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Abstract

This review will focus on the role of viruses as causes of asthma exacerbations. The article will briefly review the current literature

supporting this view, with a special focus on human rhinovirus (RV), the main virus associated with exacerbations of asthma. The review

will then refer to possible strategies for treatment, and will include discussion on treatment with specific anti-viral therapy and type I

interferon as a treatment for RV. The review will also include a discussion on current therapies for asthma, such as glucocorticosteroid

and b2 agonist therapy alone and in combination and why this may be relevant to virus-induced exacerbations of asthma. Finally, the

potential for future anti-inflammatory/immunomodulatory therapies with a focus on NF-kB inhibition will be discussed.

r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Relative frequencies of respiratory viral infections in adults and

children 42 years with exacerbations of asthma. RV account for up to

62% of exacerbations. Data are taken from three published studies

[10,21,22], and presented here as an average. Viral infection was measured

in these studies using virus culture, RT-PCR or both.
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1. Introduction

Asthma exacerbations, the majority of which are
caused by respiratory viral infection, are a continuing
problem in respiratory medicine worldwide. Most viral
exacerbations are due to either respiratory syncytial viruses
(RSV), coronaviruses, influenza viruses or human rhino-
viruses (RV), with RV being the most frequent causative
agent. In vitro and in vivo, RV infects the bronchial
epithelium and upregulates a range of pro-inflammatory
cytokines, chemokines, adhesion molecules, mucins
and growth factors, all of which are thought to contribute
to loss of lung function and lower airway inflammation
[1–4]. A large number of these mediators are upregulated
solely, or in part, by the transcription factor NF-kB.
This would suggest that inhibiting the functions of this
transcription factor may alleviate symptoms associated
with RV-induced exacerbations of asthma. In virus-
induced asthma, bronchial biopsies and sputum have
neutrophilic and lymphocytic infiltrates [4,5], and these
cell types are therefore implicated in exacerbation
pathogenesis. Due to the lack of a small animal model,
there are many unclarified issues regarding the immunol-
ogy of RV infection, and how this relates to exacerbations
of asthma.

A recent study has estimated the economic impact
of asthma in Germany to be in billions of Euros [6].
Although the actual costs of viral exacerbations are not
known, it is arguable that they would contribute signifi-
cantly to this cost, as viral infections account for about
80% of asthma exacerbations in children, and between
40% and 76% in adults [7–12]. In the UK, one study has
estimated the cost of asthma exacerbations to be approxi-
mately 3.5-fold higher per patient when compared to
asthma patients that did not experience exacerbation [13].
Currently, the medical needs of patients suffering from
viral exacerbations of asthma are largely unmet. There is
no vaccine for RV or RSV, and the use of influenza
vaccines in reducing virus-induced exacerbations remain
controversial [14]. Steroids so far have been disappointing
in their ability to control symptoms in models of
experimental RV challenge of asthmatics [15–18], and
high-dose steroids remain only partially effective at
controlling virus-induced exacerbations of asthma [19,20].
A range of anti-viral, anti-RV compounds and combina-
tions of the above have been used as therapies for RV
infection, these have had variable efficacies in controlling
RV-associated illnesses. This review will summarise the
current understanding of virus-induced exacerbations of
asthma, with a special focus on RV, including the
epidemiology, host defence and immunology. Studies of
treatments aimed at virus-induced exacerbations will also
be discussed, with an emphasis on how better under-
standing the process of infection and upregulation of pro-
inflammatory mediator gene expression may be useful in
aiding the design of novel therapies for virus-induced
asthma exacerbations.
2. Respiratory virus infections as exacerbators of asthma

There is now overwhelming evidence that respiratory
viruses are associated with acute exacerbations of asthma,
accounting for up to 80–85% of acute exacerbations
[7,10,21,22]. Of the common respiratory viruses, RV have
emerged as the most frequent. Other respiratory viruses such
as RSV influenza viruses, parainfluenza viruses, corona-
viruses, adenoviruses and the newly described metapneumo-
viruses, may also be associated with exacerbations of asthma.
In children o2 years of age, RSV, infection is a common
cause of significant morbidity in the form of wheeze or
bronchiolitis [9,10,22,23]. In older children and adults, RSV
is still implicated in exacerbations of acute asthma, but does
not appear to be as important as RV [7,10,21]. Influenza is an
important pathogen during winter epidemics [24], but outside
these periods it is not a major contributor to exacerbations of
asthma. Recent data [25–27] suggest that human metapneu-
movirus has a minor contribution (o12%) to virus-induced
exacerbations of asthma. The relative frequency of detection
of each virus type in exacerbations of children 42 years and
adults as found in previous studies [10,21,22] are summarised
in Fig. 1, and represent approximate estimates for the most
common respiratory viruses identified.

3. Virus-induced exacerbations of asthma: similar and

distinct pathology and mechanisms of action to

persistent asthma

Virus-induced exacerbations of asthma have both similar
and distinct properties to persistent asthma. Respiratory
virus-induced exacerbations of asthma may occur in
patients with phenotypes that differ from the atopic
phenotype characteristic of allergen-induced asthma. One
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obvious difference between allergen-induced asthma and
exacerbations is that inhaled corticosteroids, which are
effective for the treatment of persistent asthma, do not
work with the same efficacy in asthma exacerbations
[19,20]. Evidence for similar mechanisms of action is
suggested by the fact that allergen exposure and virus
infection may act in a synergistic or additive manner,
increasing the risk of asthma exacerbations [28]. Pollutants
such as nitrogen dioxide may also increase the risk of virus-
induced exacerbations of asthma [29]. Some interesting
differences between asthma exacerbations and persistent
asthma are highlighted by the following observations.

Virus-induced asthma exacerbations may differ from
persistent or allergen-induced asthma in that neutrophils
appear to play a more prominent role in exacerbations,
while eosinophils predominate in the latter. T lymphocytes
appear important to both. The importance of neutrophils
and CD4+ and CD8+ T lymphocytes in asthma exacer-
bations is supported by several studies [4,5,11,15,30–35]. In
atopic asthmatics, eosinophils or eosinophil activation are
also increased in virus-induced asthma. Given that a mixed
aetiology is likely very common [28,36], it is not surprising
that there is much overlap in pathogenesis. Differences also
exist in the way asthmatics respond to viral infection and
may affect the outcome of infection and hence disease
severity. Although asthmatics have the same incidence of
viral infection as normals, they have increased severity and
duration of lower airway symptoms and reduction in lung
function than normals [37]. A recent study has also
reported persistence of RV in children suffering from
exacerbations of asthma, with children showing RV
persistence having more severe exacerbations [38]. Also,
increased levels of RV replication have also been observed
accompanied by lower levels of virus-induced interferon
(IFN)-b expression and virus-induced apoptosis compared
to normals [39]. In certain studies, greater levels of pro-
inflammatory cytokine elaboration and inflammatory cell
recruitment are observed [4]. Peripheral blood mono-
nuclear cells from asthmatics when cultured with RV
exhibiting lower levels of the TH1 cytokines IFN-g and IL-
12, suggesting that asthmatics may have a defective TH1
response to viral infection [40]. These data support two
important points; firstly virus exacerbations of asthma
have different properties to persistent or allergen-induced
asthma, and secondly, researchers are still defining the
characteristics of viral exacerbations and the populations
in the community that are at risk. These important points
must be appreciated prior to discussing new treatments for
virus-induced exacerbations of asthma.

4. Human RV—the most common virus associated with

exacerbations of asthma

4.1. Epidemiology

RVs belong to the Picornaviridae family of viruses.
These viruses have small RNA genomes (approximately
7 kb), [41,42], are non-enveloped and are stable in the
environment. There are at least 100 serotypes, which are
divided into major or minor groups depending on receptor
specificity. Most RV are major group RV, and bind human
ICAM-1, minor group RV bind the LDL receptor [43]. The
difference in receptor specificity appears to be explained by
a charge difference of the H1 loop of structural protein
VP1 [44]. RV can replicate efficiently in the upper airway
and can be detected in the lower airway although
replication remains to be proven in vivo [45,46]. RV
infection can be readily observed in the bronchial
epithelium [47] in vivo, and ex vivo, detected by sampling
both the lower airway [48,49] and upper airway [50,51].
RV are now well established as the major virus

associated with exacerbations of asthma and also chronic
obstructive pulmonary disease (COPD) [4,8,21,37,52–54].
Using virus-specific RT-PCR and virus culture techniques,
epidemiological studies have observed that RV has the
highest incidence of all respiratory viruses in exacerbations
of asthma in adults and children42 years of age;
approximately 60–65% of viral exacerbations are due to
RV infection [7,8,10,22,26], as presented in Fig. 1. RV
infection appears to be prevalent in children returning to
school, leading to significant epidemics, and increased
hospital admissions in the month of September in the
Northern Hemisphere [55]. A thorough review of the
epidemiology of RV infection of the lower respiratory tract
is available elsewhere [56].

4.2. Immunopathology and host defence

Due to the lack of a small animal model, many aspects of
immunology and host defence against RV infection remain
unelucidated. Experimental and natural infections, and in
vitro infection of lung epithelial cells have been useful in
the study of RV-induced inflammation, in both asthma and
COPD. The immunology of RV infection is a rapidly
expanding field, and has been thoroughly reviewed else-
where. This review will highlight the main findings and
discuss some of the unresolved issues; interested readers are
directed to the following recent reviews for more informa-
tion [57–60]. RV upregulate the expression of a range of
pro-inflammatory mediators from lung epithelium in vitro
and in vivo including the chemokines IL-8/CXCL8 [61–65],
ENA78/CXCL5 [66], eotaxin/CCL10 [67,68] RANTES/
CCL5 [67,69], IP-10/CXCL10 [70], growth and differentia-
tion factors such as IL-6 [62,64,71], GM-CSF
[62,64,65,72,73], IL-11 [74,75] and also adhesion molecules
ICAM-1 and VCAM [76–80], and respiratory mucins
[81,82].
Virus-induced exacerbations of both asthma and COPD

are associated with lower airway infection [47,83], resulting
in lower airway inflammatory responses characterised by
infiltration of CD4+ and CD8+ T cells, neutrophils,
eosinophils and activation of local macrophages and mast
cells [5,84–86]. Experimental and natural infections of
human subjects have also shown that subjects infected with
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Fig. 2. Immunology of respiratory virus infection. Infection of the bronchial epithelium results in upregulation of a range of pro-inflammatory cytokines,

chemokines and growth factors that are involved in the generation of lung inflammation, resulting in exacerbations of asthma.
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RV show an increased level of the above cytokines in nasal
secretions and sputum [1–4]. In one study, the accumula-
tion of inflammatory cells and molecules correlated with
increased symptom scores [2], and in another, decreased
lung function of asthmatics [1], giving support to the
current hypothesis that the local inflammatory reaction
contributes to exacerbations in asthmatics. Therefore, if the
upregulation of inflammatory molecules and cells can be
prevented, diseases may be prevented. Inhibition of RV-
induced inflammatory cytokine/chemokine production
therefore represents an important therapeutic target for
asthma. Some inflammatory molecules induced by respira-
tory virus infection and the cells they attract are outlined in
Fig. 2.

4.3. Importance of NF-kB signalling

A striking observation is that all the pro-inflammatory
molecules and growth factors upregulated by RV so far
studied in detail require the transcription factor NF-kB
(discussed below). The NF-kB or Rel family of transcrip-
tion factors (p65, p50, c-Rel) are implicated in the
expression of over 100 pro-inflammatory genes (for a
review see [87–89]). NF-kB is sequestered in the cytoplasm
by its specific inhibitor IkB, when phosphorylated by
upstream kinases, IkB is ubiquitinated and degraded by the
proteasome, allowing NF-kB to translocate to the nucleus.
The upstream kinases responsible for relaying the signal
include NF-kB inducing kinase (NIK) [90] and the IkB
kinases (IKK)-aXb [91,92], and the more recently identi-
fied IKK-i/e [93,94] and TANK binding kinase-1 (TBK-1)
[95–97]. Once in the nucleus, NF-kB can bind to various
cis-acting sites within the promoter of NF-kB responsive
genes and promote transcription (depicted in Fig. 3).
The promoters of GM-CSF, IL-6, CXCL8, CXCL10,

ICAM-1 and VCAM all contain NF-kB binding sequences,
and NF-kB is required for the expression of these genes
following RV infection in vitro [62,63,70,71,76,80]. We
have also extended this analysis for CXCL8 and IL-6 and
have shown that NF-kB cis-acting sequences are absolutely
required for RV-induced promoter activation for these
genes in bronchial epithelial cells, and have identified a role
for IKK-b, using the specific IKK-b inhibitor AS602868
(Serono, M.R. Edwards and S.L. Johnston, submitted).
The role of NF-kB signalling in RV-induced CCL5 and IL-
11 gene expression is not yet known, however seems likely
to be implicated as both promoters contain NF-kB
sequences, and these are important for gene expression
following infection with other respiratory viruses [98,99].
The role of NF-kB in RV-induced CCL10 and CXCL5 has
not yet been studied; however, both genes also have NF-kB
sites within their promoter, that are required for gene
expression in various systems [100–102]. Hence inhibition
of NF-kB translocation, and NF-kB signalling represents a
potential area of therapeutic intervention.
One unresolved question in RV biology is how NF-kB

signalling is initiated by virus infection. The dsRNA
binding anti-viral protein kinase (PKR) has been widely
implicated in NF-kB signalling via interacting with IKK-a/
b, or by phosphorylating IkB directly [103–106]. Toll-
like receptor 3 (TLR3) [107], and the recently described
retinoic acid inducible gene (RIG)-I [108] also activate
NF-kB in response to viral infection or dsRNA. Gern et al.
[68] have demonstrated a role for PKR in RV-induced
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pro-inflammatory mediators from bronchial epithelial
cells. PKR would thus seem a potential therapeutic target
in RV exacerbations of asthma; however, PKR is also
implicated in beneficial anti-viral host responses. Through
Fig. 3. Activation of NF-kB p65, p50 by the IKK-a/b/g complex, or an

alternative IKK complex consisting of IKK-i/e, TBK-1 and TANK.

Following viral infection, or dsRNA recognistion via PKR and/or TLR3,

RIG-I, or cytokines, e.g. TNF-a or IL-1b (via NIK), IKK phosphorylates

IkB leading to its degradation by the proteasome. Once free, NF-kB p65,

p50 subunits translocate to the nucleus and upregulate NF-kB responsive

genes, such as CXCL8, IL-6 and GM-CSF.

Fig. 4. Mode of action of different treatment options for rhinovirus induced e

3C protease inhibitors prevent digestion of the polyprotein and generation of

assembly and release. Other treatment options include NF-kB inhibitors which

signalling pathway. GCs alone or in combination with b2 agonists are used to
its ability to phosphorylate eukaryotic initiation factor-2a,
PKR causes termination of host protein synthesis following
viral infection [109], in an attempt to limit viral replication.
PKR is also involved in type I IFN responses [110]. Hence,
the possibility of beneficial and/or detrimental affects of
PKR inhibition in RV exacerbations of asthma remains an
open issue.

5. Treatment options for virus-induced exacerbations of

asthma

5.1. Anti-rhinoviral compounds, RV 3C protease inhibitors

and capsid binders

The late 1980s and early 1990s saw great interest in anti-
rhinoviral treatments, directed mainly at the control of
clinical colds. Compounds which interfere with viral
attachment and uncoating by binding to the picornaviral
capside protein VP1 were first investigated in the late 1980s
[111–113], and RV 3C protease inhibitors such as
Ruprintrivir much later [114]. These drugs showed a broad
inhibition to RV infection in vitro [115]. The modes of
action of all treatment options discussed in this review are
shown in Fig. 4.
The viral capsid binder R61837 was first used in 1989, in

a model of experimental infection with RV9. R61837 was
given in a single dose (2.5mg) intranasally either 28 or 4 h
prior to challenge, and continued up to 4 or 6 days,
respectively, post-challenge [112]. Clinical colds were
xacerbations of asthma. Capsid binders and sICAM target viral entry, RV

RNA polymerase, type I interferon may target RNA replication, virion

prevent activation of this transcription factor through targeting the NF-kB
prevent expression of pro-inflammatory genes.
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defined on the basis of using 44 tissues over the baseline
rate plus development of one other relevant symptom (sore
throat, sneezing, etc.). When given 4 h prior to challenge,
and for 6 days duration, R61837 reduced the incidence of
colds, mean total symptom score and weight of nasal
secretions compared to a control group given placebo. The
effects of R61837 on the duration of the clinical cold, or
length of time spent exhibiting symptoms were not studied.

In contrast, the oxazoline WIN54954 was tested in 1993,
and showed poor efficacy in experimental models of RV39
and RV23 [111]. Dosing consisted of a 600mg oral dose,
every 8 h for 6 days. Challenge occurred on study day 2.
WIN54954 did not reduce any of the parameters tested
when compared to placebo, including incidence of colds,
mean total symptom score and viral titre. One explanation
for the poor performance of WIN54954 was the low levels
of drug recovered from saliva and nasal wash after
treatment. Few patients had concentrations greater than
the minimum inhibitory concentration (MIC) for the test
virus. Pirodavir (R77, 975) when given as an intranasal
therapy (2mg), was also disappointing in a study of natural
virus infection [113]. Pirodavir reduced only viral titre
when compared to control groups treated with placebo, the
duration of colds and mean total symptom score were not
reduced by Pirodavir.

The anti-picornaviral agent Pleconaril has been used in
randomised, placebo-controlled, phase II clinical trials as a
treatment of the common cold [116]. Pleconaril acts by
preventing uncoating of picornaviruses, including most
serotypes of RVs tested in vitro [117]. Participating
volunteers commenced treatment 1–1.5 days after a clinical
picornavirus infection was established. Individuals taking
Pleconaril, when taken as a 400mg dose in liquid form, or
as a 400mg tablet three times daily showed significant
improvement in mean symptoms scores at days 2–5 after
commencement of treatment, and decreases in mean
duration of illness. Despite promising initial results,
Pleconaril has not yet been tested in the setting of RV-
induced exacerbations of asthma.

The RV 3C protease inhibitor Ruprintrivir (Agouron
Pharmaceuticals, Inc.) has also been tested in a double-
blind, placebo-controlled phase II trial of experimental
RV39 challenge [114]. RV 3C protease is required for
cleavage of the rhinoviral precursor polyprotein into
individual components prior to viral assembly. Further-
more, RV 3C protease is required for generation of the
RNA polymerase and hence viral RNA replication. RV 3C
protease has also been implicated in initiation of host cell
signalling leading to pro-inflammatory cytokine produc-
tion [65]. Ruprintrivir was designed using solved X-ray
crystal structures of the RV 3C protease, and was designed
to bind irreversibly to the RV 3C active site [118].
Ruprintrivir demonstrated a broad anti-picornaviral spec-
trum in vitro, with an MIC of 0.023 mM [119]. The above
study utilised Ruprintrivir as either two or five times a day
as prophylaxis, 6 h prior to infection, or as a treatment five
times a day 24 h after infection. As a prophylaxis,
Ruprintrivir reduced mean total symptom score, viral titre,
nasal secretions but not the incidence or frequency of
clinical colds (as assessed by the number of infected
subjects that developed clinical colds). As a therapeutic
treatment, Ruprintrivir also reduced symptom scores, nasal
secretions and viral titre. Ruprintrivir was generally well
tolerated, despite this study requiring numerous deliveries
via nasal spray.
The above studies provide evidence that treatment of

clinical colds with anti-rhinoviral therapies is useful.
However, there are potential problems with these ap-
proaches, with respect to potential therapies for virus-
induced asthma exacerbations. For example, therapy of
capsid binding molecules has led to the development of
escape mutants [117]. It could also be argued for the RV 3C
protease inhibitors, that virus binding, uncoating and entry
could be a stimulus for cell signalling events, leading to
initiation of pro-inflammatory mediator gene expression
[61], and future therapies should aim at preventing the
early steps of virus uncoating and entry. In support of this
view, a study of Ruprintrivir to prevent RV14-induced IL-6
and CXCL8 suggested that this agent was not 100%
effective at reducing mediator production, despite a high
dose of 10 mM being used [120]. For therapies such as
Ruprintrivir, which were administered via nasal spray, it
can also be argued that delivery by this method may not be
effective at treating the lower airway, where virus-induced
asthma exacerbations are believed to be triggered.
Furthermore, dosing regimes must also be suitable for
children, as well as adults, in a setting of asthma
exacerbations. Perhaps a further criticism of many of these
studies is that duration of clinical colds was not affected by
most treatments. Pleconaril was the only treatment
successful at reducing duration of clinical cold. These
therapies, although reducing symptoms may not necessa-
rily affect duration of symptoms, and therefore may not
improve the rate of general practitioner consultations,
hospital admission rates, and school and work absenteeism
for infected individuals with virus-induced exacerbations
of asthma.

5.2. Human or recombinant soluble ICAM-1 and derivatives

Several versions of human ICAM-1 have been used in
clinical studies, including soluble ICAM-1 (Tremacamra/
BIRR 4) [121], antibodies to ICAM-1 [122], and fusion
proteins of ICAM-1 and IgA [123]. In vitro, soluble
ICAM-1 preparations have been shown to reduce titres of a
large range of major group RVs [123,124]. Tremacamra has
been tested in randomised double-blind placebo-controlled
studies both as a therapeutic and prophylactic intervention
to RV39 challenge [121]. In these clinical studies, Trema-
camra has shown promise as a therapy, reducing the
proportion of clinical colds following experimental RV39
challenge, total symptom score, nasal mucus weight, and
significantly lowering CXCL8 release on days 3 and 4
post-infection compared to placebo. Tremacamra also
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significantly reduced RV39 replication on days 2–4 post-
infection. Also, Tremacamra was useful in controlling RV-
induced symptoms if given prior to challenge, or after
challenge but before establishment of symptoms. Trema-
camra holds promise as a therapy for clinical colds,
however, has not been tested in a context of exacerbations
of asthma.

5.3. Type I IFN therapy

Type I IFNs are potent anti-viral mediators having a
range of effects that limit viral infection and dissemination.
Type I IFNs include the numerous IFN-as, IFN-b and the
newly identified IFN-ls [125]. Type I IFNs act on virally
infected cells or uninfected cells and induce a well-ordered
anti-viral programme, involving the upregulation and
activation of a range of IFN inducible genes, such as
PKR, which phosphorylate eIF-2a and hence blocks
translation, also anti-viral RNase L and Mx proteins.
IFNs can induce apoptosis, or induce more IFN gene
expression in an autocrine or paracrine manner. IFNs also
activate NK cells and are required for NK cell survival,
and may have other effects on both innate and adaptive
immunity (for a review see [126,127]).

Type 1 IFNs-a and b have been extensively studied in the
prevention of clinical colds since the 1980s. The potential
of IFN-a2 attracted wide interest, culminating in several
reports in the early to mid-1980s. In 1984, IFN-a2 was used
as therapy for experimental RV39 infection [128]. Previous
studies had suggested that effectiveness of IFN-a2 was dose
dependent, with high doses (2–4.5� 107 IU per day)
effective at reducing both RV infection and illness, and
lower doses, 106 IU, effective at reducing illness (symptom
scores), but not necessarily affecting the incidence of colds
[129–131]. Despite the effectiveness of IFN-a2 in models of
experimental RV infection at these high doses, significant
side effects were observed, including blood-tinged mucus,
and even mucosal histopathological abnormalities [131].
This study sought to examine the efficacy of 106 IU IFN-a2
delivered three times daily for 5 days via nasal spray or
drops. Challenge with RV39 occurred 28 h later. IFN-a2
reduced virus shedding, with the drops having a more
potent effect. IFN-a2 delivered via drops also significantly
reduced nasal mucus weights, but neither treatment
reduced the frequency of clinical colds.

IFN-a2 has also been tested as a prophylactic treatment
in natural viral infections. In one study, twice daily IFN-a2
at 106 IU for 28 days demonstrated less RV-associated
colds, but was not significantly different to placebo [132].
Another study utilised IFN-a2b at either 1.5� 106 units
twice daily or 2.5� 106 once daily each for 4 weeks; control
subjects were given dose-matched placebo [133]. During the
medication period, twice daily IFN-a2b greatly reduced the
number of RV-associated colds, but had no effect on
parainfluenza-associated colds. The effects of IFN were
slowly lost after the treatment period, with frequencies of
RV-associated colds being about equal after 8 days post-
treatment. At both doses, IFN-a2b exhibited side effects,
mostly in the form of nasal blood-tinged mucus.
Several studies have investigated the potential of IFN-b

in treatment of clinical colds. The first study of intranasally
administered recombinant IFN-b (IFN-b Ser) involved 13
doses of 2� 106 IU over 4 days. This treatment showed
promise in control of experimental RV9 or RV14 challenge
[134]. This study involved RV challenge occurring after the
fourth dose of IFN-b. There were significantly lower
symptom scores, nasal secretions and virus release com-
pared with placebo. The next study with IFN-b Ser
involved both a tolerance and efficacy study against
experimental RV challenge. Volunteers were pre-treated
with either IFN-b Ser (12� 106, or 3� 106 IU) 36 h before
infection, and continued for 25 days [135]. The tolerance
study demonstrated numerous side effects particularly with
the high-dose regime, including blood-tinged mucus, and
an increase in subepithelial lymphocytic infiltrates in nasal
biopsies. The efficacy study also reported significant
decreases in nasal mucus weights, less development or
incidence of clinical colds, but not less viral shedding, and
these differences were only significant with the high-dose
regime.
A third study involving prophylaxis against natural

infections reported quite disappointing results [136]. Two
randomised placebo-controlled trials in 1986–87 utilised
IFN-b Ser given either 6 days a week for 4 weeks
(9� 106 IU), or a higher dose (24� 106 IU) for 24
consecutive days. Both studies failed to show a significant
reduction in the incidence of clinical colds compared to
placebo, and also in patients that received cold, the number
of days of illness did not differ between IFN-b Ser treated
groups and placebo.
These studies provide a useful background to assess the

potential of IFN therapy for viral exacerbations of asthma.
An advantage that type I IFN therapy has over anti-RV
therapies is that all exacerbations of asthma with viral
agents could be controlled. Specific RV therapies would
treat 60–65% of virus-induced exacerbations; however,
broad-spectrum therapies such as IFN would not have this
disadvantage. In particular, the above studies suggest that
IFN-a2 is effective when given prior to experimental RV
infection, or as a prophylactic therapy in a context of
natural RV infections. IFN-b has been less impressive,
exhibiting some effect when given prior to experimental
RV challenge, but no effect as a prophylactic in natural
infections. It is believed that these differences are not due
to differences in anti-viral activity, as both IFN-a2 and
IFN-b have similar anti-rhinoviral activities in vitro [137].
The relative ineffectiveness of IFN-b has been thought to
be due to instability as a nasal spray [136,137]; however,
when used as drops, IFN-b also did not perform in a
prophylactic study against natural RV infection [136].
Delivery and dose appeared to be contentious issues in

these studies, with the effectiveness of IFN-a dependent
upon a high enough dose to prevent infection and clinical
colds, but low enough to prevent unwanted side effects.
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However, most studies reported side effects, even at lower
doses of 106 IU given daily. It can be argued that such side
effects would be even more problematic in asthmatics,
particularly the increased inflammation of the nasal
passage, which appeared to be a hallmark of intranasal
IFN therapy. Another issue for asthmatics would be
effective delivery to the upper versus lower airway. While
RV when administered by nasal spray can definitely be
found in the lower airway during experimental infection, it
is currently unknown whether intranasally applied IFN
would act at a high enough concentration in the lower
airway. An alternative could be IFN delivered via oral
inhalation, similar to inhaled corticosteroids, thereby
ensuring delivery to the lower airway. The ultimate
effectiveness of IFN therapy in RV-induced exacerbations
of asthma has yet to be investigated.

IFN has also been tested in conjunction with other
treatments such as non-steroidal anti-inflammatory agents.
This approach is based on the belief that no single molecule
therapy has proved effect for RV-associated clinical colds,
as no single therapy can block viral infection and
replication, and the associated host response to infection,
including the cellular, and humoral inflammatory reactions
[138]. These studies aimed to treat the clinical colds with a
combination of treatments in the early phase of infection,
with the argument that this regime at this time would be
effective in not only controlling infection, but the many
symptoms associated with the host inflammatory response
to infection.

Intranasal IFN-a2b was used along with ipratropium
and oral naproxen in a model of experimental RV infection
[139]. The treatment was given 24 h post-infection, and
continued for 4 days. This treatment effectively reduced
days of virus shedding and virus titre compared to placebo,
and decreased nasal mucus weights on days 3–4 post-
infection. Intranasal IFN-a2b has also been studied with
oral chlorpheniramine and ibuprofen, versus treatments
consisting of intranasal placebo with oral chlorphenira-
mine and ibuprofen, or both oral and intranasal placebos,
in experimental RV39 infection [138]. The combination
reduced the total symptom score by about 22%, compared
to 27% with only oral chlorpheniramine and ibuprofen, or
19% achieved with placebos. The combination also
significantly reduced nasal mucus weights generated by
clinical colds, and also reduced viral titres compared to the
other groups on day 3 post-infection. The effects of these
treatments on the duration of clinical colds were not
studied however. There appeared to be significant side
effects associated with the combination treatment regime.
One fifth of subjects having received the combination
complained of blood-tinged nasal mucus. Drowsiness and
nasal dryness were also common for all groups.

5.4. Inhaled GC therapy

Glucocorticosteroids (GC), are the mainstay of current
asthma therapy. Steroids when administered topically are
potent inflammatory agents, acting to help reduce pro-
inflammatory molecule gene expression operating largely at
the level of pre-transcription (for a review, see [140]).
Steroids can reduce inflammation through glucocorticoid
receptor (GR)–DNA interactions, GR–transcription factor
interactions, inducing histone deacetylation, and therefore
reducing DNA unwinding and hence transcription of
inflammatory genes, and finally by inducing anti-inflam-
matory agents.
Despite evidence that steroids attenuate RV-associated

inflammatory responses in vitro [75,77], the use of steroids
in virus-induced exacerbations of asthma remains con-
troversial. Several in vivo studies report poor efficacy of
steroids in preventing inflammation and reduction of lung
function in models of experimental RV infection [15–18].
Farr et al. [18] examined the potential use of prednisone

(30mg twice daily), or intranasal beclomethasone (168
micrograms twice a day), given 3–4 days prior to challenge
as a prophylactic treatment in a model of experimental RV
infection. Treatment ceased 5 days post-challenge. Up to
48 h, this treatment appeared affective at reducing nasal
obstruction, nasal mucus weights, and nasal kinin con-
centrations; however, this effect was lost when steroid
treatment ceased. Another study also examined prednisone
(20mg) given three times daily for 5 days, with treatment
commencing 11 h prior to RV infection [141]. The steroids
reduced nasal kinin and mucus concentrations but had
little effect on other symptoms. Virus load was higher
in the steroid-treated group, with significant differences
on days 3 and 4 post-infection. The data suggest that an
adverse effect of steroids may be suppression of anti-
viral mediators that are required for the natural defence
against viral infection in vivo. No support for this has
yet been observed in vitro; however, the relative effects
of steroids on type I IFNs, defensins (for enveloped
viruses), or other anti-viral components remains largely
unexplored.
Grunberg et al. [15] examined the possible benefits of

inhaled budesonide (800mg, twice daily) treatment in mild
asthmatics during experimental RV infection. Treatment
commenced 2 weeks prior to challenge and was maintained
throughout the study period (until 2 weeks post-challenge).
Budesonide improved lung function in the asthmatics, and
decreased eosinophil numbers, but did not reduce total
inflammatory cell numbers in the lung. The authors
concluded that steroids only gave partial protection in
RV-associated inflammation of asthma. In another study,
it was observed that budesonide treatment caused a small
but significant increase in the soluble IL-1R antagonist in
nasal secretions. There was no significant difference
between CXCL8 and IL-1b levels between asthmatics
treated with budesonide and control asthmatics treated
with placebo [16]. These data support the idea that steroids
may have benefits in RV-associated exacerbations by
increasing the level of anti-inflammatory mediators within
the airway, rather than having a direct effect on pro-
inflammatory mediator expression.
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The use of GCs in treating virus-induced wheeze in
children under 17 years of age has also been carefully
examined. A meta-analysis of compiled data from several
studies showed that maintenance low-dose inhaled GCs did
not demonstrate any clear reduction over placebo in the
proportion of hospital admissions due to viral wheeze, and
this treatment did not affect the prescription rate of oral
GCs as treatment when these individuals were admitted to
hospital [142]. Several other studies report similar findings
[143–145]. In contrast, a study investigating emergency
room hospital admissions and community cases of viral
infection in autumn in Canada revealed that in children,
patients admitted to hospital with exacerbations are less
likely to have been given prior treatment in the form of
inhaled GCs or leukotriene receptor antagonists [55]. Also,
two clinical studies consisting of older children (413 years)
and adults have shown that GCs alone have failed to
reduce asthma exacerbation rates. In these studies,
increasing the GC dose did not reduce the rate of asthma
exacerbations [19,20], Currently, there is much evidence
suggesting that the use of GCs alone is only partially
protective against virus-induced exacerbations of asthma,
and that preventive therapy can be improved. Again these
data indirectly support the idea that exacerbations of
asthma may involve processes that are different to
persistent asthma.
5.5. GCs in combination with b2 agonists

GCs may act in concert with other therapeutics, for
example, long-acting b2 agonists (LABA) in combination
therapy. LABAs act via a G protein coupled receptor,
activate adenylate cyclase and through the second messen-
ger cAMP, induce intracellular signalling events affecting a
broad range of physiological processes, alone and in
combination with GCs, such as smooth muscle growth
and differentiation [146], inflammation [147–153] and
response to bacterial infection [154,155]. In severe or
persistent asthma, several studies in vitro and in vivo have
shown that the combined use of GCs and LABA has
advantages over the use of GCs alone, in terms of
alleviating inflammation, controlling smooth muscle re-
modelling and improving lung function [146,156–160].

Considering the ability of LABA to enhance the anti-
inflammatory properties of GCs, and exert some anti-
inflammatory effects themselves in vitro [147,152,161], an
important question is whether or not combination therapy
of LABA and GCs can reduce asthma exacerbation rates.
Studies completed thus far suggest a positive effect of b2
agonists when combined with GCs, in reducing frequencies
of asthma exacerbations [162,163]; however, further
evidence is required before the use of GCs in this way is
generally accepted. These studies may also be of mixed
aetiology, as exacerbations in general were investigated,
and not specifically virus-induced exacerbations. It is also
unclear whether the enhanced effect produced by b2
agonists in the above studies was due to bronchodilation,
or by decreasing inflammation, or both.
There are yet to be clinical studies using combination

therapy in models of experimental or natural RV infection
in asthma. Until such studies are performed, the potential
role of combination therapy in the treatment of RV-
induced asthma exacerbations remains open. One caveat to
this idea is the general observation that virus-induced
exacerbations of asthma involve not only eosinophils, but
recruitment of both neutrophils, and activated T cells into
the inflamed airway, and also activation of local macro-
phages [5,84–86]. The ability of combination therapy to
control neutrophilic and lymphocytic-induced inflamma-
tion is yet to be investigated experimentally.

5.6. Inhibitors of NF-kB signalling

As NF-kB is involved in induction of the majority of
pro-inflammatory mediators studied so far in RV infection
(see section above), NF-kB signalling components repre-
sent possible therapeutic targets. In murine models of
allergic asthma, there has been some success with NF-kB
inhibition. The redox inhibitor MOL294 and NF-kB decoy
oligodeoxynucleotides have been successful in reducing
pro-inflammatory molecule expression, lung inflammation
and airway hyper-responsiveness to metacholine [164,165].
Recent studies have shown that the RV induction of

CXCL8 and IL-6 from bronchial epithelial cells is an IKK-
b dependent process, and is sensitive to inhibition with
AS602868 (Serono International, [166]), a selective IKK-b
inhibitor (M.R. Edwards and S.L. Johnston, unpublished
observations), suggesting that IKK-b inhibition may be a
useful therapeutic option. A recent review has given a
thorough summary of the current range of selective IKK
inhibitors available, including both organic-based and
small molecule inhibitors [88]; therefore, they will not be
discussed in detail here. Importantly, the current range of
selective IKK inhibitors have just begun to find their way
into clinical trials, after showing promise in cell-based
assays and murine models of disease. Inhibitors of these
types have not yet been tested in human models of
experimental virus infection, or asthma.
Concerning virus exacerbations of asthma, one caveat to

the idea of NF-kB inhibition is that protective, anti-viral
mediators may also be induced in an NF-kB dependent
manner. The obvious example of this is IFN-b, which in
many systems, is made initially on viral infection in an NF-
kB dependent manner [167–170]. Clearly, the potential role
of NF-kB in the expression of mediators that are beneficial
to the host response to infection needs to be carefully
considered before NF-kB intervention becomes a serious
therapeutic option. With the discovery of alternate NF-kB
signalling intermediates such as IKK-i/e and TBK-1, the
proposition of NF-kB inhibition has become more complex
(see Fig. 3). However, the role of individual NF-kB
signalling intermediates in both harmful pro-inflammatory
mediator gene expression as well as in useful anti-viral
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Table 1

A summary of the efficacy of some anti-viral therapies used in controlling clinical colds

Therapy Observed reduction in the following symptomsa Limitationb Reference

Frequency of

colds

Duration of

colds

Total symptom

score

Viral

titre

Nasal secretion

weight

Markers of

inflammation

Anti-viral compounds

Ruprintrivir p NS O O O NS [114]

Pirodavir NS p p O NS NS Side effects/

poor efficacy

[113]

WIN54954 p NS p p p NS Poor efficacy [111

R61837 O NS O NS O NS [112]

Pleconaril NS O O NS NS NS Side effects [116]

Soluble ICAM derivatives

Tremacamra O NS O O O O [121]

Type I IFN therapy

IFN-a2 O/p p O O O NS Side effects [128–133]

IFN-b p p O/p O/p O/p NS Side effects/

poor efficacy

[134–136]

aRefers to the symptoms studied by the authors. O refers to successful control of the symptom being studied. p refers to unsuccessful control of that

particular symptom. NS refers to the symptom not being studied.
bLimitations are those as suggested by the authors in each study.
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mediator gene expression, is a much understudied field, and
whether distinct signalling intermediates exist for IFN
expression versus pro-inflammatory cytokine expression is
currently unclear. Further research efforts are required
before the role of this important transcription factor and its
signalling pathways can be fully understood.
6. Summary and conclusions

Many respiratory viruses, in particular RV, cause
exacerbations of asthma, and this is a healthcare concern
worldwide. RVs upregulate pro-inflammatory mediators
and cause local inflammation in the lower airway, and this
may precipitate exacerbations of asthma in certain
individuals. Individuals suffering from viral exacerbations
of asthma are yet to be treated effectively, and there is wide
interest in a range of treatment options for these unmet
medical needs. Specific anti-rhinoviral therapy, IFN
therapy, and steroid-based therapies have all been studied
in the past with mixed successes. Anti-viral therapies have
been classically applied in the context of clinical colds
(Table 1); however, they have not yet been studied in
exacerbations of asthma. With the link between RV and
asthma exacerbations now more established, the anti-
rhinoviral treatments Pleconaril and Tremacamra should
be regarded as serious therapeutic options. The study of
type I IFN therapy in clinical colds has highlighted many
problems with this treatment. Dose, delivery and safety all
remain important issues for viral exacerbations of asthma.
As a deficiency in IFN-b expression has been recently
described in asthmatics [39], type I IFN therapy remains a
candidate treatment however. One potential area of further
research is combined anti-viral, anti-inflammatory therapy,
which may inhibit viral replication as well as treating upper
and lower airway inflammation. Another area that has yet
to be tested formally is NF-kB inhibition, as many RV-
induced inflammatory mediators are NF-kB dependent.
The wealth of literature so far reported on RV-induced
exacerbations of asthma suggests that the relationship of
infection and asthma exacerbation, in particular the
cellular and molecular immunological aspects of pathogen-
esis, is still unclear, and further experimental infection
studies are required to better understand these important
processes. In particular, how asthmatics may differ from
normal individuals who do not suffer from lower airway
disease is a priority. There is also a need for further
vigorous pursuit of the molecular mechanisms of infection
and pro-inflammatory mediator induction, for example,
the development of small animal models that will be
invaluable for testing these ideas and providing future
therapeutic targets.
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