescence. However, there were no changes in
the distribution pattern or location of either GLUT2 or SGLT2 trans-
porters. These data indicate that elevated glycosuria is due to overall
decreased GLUT2 levels in proximal tubular cells and not translocation
c�/� mice. A) Reduced GLUT2 levels in proximal tubular cells, but no change in its
ls in ArcPomc�/� mice. *P < 0.05, 2-tailed Student’s t-test was used for comparisons;
40� objective lens field.
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of the glucose transporters away from the plasma membrane in
ArcPomc�/� mice.

3.3. Obese ArcPomc�/� mice exhibit glomerular hypertrophy,
natriuresis, kaliuresis, and chloriuresis
Obese ArcPomc�/� mice exhibited increased glomerular surface area
(Figure 3A) compared to their WT littermates. However, weight-matched
ArcPomc�/� mice had normal glomerular surface area (ArcPomc�/�

mice, 3305 � 321 vs. WT, 2852 � 308 mm2, n ¼ 4, no statistical
difference). These data suggest that the glomerular hypertrophy was a
secondary consequence of obesity and possibly increased blood vol-
ume, but not a direct effect of ArcPomc deficiency. This observation is in
accordance with that from MC4R�/� mice [49], and data showing that
obesity itself can lead to glomerular hypertrophy [50].
Both obese and weight-matched ArcPomc�/� mice had elevated
natriuresis (Figure 3B), kaliuresis (Figure 3C) and chloriuresis
(Figure 3C). Consequently, obese ArcPomc�/� mice exhibited poly-
dipsia (Water intake per day: ArcPomc�/�, 7.4 � 0.3 ml vs. WT,
6.4� 0.2 ml, n¼ 7e9, P< 0.05) and polyuria (Urine volume per day:
ArcPomc�/�, 6.9 � 0.4 ml vs. WT, 2.7 � 0.3 ml, n ¼ 7e9,
P < 0.001). However, these latter changes were absent in weight-
matched ArcPomc�/� mice (data not shown) possibly due to their
calorie restriction. The electrolyte excretion results clearly indicate a
function of ArcPomc in the regulation of sodium, potassium and
chloride reabsorption, possibly via RSNA.
Figure 3: Glomerular morphology and urine electrolytes in 24-wk old ArcPomc�/� mic
Natriuresis; C) Kaliuresis; D) Chloriuresis in obese and weight-matched female ArcPomc�

comparisons; n ¼ 6. Error bars reflect mean � SEM. Scale bar ¼ 33 mm; images were
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3.4. Obese ArcPomc�/� mice preserve their b-cell function and
the mice are protected from HFD-mediated impaired glucose
tolerance
Generally, the b-cell compensatory response of enhanced insulin
secretion, to overcome the insulin resistance associated with obesity,
is decreased over time and leads to hyperglycemia. However,
massively obese and insulin resistant aged ArcPomc�/� mice do not
manifest hyperglycemia [30]. To elucidate this atypical phenotype, we
performed a glucose-stimulated insulin secretion test on isolated islets
from 26-wk old ArcPomc�/� mice. Remarkably, the magnitude of
insulin secretion was higher in the islets from ArcPomc�/� mice in
response to 25 mM glucose compared to that from WT mice (26 wk:
ArcPomc�/� mice, 0.13 � 0.01 vs. WT mice, 0.07 � 0.01 insulin ng/
mg protein, n ¼ 4, P < 0.05). Basal insulin secretion from the islets in
response to 3.3 mM glucose was not different between the two groups
(data not shown). These results indicate that the function of b-cells of
ArcPomc�/� mice is preserved despite chronic insulin resistance and
obesity.
ArcPomc�/� mice were fed a HFD to determine their propensity to
develop diet-induced impaired glucose tolerance. The mice consumed
a significantly lower mass of HFD compared to that of regular chow per
day (Figure 4A). However, there was no change in the total calorie
intake in HFD-fed ArcPomc�/� mice relative to regular chow fed mice
(Figure 4B). The body weight of HFD-fed ArcPomc�/� mice was
significantly increased compared to that of the regular chow fed mice
e. A) Glomerular hypertrophy in obese ArcPomc�/� mice (H&E staining); Elevated B)
/� mice. *P < 0.05, **P < 0.01, ***P < 0.001, 2-tailed Student’s t-test was used for
taken under 40� objective lens field. The red arrows point out the glomeruli.
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(Figure 4C). Interestingly, despite this further increase in body weight,
ArcPomc�/� mice remained protected from HFD-induced fasting hy-
perglycemia or impaired glucose tolerance (Figure 4D, E) probably due
to their elevated glycosuria (Figure 4F).

3.5. Renal-denervated WT and db/db mice recapitulate the
phenotype of ArcPomc�/� mice
To further elucidate the function of RSNA in glucose reabsorption,
we denervated the kidneys of WT and db/db mice. Kidney
norepinephrine levels were about 80% lower in the denervated
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mice relative to their sham-operated controls (WT: 0.06 � 0.02 vs.
0.28 � 0.01; db/db: 0.08 � 0.02 vs. 0.35 � 0.03, ng/mg tissue,
renal-denervated vs. sham), thereby validating the renal dener-
vation procedure. We found that renal-denervated WT mice
exhibited improved glucose tolerance (Figure 5A) and elevated
glycosuria (Figure 5B) compared to their WT sham-operated lit-
termates. Insulin sensitivity was not affected by the renal dener-
vation procedure in WT mice (Figure 5C). These results suggest a
critical role of RSNA in glucose reabsorption, independently of
insulin action.
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The renal-denervation procedure in diabetic db/db mice prevented an
age-associated increase in their fasting blood glucose levels (Baseline:
designated sham group, 288 � 16 vs. designated renal-denervated
group, 334 � 30, no statistical difference; 9-wk: 451 � 6 vs
309 � 10; 12-wk: 459 � 14 vs 310 � 8 mg/dl, sham vs. renal-
denervated, Student’s unpaired 2-tailed t-test, P < 0.05). Moreover,
renal-denervated db/db mice had improved glucose tolerance at
different ages compared to their sham-operated littermates
(Figure 5D). This improvement in glucose tolerance was associated
with elevated glycosuria in 9-wk old db/db mice (Figure 5E). However,
with no further increase in fasting glycemia at 12-wk of age, renal-
denervated db/db mice showed reduced glycosuria compared to
sham-operated db/db mice (Figure 5F). It is important to acknowledge
that renal-denervation in db/db mice did not completely restore normal
glycemia or glucose tolerance; however, the procedure prevented
further deterioration of glucose tolerance and hyperglycemia. Overall,
our data indicate a direct role of RSNA in glucose reabsorption in
normal as well as diabetic mice.
To understand the mechanism underlying elevated glycosuria, we
determined the levels of the major renal glucose transporters, GLUT2
and SGLT2. Consistent with the results obtained from ArcPomc�/�

mice, we observed reduced renal GLUT2 (Figure 6A), but not SGLT2
(Figure 6B), levels in renal-denervated WT and db/db mice. These data
further reinforce that the sympathetic nervous system controls glucose
reabsorption via renal GLUT2.
Like ArcPomc�/� mice, renal-denervated WT and db/db mice had
elevated natriuresis (Figure 7A), kaliuresis (Figure 7B) and chloriuresis
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(Figure 7C). Altogether, renal-denervated WT and db/db mice reca-
pitulated the phenotype observed in ArcPomc�/� mice. Hence, our
study strongly suggests a role of RSNA in glucose homeostasis via
modulation of glucose reabsorption.

4. DISCUSSION

In this study, we report the function of ArcPomc in maintaining basal
RSNA. ArcPomc�/� mice are protected from hypertension, despite
obesity and insulin resistance, because of reduced RSNA. Moreover,
utilizing normal and diabetic db/db mice, we demonstrate that RSNA
contributes to glucose reabsorption via GLUT2 in renal proximal tubular
cells. Hence, renal denervation improves glucose tolerance in mice by
elevating their glycosuria.
Generally, obesity and insulin resistance are major risk factors for
cardiovascular disorders including hypertension [33]. Obesity stimu-
lates sympathetic nervous system activity leading to hypertension [33].
Leptin is the primary mediator for obesity-induced increase in sym-
pathetic nervous system activity and consequent hypertension
[40,51e54]. Moreover, insulin resistance is associated with hyper-
tension [55e57]. However, in this study, we demonstrate that despite
obesity, insulin resistance and hyperleptinemia, ArcPomc�/� mice
remain protected from hypertension due to suppressed RSNA. This
phenotype is reminiscent of that of MC4R knockout mice. MC4R-
deficient mice do not exhibit increases in RSNA or hypertension
despite obesity, insulin resistance and hyperleptinemia [31]. Moreover,
MC4R is critical in mediating the leptin-induced increase in RSNA [39].
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Figure 6: Representative western blots showing renal cortical GLUT2 and SGLT2 levels in renal-denervated WT and db/db mice. A) Decreased renal cortical GLUT2 levels in renal-
denervated WT and db/db mice; B) No change in renal cortical SGLT2 levels in renal-denervated WT and db/db mice. *P < 0.05, 2-tailed Student’s t-test was used for com-
parisons; n ¼ 8 (4 samples per group on each blot). Error bars reflect mean � SEM.
Hence, our results from ArcPomc�/�mice are in line with that obtained
from MC4R knockout mice. Altogether, these data indicate that POMC/
MC4R signaling is essential in causing obesity-induced hypertension
via regulating RSNA.
We recently reported that ArcPomc�/� mice do not exhibit hyper-
glycemia despite obesity and insulin resistance [30]. Similarly, it is
known that obese and insulin resistant POMC-deficient humans do
not develop diabetes [24,58]. Moreover, neither MC4R knockout mice
nor MC4R-deficient humans manifest hyperglycemia in spite of
obesity and insulin resistance [20,23,59]. We attributed the
improvement in glucose tolerance in ArcPomc�/� mice to elevated
glycosuria mediated by reduced proximal tubular GLUT2 levels [30].
However, the mechanism that links glucose reabsorption with Arc-
POMC is unclear. We have previously observed that epinephrine in-
creases renal GLUT2 levels in mice [30]. Moreover, we showed that
ArcPomc�/� mice have reduced epinephrine levels in their kidneys,
indicating the role of ArcPOMC in regulating sympathetic nervous
system activity. In this study, we directly showed by electrophysio-
logical measurements that ArcPomc�/� mice do have reduced RSNA,
consistent with our hypothesis that it is the mechanism for their
elevated glycosuria.
To further validate the function of RSNA in glucose reabsorption using
alternative mouse models, we denervated kidneys in WT and db/db
mice. Renal denervation improves glucose metabolism in drug-
resistant hypertensive patients [44,45]. However, the mechanism re-
mains unclear. We found that, like ArcPomc�/� mice, renal-
denervated WT and db/db mice exhibited improved glucose toler-
ance in association with elevated glycosuria. As fasting hyperglycemia
and glucose tolerance continued to improve in db/db mice after renal
denervation, glycosuria was subsequently decreased in 12-wk old db/
MOLECULAR METABOLISM 6 (2017) 1274e1285 � 2017TheAuthors. Published by ElsevierGmbH. This is an o
www.molecularmetabolism.com
dbmice. This observation corroborates a previous study that reported a
decrease in glycosuria in db/db mice after chronic treatment with an
SGLT2 inhibitor [60]. Collectively, our data from renal-denervated mice
confirm a role of RSNA in glucose reabsorption.
In contrast, a recent study reported that renal denervation does not
improve glucose tolerance in obese hypertensive mice [61]. It is very
likely that the authors of that report did not see any improvement in
glucose tolerance because the mice were administered glucose based
on their body weight. Hence, the obese mice received a higher glucose
dose compared to lean mice, which might have affected their response
to glucose tolerance tests. Moreover, the mice in that study [61] were
fasted for 14 h prior to glucose tolerance tests, which is different than
our protocol of fasting the mice for only 6 h [30]. These variations, in
addition to different routes of administration of glucose, could have led
to inconsistent results and conclusions between our present study and
that by Asirvatham-Jeyaraj et al. [61].
Interestingly, a link between RSNA and glycosuria was also recently
suggested using Otsuka Long-Evans Tokushima fatty rats [62]. The
authors removed the right kidney before denervating the left kidney at
a later age to determine the role of renal sympathetic nerves in glucose
reabsorption. The authors stated that right uninephrectomy was per-
formed to prevent reno-renal reflexes. However, consistent with clin-
ical protocols in humans [44], we suggest that a bilateral renal
denervation procedure would have been a more powerful physiological
approach to test the impact of renal sympathetic nerves on glucose
reabsorption. Moreover, unilateral nephrectomy might have led to
compensatory changes in the contralateral kidney in the rats [63].
Besides species differences, these different methodologies might
explain why we, unlike Rafiq et al. [62], did not observe any changes in
SGLT2 levels post renal denervation. Nevertheless, conclusions from
pen access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1281
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Figure 7: Effects of renal denervation on urine electrolytes in male WT and db/db mice. Elevated A) Natriuresis; B) Kaliuresis; C) Chloriuresis in renal-denervated WT and db/db
mice. *P < 0.05, **P < 0.01, 2-tailed Student’s t-test was used for comparisons; n ¼ 6. Error bars reflect mean � SEM.

Original Article
our current study support the main findings from the report by Rafiq
et al. [62] that reduced RSNA elevates glycosuria leading to
improvement in glucose tolerance.
We previously demonstrated using a western blotting method that
elevated glycosuria in ArcPomc�/� mice is due to reduced renal
proximal tubular GLUT2, but not SGLT2, levels [30]. Both GLUT2 and
SGLT2 are involved in glucose reabsorption. While SGLT2 is a major
glucose transporter in the apical brush border membrane of proximal
tubular cells, GLUT2 is located at the basolateral membrane of the
cells. In the current study, we performed immunohistochemistry to
verify the location and distribution of these transporters in ArcPomc�/�

mice. GLUT2 in epithelial cells of the intestine is translocated from
basolateral membrane to apical brush border membrane in response
to meals or elevated glucose [64,65]. We wanted to determine whether
this translocation-phenomenon in proximal tubule cells of the kidney
could explain the elevated glycosuria in ArcPomc�/� mice. Consistent
with our previous report [30], we observed reduced GLUT2, but not
SGLT2, immunofluorescence in renal proximal tubular cells. However,
we did not see any change in the location or distribution pattern of
either transporter in ArcPomc�/� mice. Nonetheless, differences in
SGLT2 or GLUT2 activity between WT and ArcPomc�/� mice cannot be
excluded and might further clarify elevated glycosuria in the latter.
Deficiency or inhibition of only SGLT2 [66,67] or GLUT2 [68,69] can
lead to elevated glycosuria in rodents as well as humans. The elevated
glycosuria protects them from hyperglycemia. Moreover, SGLT2
1282 MOLECULARMETABOLISM 6 (2017) 1274e1285 � 2017 The Authors. Published by Elsevier GmbH. Th
knockout mice remain protected from HFD mediated hyperglycemia
and impaired glucose tolerance despite obesity and insulin resistance
[70]. Similarly, we demonstrate that obese and insulin resistant
ArcPomc�/� mice are protected from HFD mediated impaired glucose
tolerance. We further show that islets isolated from aged ArcPomc�/�

mice release higher insulin compared to that isolated from their WT
littermates in a glucose-stimulated insulin secretion test. During
obesity, hyperinsulinemia compensates for insulin resistance to
maintain normal blood glucose levels. With time, this compensation
fails to overcome insulin resistance leading to overt hyperglycemia due
to b-cell failure. However, in ArcPomc�/� mice, glucose-stimulated
insulin secretion is not impaired, probably due to elevated glycos-
uria. These data are in agreement with a report indicating the bene-
ficial effects of elevated glycosuria on b-cell function in SGLT2
knockout mice [70].
In addition to elevated glycosuria, ArcPomc�/� mice manifested
increased natriuresis, kaliuresis and chloriuresis. The function of RSNA
in sodium reabsorption is well documented [71]. Reduced RSNA leads
to elevated natriuresis. Moreover, epinephrine is also involved in po-
tassium and chloride homeostasis. Epinephrine treatment increases
potassium and chloride reabsorption [72]. Hence, suppressed RSNA
may also explain the elevated kaliuresis and chloriuresis in ArcPomc�/

�mice. Renal denervation in WT and diabetic db/dbmice recapitulated
the phenotype of increased natriuresis, kaliuresis, and chloriuresis
observed in ArcPomc�/� mice (Figure 7).
is is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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In summary, we report that ArcPOMC is essential in maintaining basal
RSNA in mice. We have also demonstrated the critical function of RSNA
in glucose reabsorption. Reduced RSNA in ArcPomc�/� mice as well
as renal denervation in WT and diabetic db/db mice improves their
glucose tolerance by elevating glycosuria via reduced proximal tubular
GLUT2 levels (see Graphical Abstract). Therefore, elevated glycosuria is
likely a mechanism for improving glucose tolerance after renal
denervation in drug resistant hypertensive patients.
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