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In cardiac and many other systems, chronic stress activates
avfamily of structurally and functionally conserved receptors
and their downstream signaling molecules that entail tyrosine,
serine or threonine phosphorylation to transfer the messages
to the genetic machinery. However, the activation of the Janus
kinases (JAKs) and their downstream signal transducer and
activator of transcription (STATs) proteins is both characteristic
of and unique to cytokine and growth factor signaling which
plays a central role in heart physiology. Dysregulation of JAK-
STAT signaling is associated with various cardiovascular
diseases. The molecular signaling and specificity of the JAK-
STAT pathway are modulated at many levels by distinct
regulatory proteins. Here, we review recent studies on the
regulation of the STAT signaling pathway that will enhance our
ability to design rational therapeutic strategies for stress-
induced heart failure.

Introduction

Initially uncovered by experiments aimed at understanding IFNa
and IFN-c induced transcriptional activation, a new pathway of
signal transduction from the cell surface to genes in the nucleus
has been recognized in last decades of 19th century.1 The pathway
is called the JAK-STAT pathway. Similar to other pathways,
association of ligands to their receptors leads to activation of one
of the JAK family of tyrosine kinases associated with a trans-
membrane receptor, and subsequently leads to the phosphoryla-
tion on tyrosine of one or more of a family of latent cytoplasmic
transcription factors called STATs.2,3 These latter proteins
perform a dual role, first as signal transducers by acting as
substrates of the JAKs, and after phosphorylation and nuclear
translocation, by acting as transcriptional activators.4,5 While
IFNa and IFNc were the first polypeptide ligands described that
trigger this pathway, it is now known that many other ligands

such as IL-6 family cytokines, IL-10 and neurohormones can also
activate proteins in the pathway.5 The details of early experiments
in hematopoietic and other systems with the IFNs and cytokines
have been summarized in many decent reviews;6,7 however, its
cardiovascular responses are still limited in literature. In current
review, we will mainly discuss the critical role of STAT pathway
in cardiovascular diseases.

Structure and function of STAT3 protein. Seven STATs
(STATs 1, 2, 3, 4, 5A, 5B and 6) have been identified in
mammals and range in size from 750 to 900 amino acids.8 All of
these STAT proteins share a common feature. The structural and
functional analysis of these proteins suggests that they have six
conserved domains (Fig. 1). This includes the N-terminal domain
(NH2), the coiled-coiled domain (CCD), the DNA binding
domain (DBD), the linker domain and the SH2/tyrosine
activation domain. In contrast, the carboxyl-terminal transcrip-
tional activation domain (TAD) is quite divergent and contributes
to STAT specificity (Fig. 1). The four core domains contact each
other by large inter-domain interfaces, suggesting that structural
changes induced in one domain may also affect other domains.
The identification of STAT homologs in simpler eukaryotes
suggests that this family arose from a single gene.

The N-terminal half of the protein (~125 amino acids) consists
of two relatively poorly characterized domains. This domain is
well conserved between these families of protein and is reported
to promote cooperativity in DNA binding and to regulate
nuclear translocation. It represents an independently folded and
stable moiety, which can be cleaved from the full-length molecule
by limited proteolysis.9 Several studies suggest that N-terminal
dimerization promotes cooperativity of binding to tandem GAS
(IFNc activated sequences) elements.9-11 Other studies have
suggested that the N-terminal STAT domain promotes inter-
action with the other proteins or receptors and that it regulates
nuclear translocation.12 The coiled-coil domain (amino acids
~135 to ~315) consists of a four-helix bundle that protrudes
about 80 Å laterally from the core structure. Many studies have
also implicated the coiled-coil domain in receptor binding and
tyrosine phosphorylation in addition to nuclear export.13,14 The
domains that constitute the carboxyl-terminus are well under-
stood. The DNA-binding domain (DBD; amino acids ~320 to
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~500) recognizes members of the c-activated sequence (GAS)
family of enhancers and (like the upstream coiled-coil domain)
appears to regulate nuclear export. The adjacent linker domain
(amino acids ~500 to ~600) is important in assuring the
appropriate structure of the DNA-binding motif and also appears
to regulate nuclear export in resting cells. This domain also
shows the structural similarity to calcium-binding domain. Not
surprisingly, the SH2 domain (amino acids ~600 to ~700) is the
most highly conserved motif and mediates both receptor-specific
recruitment and STAT dimerization. The number of direct
contact sites between amino acid residues and DNA are modest,
accounting for a dissociation constant in the nanomolar range.
Thus, cooperativity in DNA binding is likely to be important in
effective transcriptional activity. All of these proteins (STAT1–6)
except STAT2 are known to homodimerize in vivo. Dimerization
requires the binding of a phosphorylated tyrosine activation
motif on one STAT subunit to the SH2 domain of the other
subunit.15 Finally, the carboxyl-terminus carries a transcriptional
activation domain (TAD), which is conserved between homologs
(e.g., murine and human). However, the carboxyl-terminus varies
considerably in both length and sequence between different
STAT family members. Once again, STAT2 is an exception, since
its TAD sequence diverges considerably between the murine and
human homologs.15

JAK-STAT activation. As a part of normal cytokine signaling
cascade, the JAK-STAT pathway is also initiated by binding of
a ligand to its receptor in the plasma membrane and the sub-
sequent homo- or heterodimerization of the receptor. In the
heart, IL-6, IL-11, leukemia inhibitory factor (LIF), oncostatin
M, ciliary neurotrophic factor (CNTF) and cardiotrophin-like
cytokine (CT-1) are the major cytokines that transduce their
signals via glycoprotein 130 (gp130) predominantly to STAT3
and 5.16 The receptor dimerization, in turn, induces phosphory-
lation and activation of JAK proteins, which are associated with
the intracellular domain of the receptor. JAK proteins phosphory-
late the receptor, thereby creating docking sites for cytosolic
STAT proteins via their SH2 domains. Subsequently, STAT
proteins become phosphorylated on a specific tyrosine residue
(for example, Tyr705 for STAT3) by activated JAK kinases, and
undergo homo- or heterodimerization by interaction of the
phosphotyrosine residue of one STAT monomer and the SH2
domain of the other monomer. Once dimerized, these proteins

dissociate from the receptor and translocate into the nucleus,
where they bind to specific DNA sequences and regulate the
expression of target genes (Fig. 2). In the heart, STAT proteins
regulate the expression of genes encoding proteins mainly
involved in inflammation, cellular signaling, apoptosis, angio-
genesis and extracellular matrix composition.17,18 The phos-
phorylation of an additional specific serine residue in the
transactivation domain of STAT proteins (Ser727 for STAT3)
generally promotes transcriptional activity. The activation and
nuclear translocation of STATs usually occurs within 15 min,
but STAT proteins are also rapidly inactivated, resulting in a
half-life of nuclear phosphorylated STAT between 15 and
30 min.19 Upon de-phosphorylation by nuclear phosphatases,
STAT proteins shuttle back into the cytosol via the nuclear pore.
The JAK-STAT pathway is not only controlled via phosphoryla-
tion of the signaling proteins, but also by negative regulators.
Upon activation, STATs bind to the promoter region of SOCS
genes (suppressors of cytokine signaling) and upregulate the
transcription of these target genes (Fig. 2). SOCS proteins
(mainly SOCS 1 and 3) negatively regulate the JAK-STAT
pathway by either directly binding to JAK, by binding to the
receptor and to JAK, or by competing with STATs for the
docking sites at the receptor.20 Another negative feedback
mechanism of the JAK/STAT pathway comprises SHP-2 proteins
(src homology 2 domain containing protein tyrosine phospha-
tase), which dephosphorylate the receptor, JAK or STAT
proteins.21 The details of the canonical JAK-STAT signaling
pathway have been extensively reviewed elsewhere.16 The full
activation of different STAT subtypes is determined by many
factors. These include animal’s species, cell type differences and its
intra-cellular distribution.22,23

STAT Signaling in Cardiovascular Diseases

All seven STAT family members have been reported to be
expressed in the heart and/or cultured cardiac myocytes, fibro-
blasts and endothelial cells.24,25 At cellular compartment level,
STAT localization is not restricted to the cytosol and the nucleus
but recently, STAT proteins have also been identified in
mitochondrial fraction.26,27 As for the exact role of JAK-STAT
signaling in cardiac function and diseases, most of the available
information relates to STAT1 and 3 family members. Various

Figure 1. Schematic illustrations of STATs domains and structural features. N-terminal domain; coiled–coil domain (CCD); DNA binding domain (DBD);
Linker domain; Src homology domain 2 (SH2) and the tyrosine residue (Y) phosphorylation sites.
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stimuli which activate hypertrophic growth of cardiac myocytes
and/or provide cardio-protection have been demonstrated to
activate JAK-STAT signaling in the heart. Importantly, studies
have established that these stimuli also enhance cardiac STAT
functional activity, as assessed by electrophoretic mobility shift
assays of DNA binding activity, or promoter-reporter assays of
transcriptional activity.28 Mechanical stretch and pressure over-
load,28,29 myocardial infarction30 and ANG II treatment31 has
been shown to activate cardiac JAK-STAT signaling. In addition,
ischemia and ischemia/reoxygenation also activates JAK-STAT
signaling in cultured ventricular myocytes, isolated heart prepara-
tions or the in situ hearts.28 It has been well documented that
monocytes and macrophages produce inflammatory cytokine to
repair the injury during myocardial infarction and hypertrophy.5

Angiotensin II also mimics the action of cytokines by activation of
tissue inhibitor of metalloproteinase-1 (TIMP-1), an important

factor associated with cardiac remodeling.5 The mechanisms
whereby G-protein receptors couple to tyrosine phosphorylation
in general and more specifically to the JAK-STAT pathway, are
not yet clearly elucidated. Previously, it was suggested that YXXQ
regions of AT1 receptors could serve as a docking sites to facilitate
STAT3 phosphorylation.31 Other studies reported that association
of JAK2 with AT1 receptor facilitates STATs activation.5,32

Alteration in JAK-STAT signaling pathways were also reported
in patients with end-stage dilated cardiomyopathy.33 The early
activation of STAT3 during diseased stage could be the protective
response of system to reduce the cardiac death and remodeling.

Recent reports have shown that transgenic mice with global
deletion of STATs are embryonically lethal further suggesting
its role in development and growth.34 To sidestep the
embryonic lethal phenotype of global STAT3 knockout mice
and to better understand the rle of STAT3 in the heart cardiac

Figure 2. A putative model for JAK-STAT signaling pathway. Upon binding ligand (IL-10), receptor-associated JAKs become activated and mediate
phosphorylation of specific receptor tyrosine residues. This leads to the recruitment and phosphorylation of STAT3. Activated STAT3 is released from
the receptor, dimerize, translocate to the nucleus, and bind with transcription factors to regulate expression of many cardio-protective, anti-inflammatory
or growth related genes. As a feedback loop it also regulates expression of suppressor of cytokines signaling genes (SOCS). Many protein inhibitors (PIAS)
can also regulate the transcriptional activity of STAT3. In addition to JAKs, PTKs and MAPK, activated by Ang II, may participate in phosphorylation
of STAT3. Activated STAT3 translocate to the nucleus to activate genes, such as c-fos, c-myc, a2-macroglobulin and tissue inhibitor metalloproteinase-1
(TIMP-1) by binding to the sis-inducible element (SIE) of the promoter.
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myocytes-specific STAT3 KO mice have been developed. These
mice are significantly more susceptible to cardiac injury under the
influence of various stress signals suggesting a protective role of
STAT3 in heart.35 However, a major disadvantage of these tissue
specific STAT3-KO mice is the pathological phenotype, which
develops with age and thus limits the direct assessment of the role
of STAT3 in cardio-protection. Recently, Bolli and coworkers
generated inducible, cardiac myocyte-specific STAT3-deficient
mice, which are of great value since they overcome the problems
of embryonic lethality and the consequences of chronic alterations
in STAT3-dependent gene expression.36 These mice excluded the
possibility of age-dependent alterations in apoptosis, fibrosis,
capillary density, and cardiac function, and importantly these
mice did not show age dependent cardiac hypertrophy or
dilatation. Therefore, the inducible cardiac myocyte-specific
STAT3-KO mouse represents a novel and attractive model to
study the role of STAT3 in the cardio-protection by ischemic pre-
and post-conditioning without the confounding effects associated
with chronic STAT3 deletion.36

Mechanism for cardio-protective action of STAT3 is not well
studied in cardiovascular diseases. Mostly, the protective effect of
STAT3 in the heart is linked to the reduction in inflammation.
Evidence for this notion comes from the studies in which STAT3-
deficient mice treated with lipopolysaccharide (LPS) demon-
strated significantly more apoptosis and fibrosis than their WT
counterparts.37 Furthermore, STAT3 KO cardiac myocytes
secrete significantly more tumor necrosis factor a (TNFa) in
response to LPS than those with WT STAT3.35 The anti-
inflammatory and anti-fibrotic effects of STAT3 could be due to
direct transcriptional inhibition of nuclear factor kappa-B
(NFkB).35,37 Indirectly, we have also shown that use of IL-10,
an anti-inflammatory pleotropic cytokines, markedly activated
STAT3 phosphorylation after myocardial infarction injury and
thus improve heart function.30

Many recent studies indicated that STAT3 induces the
expression of pro-angiogenic factors from resident cardiac
cells.38,39 It has been shown that overexpression or activation of
STAT3 in cardiac myocytes enhances VEGF expression, which,
in turn, promotes myocardial capillary formation.38,40 Cardiac
myocyte-specific deletion of VEGF reduces coronary microvascu-
larization,41 suggesting that VEGF may be an important target
gene mediating pro-angiogenic effects of STAT3. A recent
interesting study reported that STAT3 plays a critical role during
pregnancy related adaptive cardiac hypertrophy by activation of
angiogenesis (increased VEGF) and by inhibition of oxidative
stress (increased MnSOD level).42 In our previous report we
documented that IL-10 markedly increase the VEGF and capillary
beds in infarct zone after myocardial infarction.30 This effect of
IL-10 on microvasculature is STAT3-dependent as STAT3
inhibitor markedly eliminated the IL-10 responses.30 In contrast,
other groups have shown STAT3 does not affect the expression of
VEGF.17 Using STAT3 KO animals they reported that VEGF
expression is unaffected by STAT3 deletion although these
animals showed compromised heart function and reduced
angiogenesis after myocardial infarction. Interestingly, STAT3
KO animals showed increased expression of connective tissue

growth factor (CTGF), plasminogen activator inhibitor 1 (PAI-1),
tissue inhibitor of matrix metalloproteinase 1 (TIMP1) and
thrombospondin 1 (TSP1) compared with WT mice after MI.17

All these factors are potent suppressor of angiogenesis as well as
activator of fibroblast proliferation.17 In addition, the increased
fibrosis and myocyte cell loss might be due to reduced blood and
thus oxygen supply to the heart cells in this model.17

Recently we found that endothelial progenitor cells (EPCs) can
also play critical role in neovascularization in heart.43 During
ischemic condition (in MI model) both homing and survival of
EPCs in the heart was markedly reduced. In this fascinating study
we have shown that during myocardial infarction the mobilization
of EPCs from bone marrow (BM) to heart is impaired and
contributes to diminished angiogenesis and markedly reduced left
ventricular functions.43 We also found that modulation of
inflammation IL-10 therapy markedly improves EPCs survival
and neovascularization in the border zone of the infarct.
Interestingly, IL-10 dependent increase in EPCs survival and
function is partially dependent on STAT3 signaling, at least in in
vitro system.43 In addition, we also showed that differentiation of
functional cardiac myocytes from pluripotent embryonic stem
cells (ES) under the influence of cytokines and growth factors
requires STAT3 activity. In this study use of selective STAT3
inhibitor, markedly reduced the leukemia inducing factor (LIF)
and bone morphogenic protein 2 (BMP-2) induced cardiac
myocytes differentiation from murine ES cells.44 In addition,
SDF1/CXCR signaling is critical for the homing of progenitor
cells from bone marrow to the heart for cardiac repair during heart
failure.45 Recently it has been shown that inhibition of STAT3
(both pharmacological and genetic knockdown) significantly
abolished the SDF1/CXCR1 mediated cardiac protection during
ischemia/reperfusion injury.46 Another pertinent mechanism for
cardio-protective action of STAT3 is by reducing stress-induced
cell death in heart as apoptosis is one of the hallmarks of heart
failure. Hydrogen peroxide (a potent cell death activator) treated
neonatal rat ventricular myocytes (NRCM) showed reduced
expression of phosphorylated STAT3. In isolated rat hearts,
perfused with AG-490 (potent JAK1/STAT3 inhibitor) enhanced
the number of apoptotic cardiac myocytes.47 The anti-apoptotic
function of STAT3 was also confirmed in mice with a cardiac
myocyte-specific deletion of STAT3. These mice showed higher
ischemia/reperfusion-induced apoptosis compared with wild type
control.17 Furthermore, the STAT3-dependent transcriptional
upregulation of anti-apoptotic and cyto-protective proteins (Bcl-
xL, Hsp70 and MnSOD) clearly demonstrated the critical role of
STAT3 in cardiac myocytes survival.48,49

Although early activation of STAT3 is well established
during ischemia/reperfusion (I/R), its transcriptional regulation
is probably too slow a process to provide the immediate rescue
from cell death during early minutes of reperfusion. Mitochondria
plays significant role in the progression of apoptotic signals. Many
recent studies have suggested that STAT3 activation is required
to inhibit mitochondrial malfunctioning.26,50 Recently, STAT3
has been identified in cardiac myocyte mitochondria, and its
pharmacological inhibition or genetic ablation impaired complex
I respiration27,51 and calcium retention capacity.52 Conversely, a
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mitochondrial-targeted STAT3 overexpression in mice preserved
complex I respiration during simulated ex vivo ischemia and
reduced the formation of reactive oxygen species. These studies
suggest that a pool of STAT3 resides in the mitochondria and try
to inhibit ROS production by inhibition of complex I and II
activity. Evidence for this notion comes from the study where
cardiac myocytes specific overexpression of transcriptionally
inactive mitochondrial STAT3 in transgenic mice hindered the
ischemia-induced mitochondrial complete complex I and II
activity, cytochrome C release and ROS production.50 Recent
studies, using pharmacological inhibitors, have demonstrated that
ischemic post-conditioning preserve mitochondrial complex 1
respiration both in vivo and in vitro.23 The exact phosphorylation
site that is important for the improvement in mitochondrial
function by STAT3 is not clear but may vary with species: In
mouse cardiac myocyte mitochondria serine727 site,27,51 whereas
both the serine727 and the tyrosine705 site in rat cardiac myocyte
mitochondria52 and only the tyrosine705 site in pigs23 is deemed
important. The increased STAT3 phosphorylation at tyrosine705
was associated not only with better preservation of complex 1
respiration but also with improved calcium retention capacity as a
measure of mitochondrial permeability transition pore inhibi-
tion.53 The cardio-protective action of STAT3 is also partially
dependent on the age of animals. In a recent study it has been
demonstrated that the beneficial effects of ischemic post-
conditioning is lost in aged animals and suggested that reduced
STAT3 levels may be cause of this effect.54

Interestingly, in contrast to the cardio-protective nature of
active STAT3, some recent studies also suggested that the un-
phosphorylated STAT3 can induce adverse cardiac remodel-
ing.55-57 During chronic stress the signals from AT1R leads to
unregulated expression of STAT3 resulting in excessive accu-
mulation of un-phosphorylated STAT3 into the nucleus where
they can bind with target gene (such as p300/CBP) promoters
thereby inducing genes that are involved in adverse heart
function.55 It is believed that the normal mechanisms of STAT
clearance from nucleus is impaired during chronic stress pathology
and thus contribute toward the accumulation of U-STAT3.
Moreover, U-STATs have been shown to partner with NFkB p65
and IRF1 in binding to different hybrid DNA elements. Hence,
U-STAT3 may partner with different factors depending on the
cell type and sequence context, thereby regulating constitutive
gene expression both positively and negatively.56,57

JAK-STAT as Therapeutic Targets for Heart Diseases

There is significant discrepancy with regards to the role of STATs
in the heart. Many investigators believe that STATs signaling
might be detrimental and induce distractive signaling in heart,
however, we and others published data indicating that STAT3
mediates cardio-protective signaling.30,36,50 STAT3 activation is
important for facilitating protective effects in the heart such as
compensatory hypertrophy or a reduction in apoptosis.
Additionally, as mentioned above STAT3 activation is central
for the cardio-protection by ischemic pre- and post-conditioning.
Stimulation of STAT3 activity is expected to be beneficial during
the transition from compensated hypertrophy to heart failure.
Agonist induced activation of STAT signaling in the myocardium
could be a potential strategy to induce cardio-protective signaling.
However, STATs as transcriptional activators or co-activators
control the transcription of many target gene and excessive
activation of some genes might be detrimental. For example, IL-6
mediated excessive activation of iNOS gene increased STAT3-
dependent nitric oxide synthesis and decreases cardiac contracti-
lity.58 In addition a consistent STAT3 activation could lead to
malignant transformation.59,60 Therefore, the STAT3 activation in
cardiovascular disease must be carefully controlled and well
defined treatment strategies aiming for a balanced STAT3
signaling should be developed in order to protect the heart from
pathophysiological stress.

In conclusion, STAT signaling is an important mechanism in
the protection of cardiac cells from different stress. To understand
the mechanisms and inhibit the transition of adaptive hyper-
trophy to maladaptive hypertrophy, STAT signaling could play
an important role, as it gets activated during physiological
hypertrophy and inhibited in chronic pathological conditions.
Basic and translational studies should be focused toward
understanding the factors/stimuli that regulate STAT activity at
late stage of diseases. Another area of research that should make a
significant stride in the next few years is to generate safer agonists
and carrier molecules that can be given to patients with an end-
stage disease condition to improve heart function.
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