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A B S T R A C T

Adolescent drug misuse represents a major risk factor for long-term drug use disorders. However, wide in-
dividual differences in responses to first-line behavioral therapies targeting adolescent drug misuse limit critical
early intervention. Identifying the neural signatures of those adolescents most likely to respond to an inter-
vention would potentially guide personalized strategies for reducing drug misuse. Prior to a 14-week evidence-
based intervention involving combinations of contingency management, motivational enhancement, and cog-
nitive behavioral therapy, thirty adolescent alcohol and/or cannabis users underwent fMRI while performing a
reward delay discounting (DD) task tapping an addiction-related cognition. Intervention responses were long-
itudinally characterized by both urinalysis and self-report measures of the percentage of days used during
treatment and in post-treatment follow-up. Group independent component analysis (ICA) of task fMRI data
identified neural processing networks related to DD task performance. Separate measures of wholesale re-
cruitment during immediate reward choices and within-network functional connectivity among selective net-
works significantly predicted intervention-related changes in drug misuse frequency. Specifically, heightened
pre-intervention engagement of a temporal lobe “reward motivation” network for impulsive choices on the DD
task predicted poorer intervention outcomes, while modes of functional connectivity within the reward moti-
vation network, a prospection network, and a posterior insula network demonstrated robust associations with
intervention outcomes. Finally, the pre-intervention functional organization of the prospection network also
predicted post-intervention drug use behaviors for up to 6months of follow-up. Multiple functional variations in
the neural processing networks supporting preference for immediate and future rewards signal individual dif-
ferences in readiness to benefit from an effective behavioral therapy for reducing adolescent drug misuse. The
implications for efforts to boost therapy responses are discussed.

1. Introduction

Adolescence represents the developmental period most associated
with the initiation of drug misuse and thus the heightened potential to
develop drug use disorders (Degenhardt et al., 2016). In 2017,> 1 in
10 teens reported current illicit drug use and nearly 1 in 5 individuals
between 12 and 20 years of age reported alcohol use in the past month
(Substance Abuse and Mental Health Services Administration, 2018).
Drug abuse among teens is associated with heightened risk for myriad
adverse academic, health, cognitive, social, and legal outcomes
(Volkow et al., 2014). An influential model posits that the development
of addiction represents a brain-based learning process driven by early,

repeated drug misuse experiences (Kandel and Kandel, 2015); indeed,
adolescent drug misuse represents a major risk factor for long-term
drug use disorders (Chambers et al., 2003; Stone et al., 2012). Ado-
lescence thus represents the critical period for effective early inter-
vention to halt emerging drug use behaviors and thus prevent their
negative long-term outcomes (Henderson et al., 2019).

Recent intervention development initiatives targeting adolescent
drug misuse have explored the use of motivational enhancement, con-
tingency management and cognitive behavioral strategies implemented
across individual, school, and family settings (Das et al., 2016; Stewart
et al., 2015; Winters et al., 2014), but currently available interventions
remain imperfect solutions. For cannabis, the most common drug of
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abuse related to teen treatment admissions (Substance Abuse and
Mental Health Services (SAMSA, 2018), less than a quarter of adoles-
cents were abstinent from cannabis use at the end of treatment with
negligible differences in outcomes between different evidence-based
interventions (Dennis et al., 2004). Clearly, intervention response is
associated with substantial inter-individual variability, posing a major
barrier to effective early intervention. Predicting those adolescents who
will respond to a particular treatment remains a major goal of attempts
to develop personalized strategies matched to individual variance in the
mechanisms of treatment response.

Both evoked brain responses and states of functional brain organi-
zation can predict individual variability in treatment outcomes for drug
use disorders (Courtney et al., 2016; Feldstein Ewing et al., 2013;
Gowin et al., 2015; Moeller and Paulus, 2018). The reliable and accu-
rate use of functional brain states to predict treatment responses for
drug use disorders depends on targeting specific cognitive-behavioral
states that exhibit close associations with drug use disorders and their
response to intervention. One such candidate addiction-related cogni-
tion is the discounting of reward values by temporal delay in their re-
ceipt, a phenomenon referred to as delay discounting (DD) (Courtney
et al., 2016; Kalivas and Volkow, 2005). Indeed, individuals with drug
use disorders, including adolescents with problematic drug misuse
(Audrain-McGovern et al., 2004; Field et al., 2007), exhibit exaggerated
discounting rates (Bickel et al., 2007; MacKillop et al., 2011). Of direct
relevance to this work, both adult (Coughlin et al., 2018; Washio et al.,
2011; Yoon et al., 2007) and adolescent (Krishnan-Sarin et al., 2007;
Stanger et al., 2011) substance users who are high discounters exhibit
poorer treatment responses compared to those with lower discounting
rates. We previously used fMRI to identify the neural processing net-
works related to individual differences in DD rates among adolescents
entering treatment for misuse of cannabis and/or alcohol (Stanger
et al., 2013). Our previous fMRI study as well as numerous others in-
dicate that choices between smaller, sooner or larger, later rewards
depend on neural systems involved in valuation, cognitive control,
prospection, and motivational processes (Elton et al., 2016; Kable and
Glimcher, 2007; McClure et al., 2004; Monterosso and Luo, 2010;
Peters and Büchel, 2011; van den Bos and McClure, 2013). Given that
these neural systems underlie a known behavioral predictor of addic-
tion treatment outcomes (i.e., DD), the present study sought to identify
DD task-related brain-based predictors of individual variability in
adolescent intervention response.

In the current study, adolescents performed a fMRI DD task prior to
beginning a 90-day outpatient combination therapy that included mo-
tivational enhancement and cognitive-behavioral therapy (Stanger
et al., 2015; Stanger et al., 2017). With the intervention outcomes of the
parent studies now available, we analyzed the fMRI data to inform the
relationship between pre-intervention fMRI measures of DD and sub-
sequent in-treatment and post-treatment outcomes. We tested the hy-
pothesis that individual variation in the engagement and functional
organization of neural processing networks related to immediate- and
future-oriented decision preference predicts individual variation in re-
sponse to this combination intervention. The results obtained support
the contention that the identified neural predictors represent modifi-
able brain states relevant to predicting the individual intervention re-
sponse of adolescents with emerging drug use disorders and their post-
intervention drug misuse.

2. Methods

2.1. Participants

The thirty adolescent participants (aged 12–18, mean: 15.7 years; 6
females/24 males; 19 white/10 black/1 Hispanic) included in the
current analysis were previously characterized in a report examining
the neural correlates of individual variation in immediate- and future-
oriented choice behavior (Stanger et al., 2013) and were participants in

outpatient clinical trials assessing the impact of combination behavioral
therapies for adolescent drug misuse. The current study examined the
ability of these neural processing network correlates of decision-making
within the DD task to predict therapy response.

Adolescents were enrolled in one of two studies investigating the
behavioral and neural responses to weekly motivational enhancement/
cognitive-behavioral therapy (MET/CBT), with some participants ran-
domly assigned to also receive contingent management (CM) via in-
centives for documented abstinence. One study focused on alcohol
misuse (Trial 1) and the other on cannabis misuse (Trial 2). Inclusion in
Trial 1 (n=16) required self-reported alcohol use in the last 30 days in
addition to either meeting DSM-IV criteria at study entry for alcohol
abuse or dependence (n=2) or having engaged in at least one binge
episode - defined as at least 5 alcoholic beverages in a 24-h period - in
the past 90 days. Likewise, Inclusion in Trial 2 (n=14) required self-
reported cannabis use in the last 30 days or a positive urine test for THC
in addition to meeting DSM-IV criteria for cannabis abuse or depen-
dence (n=3) at study entry. Notably, the majority (14/16) of those
adolescents enrolled in Trial 1 reported cannabis use or evidenced a
cannabis-positive urinalysis result at baseline despite the Trial 1 in-
clusionary criterion of being contingent on alcohol use (Stanger et al.,
2017).

2.2. Intervention

The larger purpose of the two parent outpatient clinical trials was to
test interventions designed to increase the efficacy of Motivational
Enhancement Therapy combined with Cognitive Behavioral Therapy
(MET/CBT) for reducing problematic drug use among clinically-re-
ferred substance-misusing youth. Study procedures were similar across
both studies/trials and have been described in detail previously
(Stanger et al., 2015; Stanger et al., 2017). All adolescents in Trial 1
(Stanger et al., 2017) and Trial 2 (Stanger et al., 2015) received
14weeks of MET/CBT (Sampl and Kadden, 2001; Webb et al., 2002).
Additionally, adolescents were randomly assigned to receive an ab-
stinence-based contingency management (CM) intervention, which in-
volved a combination of clinic and home-based monetary incentives for
abstinence from all substances, or no CM. Adolescents in Trial 2 ran-
domized to receive CM were also randomized to receive either a parent
training (PT) intervention, which targeted conduct problems, or no PT.
Independently rated fidelity to MET/CBT was acceptable for the parent
clinical trials (Stanger et al., 2015; Stanger et al., 2017).

Subjects participating in the parent treatment trials (Stanger et al.,
2015; Stanger et al., 2017) were given the option to enroll in the
neuroimaging study. The primary goal of the present study was to de-
fine those neural correlates of intertemporal decision making that sig-
nificantly predict subsequent treatment response while retaining the
primary clinical trial focus on MET/CBT. The current sample of ado-
lescents received MET/CBT (n=11), MET/CBT+CM (n=3), or
MET/CBT+CM+PT (n=16). Negative breathalyzer tests for recent
alcohol use were required on the day of the scan and negative results
were obtained for all participants. Some participants submitted drug
positive urine specimens on the day of the scan, but positive samples
did not exclude individuals from participation. Detailed subject char-
acteristics, including demographics, drug use, and psychiatric diagnoses
are provided in Supplemental Table 1. The Institutional Review Board
(IRB) of the University of Arkansas for Medical Sciences approved both
trials and this neuroimaging study.

Both trials demonstrated statistically significant decreases in can-
nabis use during the intervention based on the full sample (n=153)
with larger effects for MET/CBT+CM (with or without PT) than MET/
CBT alone (Stanger et al., 2015; Stanger et al., 2017). The addition of
the PT intervention was not associated with additional reductions in
cannabis use compared to MET/CBT+CM (Stanger et al., 2015).
Furthermore, because study procedures were essentially identical for
the two trials and participants from both trials were eligible to
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participate in the neuroimaging study, we analyzed the pooled sample.

2.3. Pre-treatment, in-treatment, and post-treatment measures of drug
misuse

Two separate measures of intervention effects on drug misuse fre-
quency based on objective urine and breath analysis and subjective self-
report were collected as treatment outcome variables. Urine testing and
alcohol breathalyzer tests were performed once-weekly (Trial 1,
n=16) or twice-weekly (Trial 2, n=14) throughout the 14-week
treatment period. The percentage of drug-positive samples was defined
as the total number of alcohol-positive breathalyzer tests or positive
urinalyses outcomes for multiple drugs of abuse – including cannabis,
cocaine, opioids, benzodiazepines, amphetamines, methamphetamines
and alcohol (based on detection of urine ethyl glucuronide (EtG)) –
divided by the total number of breath or urine analyses performed.
Failure or refusal to provide a urine or breath sample was coded as a
positive test, as were self- or parent-reports of use. The percentage of
days of self-reported substance use during the intervention period was
assessed at the end of treatment using the Time-Line Follow Back (TLFB
(Sobell and Sobell, 1992)) for alcohol, cannabis, and other illicit sub-
stances. Similarly, pre-treatment TLFB assessments of the previous
90 days of drug misuse were conducted at study intake (baseline per-
centage of days used) and at each of three post-intervention follow-up
time points. For the pre-intervention and post-intervention assessments
of drug misuse severity, the percentage of days used was calculated as
the number of self-reported days of any drug use divided by the number
of days for each data collection period.

2.4. Delay discounting (DD) task and behavioral analysis

As previously reported, the fMRI DD task was modeled as an event-
related design. Subjects made choices between varying hypothetical
smaller, sooner (SS) monetary rewards offered “today” and a hy-
pothetical fixed larger, later (LL) reward ($1000) offered at one of four
temporal delay intervals (1 month, 6months, 1 year, and 5 years). In
control (CON) trials, subjects selected between two monetary amounts
offered “today” to provide a contrast condition controlling for non-

temporal monetary decision processes, motor responses, and attention.
There were 20 trials for each delay, as well as 20 CON trials. Monetary
values for SS rewards were individually varied around the participant's
indifference point initially defined by a prior DD task and adjusted
online based on responses.

Individual discounting rates (k) were estimated from decision pre-
ferences obtained by a computerized DD task version administered
prior to the MRI scan, as described previously (Stanger et al., 2013).
Higher k values indicate greater DD (i.e. decreasing reward value with
increasing delay to receipt). K values were assessed for correlation with
the two intervention response measures (i.e., percent days used and
percent positive urine/breath samples) using Spearman partial corre-
lation analyses, controlling for age, sex, study (Trial 1 versus Trial 2),
treatment arm, and the percentage of self-reported days of use during
the 90-day pre-intervention period.

2.5. Image acquisition and preprocessing

As previously described (Stanger et al., 2013), DD task-related
BOLD and MPRAGE sequences were acquired and fMRI data pre-
processed prior to analysis. These experimental approaches are detailed
in the Supplemental Materials.

2.6. Independent component analysis (ICA)

We previously conducted a group ICA of all 30 subjects' DD task
fMRI data using the Group ICA of fMRI Toolbox (GIFT (Calhoun et al.,
2001)) in MATLAB, and then related individual DD rates to recruitment
of independent component (IC)-represented brain networks (Stanger
et al., 2013). The current analyses utilized this previous ICA solution, in
which we solved for 20 ICs. From the 20 ICs, we previously selected
seven for further investigation of their intervention response related-
ness based on their reported canonical roles in higher-order task pro-
cesses (Stanger et al., 2013). We further investigated these same seven
networks in the current study (Fig. 1), thus facilitating comparisons and
inferences across studies. These ICs are also highly consistent with those
previously reported in other neuroimaging studies, including those
utilizing healthy adult populations and resting state data (e.g., Smith

Fig. 1. Representative sagittal, coronal, and axial sections depicting each independent component tested for functional association with intervention-related changes
in drug misuse. Positive values, z≥ 1.0, are overlaid on anatomical images.
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et al., 2009; Zuo et al., 2010), attesting to the potential for the current
study findings to be reproducible and translational across studies.
Spatial-temporal regression analysis conducted in GIFT provided sub-
ject-specific spatial maps and time series for each component, which
were z-score normalized.

2.7. Identification of the relationships between wholesale IC engagement
and intervention response

Previously, we used general linear modeling (GLM) to test the
functional association of each IC-defined neural processing network
with each DD task decision option (e.g., SS, LL, CON) and their planned
contrasts (i.e., SS-CON, LL-CON) (Stanger et al., 2013) (see Supple-
mental Materials for detailed description of these analyses). The current
work uniquely extends the prior analyses (Stanger et al., 2013) by
testing the relationship between DD task-related recruitment of ICs and
subsequent individual intervention responses. In separate tests for each
of the seven selected ICs, SS-CON and LL-CON contrast values were
assessed for correlation with both drug use outcome variables. Due to
the non-normal distributions of the intervention response variables,
Spearman's rank-order partial correlation coefficients were calculated,
controlling for potential confounding variables including age, sex, study
(Trial 1 versus Trial 2), treatment arm (MET/CBT or MET/CBT+CM),
and the percentage of self-reported days of substance use in the 90-day
pre-treatment period. Bootstrapping (10,000 iterations) of these cor-
relations provided 95% confidence intervals (CI) and p-values of their
significance. Significant (p < .05) correlations after false discovery
rate (FDR (Benjamini and Yekutieli, 2001)) correction for all compar-
isons (28 comparisons: 7 components, 2 outcome variables, 2 contrasts)
are reported.

2.8. Variable selection for IC functional connectivity analysis

In a second, independent analysis, we tested whether individual
differences in the functional organization, rather than wholesale re-
cruitment, of any of the DD task-related neural processing networks
predicted adolescent treatment response. Participant-specific IC spatial
maps of voxel-wise component scores representing the magnitude of
each voxel's contribution to the IC were generated in GIFT; values re-
present the extent to which an individual voxel is recruited into the
larger functional network, a reflection of network functional con-
nectivity. We tested a hypothesis that individual differences in the
voxel-level functional organization of particular ICs could predict in-
dividual variability in subsequent intervention responses. We tested this
hypothesis using elastic net regularization (Zou and Hastie, 2005), an
adaptation of stepwise regression, to identify the subset of voxel-wise
component scores that optimally predicted intervention response as
defined by the study drug use variables.

We specifically examined the relationship of component scores
within each subject's IC spatial maps (i.e., functional connectivity) to

the two intervention response variables, performing separate analyses
for each of the drug misuse measures. A detailed description of the
elastic net regression procedure is provided in the Supplemental
Materials. Importantly, we partialled out the percentage of days of re-
ported substance use in the 90-day pre-treatment period from the in-
treatment drug use measures prior to analyses to ensure that analyses
captured individual differences in intervention-related effects rather
than differences related to the pre-intervention severity of drug misuse.
For the seven selected ICs, we used a leave-one-out cross validation
(LOOCV) procedure to identify sets of IC voxels predicting each re-
sponse varaible and assess their prediction reliability and accuracy (see
LOOCV details in the Supplemental Materials). Significant (p < .05)
results after an FDR correction for all comparisons (14 comparisons: 7
components, 2 outcome variables) are reported.

2.9. Post-hoc analyses of IC predictor variables for the post-intervention
period

For those statistically significant relationships between intervention
response and either IC engagement or connectivity identified in the
main analyses, post-hoc Spearman's correlations considered their further
predictive relationship to TLFB-based drug use at three post-interven-
tion follow-up time points (3 months, 6 months, and 9months). This
follow-up extension determined whether pre-intervention predictors of
in-treatment changes in drug misuse behaviors were similarly pre-
dictive of post-treatment drug misuse behavior. Two subjects were
missing follow-up data at all three time points and were eliminated
from analysis, and one additional subject was missing data for the 9-
month follow-up only.

3. Results

Participant drug misuse variables are summarized in Table 1. For
the two measures, Spearman correlation indicated that the self-reported
percentage of days of drug use was highly correlated with the percen-
tage of drug-positive urine/breath tests throughout treatment
(ρ=0.74, p < .001). Only five adolescents reported complete ab-
stinence from drugs of abuse for the duration of the treatment period; of
those, four consistently provided drug-free urine samples during that
time.

3.1. Behavioral analysis

Spearman partial correlation analyses indicated that pre-treatment
DD task-defined k values did not significantly correlate with the percent
days of self-reported drug use (ρ=0.07, p= .74) or percent positive
urine samples (ρ=0.32, p= .11) during treatment.

Table 1
Drug misuse variables defined by self-report of days used versus urinalysis for each data collection period.

In-treatment Days used any drug Positive UA, any drug Days used alcohol Positive alcohol
UA

Days used
cannabis

Positive cannabis UA

Mean 18% 47% 5% 23% 14% 42%
SD 27% 37% 10% 29% 26% 37%

Pre-treatment Days used any drug Days used alcohol Days used
cannabis

Mean 34% 7% 28%
SD 29% 11% 27%

Post-treatment Days used any drug:
0–3months

Days used any drug:
3–6months

Days used any drug:
6–9months

Mean 13% 20% 23%
SD 21% 29% 27%
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3.2. ICA analysis

Spatial maps of each of the seven ICs included in the analyses are
displayed in Fig. 1. These maps are displayed with a z-score threshold of
1.0, representing the voxels included in the mask for the functional
connectivity analysis. It should be noted that IC engagement analyses
utilized time series that were derived from the entire whole-brain da-
taset, rather than a subset of voxels, using the spatial-temporal re-
gression technique (Stanger et al., 2013; Zuo et al., 2010).

3.3. Relationship of level of wholesale IC engagement and intervention
response

One IC demonstrated a significant relationship between its level of
pre-treatment recruitment during choices of immediate rewards (SS-
CON contrast) and rates of drug misuse during treatment. Greater de-
cision-making-related engagement of IC7, a functional network en-
compassing the ventral medial temporal lobe, temporal poles, and
ventromedial prefrontal cortex (Stanger et al., 2013) (Fig. 1, Table 2),
during impulsive decisions favoring immediate rewards predicted
poorer subsequent intervention responses. Specifically, the individual
level of engagement of this ventral temporal-prefrontal network during
SS choices exhibited a positive correlation with both the percentage of
drug-positive urine/breath samples (ρ=0.56; 95% CI: [0.30, 0.75],
p= .002) and with the percentage of self-reported days of drug use
(ρ=0.67; 95% CI: [0.44, 0.84], p < .001) during treatment. Correla-
tions between pre-treatment recruitment of IC7 during LL trials for ei-
ther treatment outcome variable did not survive an FDR correction for
multiple comparisons. Scatter plots of these relationships are displayed
in Fig. 2A-B. No other ICA-derived network significantly correlated
with intervention response based on their level of recruitment during
either LL or SS trials after FDR correction.

3.4. Relationship of intrinsic network connectivity to in-treatment outcomes

Three neural processing networks demonstrated patterns of pre-
treatment functional organization that predicted later individual in-
tervention response. The functional organization of IC7 predicted the

percentage of drug-positive urine samples during treatment (ρ=0.72,
p < .001; Fig. 3A). Individual functional connectivity of a second
component, IC8, for which peak component scores were present bilat-
erally in posterior insula and lateral temporal lobes, and in the pre-SMA
and left lingual gyrus (Fig. 1, Table 2), was also related to the per-
centage of drug-positive urine samples during treatment (ρ=0.73,
p < .001; Fig. 3B). The pattern of functional organization of a third
network represented by IC12, which demonstrated close anatomical
alignment with the “default-mode network” (Raichle, 2015) (DMN)
(Fig. 1, Table 2), predicted both the percentage of drug-positive urine/
breath samples (ρ=0.55, p= .002; Fig. 3C) and the percentage of self-
reported days of in-treatment drug use (ρ=0.60, p < .001; Fig. 3D).
No other tested ICs significantly predicted intervention outcomes based
on their intrinsic functional connectivity following FDR correction
(α=0.05).

To identify the specific modes of predictive network functional or-
ganization, we examined the neuroanatomical locations of the voxel-
level functional connectivity predictors within the three ICs that pre-
dicted intervention responses. Because each iteration of the LOOCV
produced a different predictor (i.e., different combinations of voxels),
for each network we illustrated results as t-statistics from univariate
one-sample t-tests at each voxel, which statistically quantified the
strength, direction, and consistency of voxel predictor values across all
30 LOOCV iterations (Fig. 3E). These brain maps are not to be inter-
preted in a similar manner as typical univariate statistical parametric
maps in which statistical significance and cluster size thresholds are
applied. In contrast to typical univariate approaches, elastic net selects
from voxels across the entire brain and the resultant predictor considers
the selected voxels in combination. Furthermore, elastic net uses a
sparse selection of voxels for each predictor, meaning few voxels across
correlated brain regions may be selected even if many voxels are as-
sociated with the outcome variable. Thus, larger clusters simply in-
dicate that neighboring voxels were variably selected across iterations
of the LOOCV, whereas greater t-statistics in this map indicate that a
particular voxel was selected consistently across iterations and/or de-
monstrated strong predictive values when selected.

Multiple patterns of functional connectivity predictors of within-
intervention drug misuse within IC7 were observed. The functional
connectivity of voxels within the temporal poles, medial temporal lobe,
cerebellum, and ventromedial prefrontal cortex of IC7 contributed to
prediction of drug misuse, with both positive and negative associations
observed within these network regions. For this IC, the largest clusters
of predictor voxels were located in the right (peak voxel: x= 36,
y= 14, z=−32) and left (peak voxel: x=−33, y= 23, z=−26)
inferior temporal poles (Fig. 3E), and the predictor coefficients for those
voxels suggested that greater within-network functional connectivity of
these voxels was associated with reduced drug misuse. In other words,
the greater the functional integration of the inferior temporal poles into
the ventral temporal-prefrontal neural processing network represented
by IC7, the better the adolescent response to the combination inter-
vention.

Functional connectivity predictors within IC8 also exhibited both
negative and positive relationships with drug use during treatment
(Fig. 3E). Greater functional connectivity of large clusters of voxels
within right posterior insula (peak voxel: x= 48, y=−4, z= 7) and
left superior temporal sulcus (peak voxel: x=−66, y=−22, z= 1)
for this insula-temporal-preSMA network predicted greater drug use
(poorer intervention response). Conversely, greater functional con-
nectivity within IC8 of a voxel cluster in the premotor cortex (peak
voxel: x= 3, y=−16, z= 73) was associated with better intervention
response.

For illustration purposes, voxel predictors within IC12 were merged
for the two significant intervention outcome variables by calculating a
single t-statistic across all 60 LOOCV iterations (30 for each predictor)
using a one-sample test at each voxel (Fig. 3E). The largest clusters of
predictive voxels for this DMN representation were located in the

Table 2
Independent component (IC) coordinates.

Region x y z Peak z-
score

n voxels

IC 7
Left amygdala -12 -4 −26 6.44 3626
Right temporal polar cortex 33 11 −29 6.27 (multiple

peaks)
Left parahippocampal gyrus −16 −28 −21 4.54
Right parahippocampal gyrus 17 −25 −24 4.20
Left temporal polar cortex −42 8 −26 3.70
Medial prefrontal cortex 0 41 1 1.24

IC 8
Right superior temporal gyrus 60 −10 1 4.10 2409
Left superior temporal gyrus −60 −16 7 4.04 2256
Pre-supplementary motor area 0 −7 52 2.44 907
Left lingual gyrus −9 −61 1 1.16 54

IC12
Posterior cingulate cortex,

precuneus
0 −55 16 5.14 4085

Ventromedial prefrontal cortex,
orbitofrontal cortex

3 56 −8 3.86 554

Right angular gyrus 45 −70 34 1.88 450
Left angular gyrus −42 −76 31 1.76 224
Right superior frontal gyrus 30 38 49 1.67 83
Left frontal pole −24 −65 13 1.57 27
Right frontal pole 27 65 4 1.19 27
Left superior frontal gyrus −27 38 52 1.30 20
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ventromedial prefrontal cortex/medial orbitofrontal cortex (OFC) (peak
voxel: x=−3, y= 38, z=−14) and dorsal precuneus (peak voxel:
x=−6, y=−79, z= 31), for which their greater functional con-
nectivity within IC12 was associated with greater drug use during
treatment, and in the ventral posterior cingulate cortex (peak voxel:
x=−6, y=−46, z= 1), which predicted intervention-related de-
creases in drug use.

3.5. Post-hoc tests of the accuracy of IC predictors of post-intervention drug
use

Post-hoc analyses of the relationship between IC predictors of in-
tervention outcomes and the percentage of days of self-reported drug
use in the previous 90 days at three post-intervention follow-up time
points (3 months, 6 months, and 9months) based on TLFB are tabulated
in Supplemental Table 3. Although the neural predictors of in-treatment
changes in drug use were generally weak predictors of drug use at
follow-up, significant relationships were detected for IC12 (i.e., DMN)
functional connectivity. IC12 functional connectivity predictors of in-
treatment drug urinalysis results also predicted the percentage of days
of any drug use at 0–3months (ρ=0.46, p= .02) following treatment,
whereas IC12 functional connectivity predictors of in-treatment self-
reported drug use significantly predicted the percentage of days of drug
use for 0–3 (ρ=0.42, p= .04) and 3–6months (ρ=0.48, p= .02)
post-intervention.

4. Discussion

Adolescence represents both the developmental period of origin of
drug use disorders and the best opportunity for early preventive in-
tervention and thus this developmental stage has particular significance
to addiction research. We sought to identify the engagement and or-
ganization states of specific neural information processing networks
related to preference choices for immediate versus future rewards that
predicted the well-recognized individual differences in adolescent drug
misuse behaviors over the course of both treatment and long-term
follow-up. This study sought to address whether functional states of
brain organization related to an addiction-related cognition were cap-
able of predicting subsequent response of at-risk adolescents to

combination behavioral therapies. Our findings indicate that both the
level of wholesale recruitment and functional organization of neural
processing networks involved in intertemporal decision-making sig-
nificantly predict subsequent intervention-related changes in adoles-
cent drug misuse (Fig. 4). These network states exhibited greater pre-
dictive power than did individual DD rates. This study informs
strategies to prevent drug use disorders among adolescents at-risk for
drug use disorders due to already initiated drug misuse by identifying
those decision-related functional brain states that signal individual
variation in likelihood of responding to evidence-based interventions.

A ventral temporal-prefrontal neural processing network (IC7)
predicted subsequent intervention outcomes through both its variation
in intrinsic functional connectivity and level of wholesale recruitment
during present-oriented choices associated with impatience (van den
Bos et al., 2015). Within the same study sample, greater engagement of
this “reward motivation” network was previously associated with
greater impulsivity represented by steeper discounting of delayed re-
wards (Stanger et al., 2013). These results suggest a brain state re-
presentation of the reported behavioral associations between a heigh-
tened preference for immediate rewards (i.e., high temporal
discounters) and poorer drug abuse treatment outcomes among ado-
lescent drug abusers (Krishnan-Sarin et al., 2007; Stanger et al., 2011),
though this behavioral relationship (i.e., correlation with k values) was
not observed in this subsample. The functionally connected brain re-
gions comprising this ventral temporal-prefrontal network of activation
included several limbic-paralimbic regions implicated in stimulus-re-
ward associations (Boorman et al., 2016; Murray, 2007; Stanger et al.,
2013): bilateral amygdala, bilateral hippocampus, bilateral ventral
temporal poles, and ventromedial prefrontal cortex. The study results
suggest that greater recruitment and particular patterns of functional
connectivity organization for a network that biases decision choices
toward immediately available rewards predispose drug-abusing ado-
lescents toward poorer intervention responses. Strategies to override
the neural responses to reward-predicting cues may help curb impulsive
decisions to engage in drug use.

The functional connectivity of a cingulate-frontal-parietal network
(IC12) during choice preferences for future rewards predicted both
subsequent within-intervention and post-intervention drug use fre-
quency. Neuroanatomically, this IC closely corresponds to the default-

Fig. 2. Relationship of level of engagement of in-
dependent component 7 (IC7) related to choices for
immediate rewards and within-intervention drug
misuse. Scatter plots demonstrate significant corre-
lations between engagement of IC7 during smaller,
sooner (SS) decisions and both A) the percentage of
days of self-reported drug use according to timeline
follow-back calendars and B) the percentage of drug-
positive urine samples during the intervention. Drug
use variables represent residuals after adjusting for
age, sex, trial, treatment arm, and percentage of self-
reported days used in the 90-day pre-intervention
period. Below each scatterplot, histograms depict the
bootstrapped distributions of variable correlations.
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mode network (Raichle, 2015), particularly its posterior subsystem or
pDMN (Andrews-Hanna et al., 2010). The functionally connected brain
regions comprising IC12 included the ventral posterior cingulate cortex,
ventromedial PFC, bilateral angular gyrus, bilateral DLPFC, and rostral

PFC. The DMN is consistently engaged by tasks that demand self-re-
ferential thought (Raichle, 2015; Spreng, 2012; Spreng et al., 2009).
One such attributed role of the pDMN with direct relevance to the DD
task is in prospection (Spreng et al., 2009; Xu et al., 2016), a process of

Fig. 3. Relationship between within-network func-
tional connectivity predictors of within-intervention
rates of drug misuse and actual rates of misuse.
Scatter plots demonstrate significant correlations
between the actual percentage of drug-positive urine
samples during the intervention and predicted per-
centages of drug-positive urine samples based on
functional connectivity patterns within A) IC7, B)
IC8, and C) IC12. D) The percentage of days of self-
reported drug use according to timeline follow-back
calendars was similarly significantly correlated with
the prediction of those outcome values by functional
connectivity pattern within IC12. Drug use variables
represent residuals after adjusting for age, sex, study,
treatment arm, and the percentage of self-reported
days used in the 90-day pre-intervention period. E)
Visualization of functional network organization
predictors of intervention outcome. To visualize and
interpret the three independent components for
which voxel functional connectivity predicted inter-
vention responses, univariate one-sample t-tests were
performed on the predictor coefficients at each voxel
across all 30 LOOCV iterations to statistically quan-
tify the strength, direction, and consistency of voxel
predictor values. Unthresholded maps of the t-values
of voxels within each IC identified as functional
connectivity predictors across the 30 LOOCV itera-
tions are displayed. For visualization purposes, voxel
predictors within IC12 were merged for the two in-
tervention outcome variables by calculating a single
t-statistic using a one-sample test at each voxel.
Warm colors represent predictors of greater drug use
(poorer intervention outcomes) whereas cool colors
represent reduced drug use (improved intervention
outcomes). TP, temporal pole; STS, superior tem-
poral sulcus; PI, posterior insula; OFC, orbitofrontal
cortex; PCC, posterior cingulate cortex; Prec, pre-
cuneus.
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cognitive projection into one's future that is engaged during future-or-
iented choice behaviors (Benoit and Schacter, 2015; Stawarczyk and
D'Argembeau, 2015). The ability to mentally simulate and pre-experi-
ence future decision outcomes has adaptive advantages in biasing
present decision choices away from the greater incentive value of im-
mediate gratification (Luo et al., 2009) and in favor of possible ad-
vantageous future outcomes (Bar, 2010). Indeed such episodic future
thinking promotes real-world, health promotion decisions (Dassen
et al., 2016; Kahana et al., 2005; Kaplan et al., 2016) and has been
consistently associated with substance use behaviors (Bickel et al.,
2007; MacKillop et al., 2011).

These prospection processes predict temporal discounting rates
among adolescents (Bromberg et al., 2015) and are supported by DMN
functional connectivity in both adolescents (van den Bos et al., 2015)
and adults (Bellana et al., 2017; Peters and Buchel, 2010). Across
adolescence, the DMN exhibits increasing connectivity within DMN
subnetworks and decreasing connectivity between DMN subnetworks
(Joshi et al., 2017; Sherman et al., 2014). Interestingly, greater func-
tional integration of the anterior vmPFC/medial OFC and dorsal pre-
cuneus within the pDMN in this sample predicted poorer intervention
responses for the targeted behavior of drug misuse. The dorsal pre-
cuneus, which is involved in behavioral engagement (Zhang and Li,
2010) and detects the possibility of an immediate reward (Albrecht
et al., 2013), is not considered a core part of the DMN (Yang et al.,
2014). Likewise, the anterior vmPFC contributes to the perception and
processing of the experiential goal value of rewards (Hare et al., 2009)
and immediate rewards for one's self (Albrecht et al., 2013). In contrast,
greater functional integration of the ventral PCC, a hub region of the
DMN, was associated with improved intervention response. This pattern
of variation in PCC and medial OFC functional integration within IC12
may represent individual differences in DD decisions based on the re-
lative allocation of DMN function between prospective versus reward-
seeking processes. Indeed, compared to young adults, the greater pre-
ference for immediate rewards on a DD task among adolescents was
related not to a predicted heightened sensitivity for immediate rewards
but to poorer future orientation (Bromberg et al., 2015). The observed
association of intervention response with a pattern of functional con-
nectivity within a network supporting prospection suggests that a de-
velopmental immaturity in future orientation thinking (Bromberg et al.,
2015) represents a barrier to early intervention to halt the addiction
process among at-risk adolescents.

Within a posterior insular-temporal-preSMA network (IC8), the
level of functional integration of the posterior insula, superior temporal
gyrus, and SMA also predicted within-intervention changes (positive
and negative) in drug misuse behaviors. Activation of a similar ICA-
derived posterior insula-temporal network was previously associated
with impulsive choices in an fMRI DD task among healthy adults (Elton
et al., 2016). In that study, network engagement was interpreted as
biasing decisions based on the visceral responses to reward choices. The
morphology of the posterior insula has also been linked to addictive
behaviors, an association that is mediated by DD (Turel et al., 2018).
The association of stronger connectivity among the posterior insula and
superior temporal sulcus regions of IC8 with poorer intervention re-
sponse in the current study is consistent with individual variation in the
extent to which one's drug misuse decisions are biased by interoceptive
(or perhaps social (Lahnakoski et al., 2012; Turel et al., 2018)) asso-
ciations with immediately gratifying, but ultimately less advantageous,
reward expectancies among adolescents. Conversely, the observed as-
sociation of increasing functional connectivity of the premotor cortex
within IC8 with better intervention response is consistent with the
abstinence-promoting effect of an increased influence on reward choice
of a key region implicated in controlled action selection (Zapparoli
et al., 2017). In the net, these findings for IC8 support the notion that
individual differences in adolescent intervention response reflect in-
dividual variation in the modes of influence on drug use decisions of
nodes reflecting differing information representations within a single
network.

This study of functional brain states that predict individual differ-
ences in adolescent intervention response also sought to assess their
endurance of prediction beyond treatment completion. For the self-re-
ported percentage of drug use days during post-treatment follow-up,
the functional connectivity of IC12 significantly predicted drug misuse
behavior up to 6months post-treatment. These sustained predictive
relationships suggest that the cognitive style of intertemporal decision-
making encoded within specific patterns of functional organization of
the pDMN reflect individual predispositions for long-term responses to
treatment. The association of this network with post-treatment drug
misuse supports the potential value of adjunctive training of DMN
functions – perhaps preferentially related to episodic future thinking
(e.g., (Jing et al., 2017)) – to boost sustained responses to evidence-
based interventions.

Though the study yielded interesting inferences, their strength is
tempered by limitations of the study design. First, this study tested
hypotheses regarding IC engagement and IC functional connectivity
across seven ICs, two different measures or substance use and, in the
case of the engagement analysis, two different decision types.
Therefore, multiple comparisons corrections that encompassed each of
these full sets of comparisons were required. As a result, the study was
only powered to detect very robust effects. Furthermore, the lack of a
control group of non-drug misusing adolescents precludes a comparison
to normative modes of network functional organization that represent
individual intertemporal choice preferences. Additionally, the brain
state predictors were developed from within-intervention drug use
measures. Future studies should also consider developing specific pre-
dictors of sustained post-intervention-related changes in drug misuse.
Also this adolescent sample varied in the severity of their pre-inter-
vention drug misuse with 5 adolescents fulfilling DSM-IV criteria for
drug dependence. This variance is likely associated with varying al-
terations in functional brain organization that may not have been fully
accounted for by controlling for pre-treatment variation in drug misuse
frequency. A possible additional source of heterogeneity within the
sample was the different intervention types within the combined in-
tervention model (Stanger et al., 2015). However, all adolescents re-
ceived individual therapy (MET/CBT) of demonstrated effectiveness
and varied only in whether that intervention was accompanied by ab-
stinence-based incentive (CM); though also stratified across the sample,
parent training (PT) intervention affords negligible additional

Fig. 4. Summary of independent component predictors of intervention response
among adolescent drug misusers.
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intervention benefit (Stanger et al., 2015; Stanger et al., 2017). Finally,
the sample of 30 adolescents was mixed on the potentially important
variables of sex and types of drugs misused and lacked power to reliably
discriminate their individual contribution to study outcomes.

In conclusion, results from this individual differences study suggest
that functional variation in the neural processing networks supporting
immediate reward choice and future-oriented thinking may lead to
poorer and better outcomes, respectively, for an evidence-based inter-
vention to reduce adolescent drug misuse. Individual variation in the
functional organization of such networks, rather than their level of task
engagement, may be particularly predictive of intervention response.
The implicated neural networks suggest that interventions that temper
learned motivational (IC7) and visceral (IC8) responses to salient re-
wards (e.g., drugs) or that boost future-oriented thinking (IC12) may
offer effective strategies for improving substance use treatment re-
sponses among adolescents.
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