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Abstract
Studies of human emotion perception have linked a distributed set of brain regions to the recognition of emotion in
facial, vocal, and body expressions. In particular, lesions to somatosensory cortex in the right hemisphere have been
shown to impair recognition of facial and vocal expressions of emotion. Although these findings suggest that
somatosensory cortex represents body states associated with distinct emotions, such as a furrowed brow or gaping
jaw, functional evidence directly linking somatosensory activity and subjective experience during emotion perception
is critically lacking. Using functional magnetic resonance imaging and multivariate decoding techniques, we show that
perceiving vocal and facial expressions of emotion yields hemodynamic activity in right somatosensory cortex that
discriminates among emotion categories, exhibits somatotopic organization, and tracks self-reported sensory expe-
rience. The findings both support embodied accounts of emotion and provide mechanistic insight into how emotional
expressions are capable of biasing subjective experience in those who perceive them.
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Introduction
During social interactions, humans recognize emotions

from facial and vocal cues with seemingly little effort.

Often, the perception of emotions in others leads to the
spread of emotional behaviors, such as crying and laugh-
ter (Provine, 1992). Simulationist models of emotion rec-
ognition (Adolphs, 2002; Goldman and Sripada, 2005;
Niedenthal, 2007) propose that these phenomena result
from neural processing in somatosensory cortex (Keysers

Received August 13, 2015; accepted April 11, 2016; First published April 15,
2016.
1The authors report no conflict of interest.
2Author contributions: P.A.K. and K.S.L. designed research; P.A.K. per-

formed research and analyzed data; P.A.K. and K.S.L. wrote the paper.
3This research was supported in part by NIH grant R21 MH098149, and

P.A.K. was supported by the E. Bayard Halsted fellowship.
Correspondence should be addressed to Kevin S. LaBar, Center for Cog-

nitive Neuroscience, B203 LSRC Building, Research Drive, Box 90999, Dur-
ham, NC 27708-0999. E-mail: klabar@duke.edu.

DOI:http://dx.doi.org/10.1523/ENEURO.0090-15.2016
Copyright © 2016 Kragel and LaBar
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International, which permits unrestricted use, distri-
bution and reproduction in any medium provided that the original work is
properly attributed.

Significance Statement

The perception of emotion in others often results in related sensory experiences in oneself, which is thought to
facilitate the social spread of emotions. Using functional neuroimaging, we have discovered a neural mechanism
capable of explaining how percepts of emotion bias subjective experience. We show that activity in right
somatosensory cortex can be used to classify emotions conveyed in facial and vocal expressions. Importantly,
the capacity of this region to predict perceived emotions in others correlates with reports of subjective
experience generated by the expressions in oneself. The results reveal a novel, specialized role for the
somatosensory cortex in linking emotional perception with subjective sensory experience.
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et al., 2010). Although this region is primarily involved in
tactile sensation, it has been argued that somatosensory
representations also facilitate emotion recognition by link-
ing nontactile perceptual cues to bodily states associated
with each emotional category (Damasio, 1996).

Damage to or inactivation of right somatosensory cor-
tex disrupts the recognition of emotion from facial (Adol-
phs et al., 2000; Pitcher et al., 2008) and vocal (Adolphs
et al., 2002; Banissy et al., 2010) expressions. However, it
is not known whether this behavioral impairment is due to
an experiential mirroring mechanism, as suggested by
embodied cognition perspectives. Although emotional ex-
pressions can be decoded from patterns of activation
within unimodal (Ethofer et al., 2009; Harry et al., 2013) or
multimodal association cortices (Peelen et al., 2010;
Wegrzyn et al., 2015), it is unknown whether neural activ-
ity within somatosensory cortex codes categorical infor-
mation from perceived emotions in the nontactile domain,
and whether such activity is related to subjective sensory
experience in terms of its separability and topographic
organization.

To bridge this conceptual gap, we conducted a func-
tional magnetic resonance imaging (fMRI) experiment in
which participants were presented with facial and vocal
expressions of discrete emotions and made on-line rat-
ings of their own subjective experience in response to
these percepts. This procedure offers insight into how
emotional expression perception alters sensory experi-
ence as a component of affect, although emotional events
occurring in everyday life or those elicited by laboratory
mood inductions generally yield more rigorous, full-blown
emotional experiences. Given that expressions of emotion
lead to the convergence of facial configuration and shared
mood (Hess and Blairy, 2001), we expected behavioral
self-report to mirror the emotional content of stimuli. Fur-
ther, if somatosensory representations reflect how one
would feel when making an emotional expression, then it
should be possible to decode emotion-specific patterns
of neural activation within right somatosensory cortex,
and the spatial configuration of these patterns should be
consistent with known somatotopy.

Materials and Methods
Participants

Twenty-one healthy, right-handed individuals (Mage �
26 years, age range � 19–39 years, 11 males) completed
the study. One additional participant was run in the ex-
periment, but was excluded from analysis due to exces-
sive head-motion during scanning (total displacement
exceeding 1 cm). All participants provided written in-
formed consent to participate in accordance with the
Duke University Institutional Review Board and received
$20/h as monetary compensation.

Experimental paradigm
During scanning, participants were presented with facial

and vocal expressions of emotion, followed by self-report.
To isolate neural responses to the expressions, the period
between stimulus presentation and motor response was
jittered following a Poisson distribution (� � 4 s).

The stimuli used included standardized images of faces
(Langner et al., 2010) and audio recordings of pseudo-
utterances (Pell et al., 2009), which convey emotions of
happiness, surprise, fear, anger, and sadness, in addition
to neutral control expressions. Twelve expressions were
presented in each modality for each emotion, resulting in
a total of 144 unique stimuli. Participants viewed stimuli in
one of four pseudorandom counterbalanced orderings,
which alternated between blocks of facial or vocal expres-
sions. Each block consisted of one male and one female
presentation of each emotion, totaling 12 trials. Facial
stimuli were presented for 1.5 s, whereas auditory stimuli
lasted 1.65 � 0.32 s (mean � SD). Each experimental
session comprised three runs of data acquisition, includ-
ing four blocks and lasting on average approximately
10.26 min.

During the self-report phase, the Geneva Emotion
Wheel (Scherer, 2005) was presented on the screen for 6
s. This self-report assay contains 16 emotion words or-
ganized radially about the center of the screen, in a fixed
position. Four circles emanate from the center of the
screen to each word (similar to a spoke of a wheel), which
can be used to indicate the intensity of each emotion.
Participants were instructed to use a joystick to move the
cursor from the center of the screen to the location on the
screen that best indicated how they currently feel. Partic-
ipants were told to move the cursor to the center of the
screen if they did not feel any of the emotions listed. Prior
to scanning, participants completed a set of practice trials
wherein they moved the cursor to each emotion term,
insuring functionality of the joystick and comprehension
of the task.

Presentation of stimuli and acquisition of behavioral
responses were controlled using Cogent 2000 software
(Wellcome Department of Imaging Neuroscience, http://
www.vislab.ucl.ac.uk/cogent.php). Participants viewed
stimuli on mirrors aligned with a LCD screen upon which
images were projected from a stimulus control computer.
Audio stimulation was presented using MR-compatible
headphones (Resonance Technology).

Image acquisition
Scanning was performed on a 3 Tesla General Electric

MR 750 system with 50-mT/m gradients and an eight-
channel head coil for parallel imaging (General Electric).
Structural images were acquired using a 3D fast SPGR
BRAVO pulse sequence: repetition time (TR) � 7.58 ms;
echo time (TE) � 2.936 ms; image matrix � 2562; � � 12°;
voxel size � 1 � 1 � 1 mm; 206 contiguous slices) for
coregistration with the functional data. Structural images
were aligned in the near-axial plane defined by the ante-
rior and posterior commissures. Whole-brain functional
images were acquired using a spiral-in pulse sequence
with sensitivity encoding along the axial plane (TR � 2000
ms; TE � 30 ms; image matrix � 64 � 128; � � 70°; voxel
size � 3.8 � 3.8 � 3.8 mm; 34 contiguous slices). The first
five images of each run were excluded from analyses to
ensure the magnet had reached steady state.
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Preprocessing and estimating neural activation
Processing of MR data was performed using Statistical

Parametric Mapping software (SPM8; Wellcome Depart-
ment of Imaging Neuroscience). Functional images were
slice-time-corrected, spatially realigned to correct for mo-
tion artifacts (Friston et al., 1995), coregistered to anatom-
ical scans (Collignon et al., 1995), and normalized to
Montreal Neurologic Institute (MNI) space using high-
dimensional warping implemented in the VBM8 toolbox
(http://dbm.neuro.uni-jena.de/vbm.html). Functional data
were not spatially smoothed.

Whole-brain patterns of neural activation were esti-
mated using the general linear model approach imple-
mented in SPM8. For each subject, blood oxygen
level-dependent (BOLD) responses were modeled by
convolving box-car functions with a canonical hemody-
namic response function separately for each trial. One
additional regressor modelling the self-report phase was
included in each run. To model nuisance effects, six
motion parameters (roll, pitch, yaw, in addition to trans-
lation in x, y, and z dimensions) and session constants,
were incorporated into the model.

Regions-of-interest
Anatomical masks were created for brain regions impli-

cated in a neural network model of emotion recognition
(Adolphs et al., 2000, 2002) using the Automated Anatom-
ical Labeling atlas (Tzourio-Mazoyer et al., 2002). In par-
ticular, masks were created for right postcentral gyrus
(somatosensory cortex) and bilaterally for posterior supe-
rior temporal sulcus (defined as voxels within superior
temporal gyrus posterior to y � �32 mm in MNI space),
medial orbitofrontal cortex, inferior frontal operculum,
fusiform gyrus, amygdala, and insula. For motor control
analyses and lateralization tests, masks for left and right
precentral and left postcentral gyrus were additionally
used.

Classification of self-report
Cursor locations (2-dimensional data centered on the

center pixel on the presentation computer) were used to
predict the emotional content of stimuli. This data-driven
approach was employed because it does not assume
fixed stimulus–response mappings for all subjects and
provides classification weights to assess the consistency
of mappings. Because the self-report format was circular
in nature, classification was performed using support vec-
tor machines (SVMs) with a radial basis function as im-
plemented in LIBSVM (Chang and Lin, 2011). As cursor
locations were assigned one of six labels, the default
“one-against-one” multiclass algorithm was used (Hsu
and Lin, 2002). Nested fivefold cross validation was per-
formed separately for each subject. The inner folds were
implemented for selection of parameters C and �, and the
outer folds were used to provide cross-validated mea-
sures of accuracy. Because distributions of classification
accuracy typically violate the assumptions of parametric
tests, one-tailed Wilcoxon sign-rank tests were performed
for group inference. To examine which cursor locations
led to the prediction of each expression, one-sample t

tests were performed across subjects on SVM decision
values for all coordinates in the grid.

Multivoxel pattern classification
Decoding of neural activity was performed via PLS-DA

(Wold et al., 2001) using the NIPALS algorithm (Martens
and Naes, 1989) as implemented in the libPLS toolbox
(http://www.libpls.net). This method was selected be-
cause it effectively reduces the dimensionality of data,
decreasing chances of overfitting.

Classification was performed using trials including both
facial and vocal expressions, in order to identify emotion-
specific patterns of neural activity that generalize across
modalities. This approach is well suited to identifying
embodied representations of emotion because it discour-
ages learning low-level features of expressions (eg, fun-
damental frequency of vocalizations or visual contrast in
facial expressions). Thus, the learning scheme empha-
sizes information that is independent of stimulus modality
and should be more sensitive in detecting somatic states
associated with facial and vocal cues. To ensure that the
classifier was not biased toward stimuli of one modality,
accuracies were compared for facial versus vocal expres-
sions of emotion.

Classification of multiple categories was performed us-
ing a winner-takes-all approach, wherein one class is
classified against all others. Because this approach cre-
ates an uneven proportion of classes (1:5), a weighted
approach was taken for discriminant analysis to minimize
bias due to class imbalance. Input data (144 trials) were
mean-centered before conducting the analysis. The num-
ber of latent variables was fixed at 1, to reduce the
complexity of the model, simplify interpretation of model
coefficients, and maximize the amount of data available
for training and testing. Classification was performed sep-
arately for each subject, using cross validation (interleav-
ing trials between the two folds). Randomization of single
trial estimates in the wavelet domain (Bullmore et al.,
2001) was conducted to confirm that this cross-validation
did not introduce a positive bias. This test confirmed that
autocorrelation in the signals was not predictive, as clas-
sification of these scrambled data yielded an accuracy of
16.7 � 3% (mean � SD within regions, chance �
16.67%). Group inference on accuracy was performed
using one-tailed Wilcoxon sign-rank tests (with chance
rates of 1/6), with FDR correction (Benjamini and Hoch-
berg, 1995) for multiple comparisons when appropriate.

To assess the relationship between experiential ratings
and the information content of neural activation patterns,
the accuracy of classifying self-report was correlated with
the accuracy of classifying fMRI data across subjects for
each region of interest, using Pearson’s coefficient. Infer-
ence was performed for each region using the Student’s t
distribution (two-tailed), with FDR correction for multiple
comparisons. To identify which region best characterized
individual differences in self-report ratings, linear regres-
sion models predicting the accuracy of self-report from
accuracy of neural classification were estimated, and
model log-likelihoods were used to compute Bayesian
Information Criterion (BIC; Wagenmakers and Farrell,
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2004) values (using the fitglm and aicbic functions in
MATLAB). BIC values were converted to weights (wBIC),
which were compared to determine evidence ratios for
different regions.

Comparisons of PLS regression coefficients within the
postcentral gyrus were assessed using a one-way ANOVA.
These coefficients characterize a linear mapping between
BOLD activation and the likelihood membership for each
emotion category. Contrasts were made between emo-
tions associated with movement of facial muscles in the
lower (happiness, surprise) versus upper (fear, anger) por-
tions of the face (Bassili, 1979; Smith et al., 2005) at the
group level. Fearful expressions are considered to involve
primarily the upper portion of the face based because a
jaw drop (action unit 26) is not always included in its
prototypical expression (Langner et al., 2010). Addition-
ally, there are some common movements among expres-
sions, such as lip parting and brow raising, potentially
leading this contrast to underestimate differences across
categories. AR(1) correction was applied to adjust for
departures from sphericity (independence and homoge-
neity of variance).

Statistical maps were thresholded using a voxelwise
threshold of p � 0.05 and extent of 21 voxels, which we
determined to control the false-positive rate at � � 0.05
using Monte Carlo simulations on the present data (For-
man et al., 1995). Because this thresholding approach has
recently been shown to be susceptible to high type-I error
rates (Eklund et al., 2015), we double-checked these re-
sults against permutation based methods (Winkler et al.,
2014) and found similar results. To test the extent to
which clusters observed in the group model were distinct,
we performed randomization tests (randomly flipping the
weights of the contrasts for upper vs lower expressions)
over 10,000 iterations. On each randomization, we iden-
tified the number of significant clusters for the contrast of
expressions involving lower versus upper portions of the
face. Renderings of classification weights for lower versus
upper face expressions were mapped to flattened and
inflated models of the cortical surface (Van Essen, 2005)
in the right hemisphere using Caret (Van Essen et al.,
2001).

Results
We first tested whether participants’ reported sensory

experience was consistent with those conveyed by facial
and vocal expressions by constructing classification
models to predict the emotional content of stimuli using
cursor locations on every trial. Consistent with our hy-
pothesis of behavioral mirroring, cursor positions span-
ning both facial and vocal trials demonstrated significant
discrimination, with an accuracy of 40.1 � 3.79% (mean �
SEM), compared to chance levels of 16.67% (Wilcoxon
sign-rank test, z � 3.84, p � 1.22e-04)a (Note: superscript
letters refer to statistical tests indexed in Table 1.). Exam-
ination of decision values from the classifiers revealed
that emotions were best predicted by ratings within focal
regions of the self-report inventory (Fig. 1C), indicating
that participants experienced relatively discrete sensa-
tions in response to the facial and vocal stimuli. Together,

these findings provide clear evidence that participants’
self-reported experiences were congruent with those per-
ceived from the facial and vocal cues.

To examine whether regional patterns of fMRI response
discriminated among perceived emotions, we conducted
multivoxel pattern classification on data from brain re-
gions implicated in a neural network hypothesized to be
critical for the recognition of emotion (Adolphs, 2002):
postcentral gyrus in the right hemisphere (corresponding
to primary somatosensory cortex), posterior superior tem-
poral sulcus (pSTS), medial orbitofrontal cortex (mOFC),
inferior frontal operculum (IFO), fusiform gyrus (FG),
amygdala, and insula. Among these regions, decoding of
emotional categories from perceptual cues was success-
ful from patterns of activation in postcentral gyrus, mOFC,
IFO, FG, and insula at accuracy levels significantly above
chance (all padj � 0.05; Fig. 2)b–h, although they were near
the chance distribution’s margin of error. Differences in
classification accuracy between facial and vocal expres-
sions did not reach statistical significance in any region
(all padj � 0.10)i–o, indicating that learning was not gener-
ally biased toward either modality.

Although the right postcentral gyrus exhibited the high-
est accuracy level at 19.9 � 0.75% (mean � SEM),
follow-up comparisons did not reveal significant differ-
ences between right somatosensory cortex and any other
region-of-interest (ROI; all padj � 0.09)p–u. Given evidence
specifically implicating the right somatosensory cortices
in emotion recognition (Adolphs et al., 2000, 2002), we
compared classification accuracy in left and right post-
central gyrus. This analysis revealed a moderate effect for
higher accuracy in the right hemisphere, although it was
only marginally significant (two-tailed Wilcoxon sign-rank
test; z � 1.95, p � 0.0507)v.

Having established that patterns of fMRI activity within
right somatosensory cortex predict the emotional content
of facial and vocal expressions in a manner consistent
with self-reported experience, we next tested whether
classification weights within this region followed somato-
topic organization consistent with those of perceived
emotions. Although the spatial resolution of fMRI is too
coarse to directly sample neural activity sensitive to indi-
vidual facial muscles, and there may be some common
facial movements involved in different emotions, we pos-
tulated that the overrepresentation of the lip, cheek, and
mouth regions in somatosensory cortex could be used to
compare emotional expressions that differentially engage
lower versus upper regions of the face.

Because prior research has shown that happiness and
surprise contain more distinctive information in lower re-
gions of the face, we speculated that expressions of
happiness and surprise would have larger classification
weights than those of fear and anger, which contain more
distinguishing information in upper portions of the face
(Bassili, 1979; Smith et al., 2005). This exploratory analy-
sis revealed two clusters in lateral postcentral gyrus (Fig.
3A); one cluster spanned Brodmann areas (BAs) 3, 1, and
2 adjacent to parietal operculum (MNI center of mass �
57, �6, 28; peak t(20) � 3.15)w whereas the other was
restricted to BA 2 (MNI center of mass � 40, �30, 46;

New Research 4 of 12

March/April 2016, 3(2) e0090-15.2016 eNeuro.sfn.org



Table 1. Statistical table

Comparison
Data
structure Type of test

Observed
power

a Classification accuracy: self-report; average vs chance Binomial Wilcoxon sign-rank test (against
constant)

0.9620045

b Classification accuracy: right postcentral gyrus; average
vs chance

Binomial Wilcoxon sign-rank test (against
constant)

0.9565211

c Classification accuracy: insula; average vs
chance

Binomial Wilcoxon sign-rank test (against
constant)

0.8235641

d Classification accuracy: medial OFC;
average vs chance

Binomial Wilcoxon sign-rank test (against
constant)

0.5337574

e Classification accuracy: inferior frontal operculum; average
vs chance

Binomial Wilcoxon sign-rank test (against
constant)

0.5378919

f Classification accuracy: fusiform gyrus;
average vs chance

Binomial Wilcoxon sign-rank test (against
constant)

0.7418888

g Classification accuracy (objective labels): amygdala;
average vs chance

Binomial Wilcoxon sign-rank test (against
constant)

0.3522203�

h Classification accuracy (objective labels): posterior STS;
average vs chance

Binomial Wilcoxon sign-rank test (against
constant)

0.4092183�

i Classification accuracy (objective labels): postcentral gyrus;
facial vs vocal

Binomial Wilcoxon sign-rank test (paired) 0.0789112�

j Classification accuracy (objective labels): insula; facial
vs vocal

Binomial Wilcoxon sign-rank test (paired) 0.6379089�

k Classification accuracy (objective labels): medial OFC;
facial vs vocal

Binomial Wilcoxon sign-rank test (paired) 0.130852�

l Classification accuracy (objective labels): inferior frontal
operculum; facial vs vocal

Binomial Wilcoxon sign-rank test (paired) 0.7368259�

m Classification accuracy (objective labels): fusiform gyrus;
facial vs vocal

Binomial Wilcoxon sign-rank test (paired) 0.0578589�

n Classification accuracy (objective labels): amygdala;
facial vs vocal

Binomial Wilcoxon sign-rank test (paired) 0.0532535�

o Classification accuracy (objective labels): posterior
STS; facial vs vocal

Binomial Wilcoxon sign-rank test (paired) 0.0535096�

p Classification accuracy (objective labels): right postcentral
gyrus vs insula

Binomial Wilcoxon sign-rank test (paired) 0.1202871�

q Classification accuracy (objective labels): right postcentral
gyrus vs medial OFC

Binomial Wilcoxon sign-rank test (paired) 0.1961514�

r Classification accuracy (objective labels): right postcentral
gyrus vs IFO

Binomial Wilcoxon sign-rank test (paired) 0.4217805�

s Classification accuracy (objective labels): right postcentral
gyrus vs fusiform gyrus

Binomial Wilcoxon sign-rank test (paired) 0.5747844�

t Classification accuracy (objective labels): right postcentral
gyrus vs amygdala

Binomial Wilcoxon sign-rank test (paired) 0.6903970�

u Classification accuracy (objective labels): right postcentral
gyrus vs posterior STS

Binomial Wilcoxon sign-rank test (paired) 0.8736939�

v Classification accuracy (objective labels): right vs left
postcentral gyrus

Binomial Wilcoxon sign-rank test (paired) 0.6693379

w PLS regression coefficients (objective labels): upper vs lower
face emotions

Normal One-sample t test 0.9999976

x PLS regression coefficients (objective labels): upper vs lower
face emotions

Normal One-sample t test 1.0000000

y Classification accuracy (objective labels): self-report against
right postcentral gyrus

Binomial Correlation (Pearson) 0.9092103

z Classification accuracy (subjective labels): right postcentral
gyrus

Binomial Wilcoxon sign-rank test (against
constant)

0.9974600

aa Classification accuracy: objective vs subjective labels, right
postcentral gyrus

Binomial Wilcoxon sign-rank test (paired) 0.0500000

bb PLS regression coefficients: objective against subjective models Binomial One-sample t test (Fisher
transformed correlation)

0.9999025

cc Classification accuracy: left precentral gyrus; average vs chance Binomial Wilcoxon sign-rank test (against
constant)

0.0684199

dd Classification accuracy: self-report against left precentral gyrus Binomial Correlation (Pearson) 0.3588166
ee Classification accuracy: postcentral gyrus; average vs chance Binomial Wilcoxon sign-rank test (against

constant)
0.9830124

ff Classification accuracy: self-report against right precentral gyrus Binomial Correlation (Pearson) 0.2688632

Data are assumed to come from the stated distributions. For sign-rank tests, effect sizes are computed as r � z/�n, from which achieved power is calcu-
lated. �Effects that were not significant (correcting for multiple comparisons) and were not included in the main text of the paper.
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peak t(20) � 3.65)x. The localization of these peaks is
consistent with studies localizing oral and facial (Miy-
amoto et al., 2006; Eickhoff et al., 2008) representations in
somatosensory cortex. We performed randomization
tests to assess the probability of observing two separate
clusters (see Materials and Methods). Over 10,000 itera-
tions, only 50 times did a single cluster exceed the cor-
rected threshold of p � 0.05, k � 20 voxels (p � 0.005);
two clusters were never observed (p � 0.00001). These
results demonstrate that expressions of happiness and

surprise, compared to fear and anger, were predicted by
activity in two distinct clusters in the postcentral gyrus.

Given that pattern classification is opportunistic in dis-
criminating among brain states and may have been driven
by factors other than experienced emotion per se (eg,
low-level stimulus properties or physiological arousal), we
next tested whether individual differences in the accuracy
of neural classification correlated with those of self-report.
We found that the degree to which individuals reported
distinct sensory experiences was uniquely associated

Figure 1. Experimental paradigm and behavioral results. A, Graphical depiction of a single trial in which participants are first presented
a facial or vocal expression of emotion, followed by a fixation cross, and a response screen, which subjects used to indicate their own
emotional experience in response to the stimuli by moving a cursor. B, Scatterplot of behavioral responses for all participants, with
each point corresponding to a single trial. Axes reflect cursor positions along horizontal and vertical dimensions of the screen,
standardized within subjects. C, Parametric maps (one sample t test, n � 21) of support vector machine decision values for each
emotion category, showing which coordinates lead to the prediction of each emotion. Cursors located in blue regions are evidence
against the labeled category, whereas red regions indicate positively predictive regions. D, Confusion matrix for classification of
self-report. Color bar indicates proportion of trials (chance � 16.67%) from each emotion category (rows) assigned each label during
classification (columns).
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with the information content of patterns spanning the full
extent of postcentral gyrus (r � 0.5932, padj � 0.041y;
padj � 0.2 for all other regions; Fig. 4; Table 2). Bayesian
comparisons of these linear associations revealed that
somatosensory cortex was �12 times more likely to pre-
dict individual differences in sensory experience than the
next most likely brain region, the pSTS. Differences in BIC
values strongly favored the somatosensory model against
all other models (	BIC � 6; Kass and Raftery, 1995), with
the exception the pSTS model, which still showed positive
support for the somatosensory model (	BIC � 5.02).
Such a strong correspondence establishes a direct link
between the information content of somatosensory activ-
ity and self-reported experience during the perception of
facial and vocal expressions of emotion.

To dissociate subjective representations elicited by the
stimuli from simple encoding of emotion categories, we
constructed classification models to predict emotion cat-
egories defined on the basis of self-report. Classifying
somatosensory activity using self-report ratings in lieu of
stimulus categories produced similar results: mean accu-
racy was 19.74 � 0.82% (SEM; z � 3.25, p � 0.0011)z,
which did not significantly differ from classification accu-
racy based on stimulus categories, (p � 1, signed-rank
test)aa. To assess the extent to which classification uti-
lized independent information, the correlation between
classification weights from objective and subjective mod-
els was computed within subjects and averaged across all
six emotions. This analysis revealed a moderate correla-
tion [r � 0.3115 � 0.052 (SEM), p � 0.000019]bb, sug-
gesting that subjective experience and objective stimulus
category are reflected in at least some shared variance in
somatosensory response patterns, although the amount

of reliable, unique variance attributed to each remains to
be determined.

Given the strong interconnections between corre-
sponding sensorimotor areas of precentral and postcen-
tral gyrus, and evidence that neurons in both cortical
areas respond during motor or sensory behavior (Mouret
and Hasbroucq, 2000), we conducted control analyses in
motor cortices using left and right precentral gyrus ROIs
to rule out an alternative interpretation that the present
results are related to motor preparation (as the emotion
labels were presented in fixed locations) or motor feed-
back. Decoding performance in left motor cortex was not
significantly different than chance levels with 18.0 � 1.0%
accuracy (mean � SEM; chance � 16.67%, z � 1.43, p �
0.0751)cc, making it unlikely that motor activity in prepa-
ration of moving the joystick drove results. Additionally,
activity in this region was not associated with self-report
(r � 0.287, p � 0.208)dd. Although voxel patterns in right
motor cortex were found to predict the emotional content
of stimuli with 19.0 � 0.59% accuracy (mean � SEM; z �
3.21, p � 0.0013)ee, they did not correlate with experien-
tial ratings (r � 0.233, p � 0.3094)ff. Bayesian analysis
revealed the association between the accuracy of self-
report and neural activation within somatosensory cortex
was much more likely than for classification of left or right
precentral gyrus activity (evidence ratios of 38.6 and 52.9,
respectively).

Discussion
Our results demonstrate that patterned activation within
somatosensory cortex contains information sufficient for
the decoding of perceived emotional categories. Such
refined discrimination of nontactile stimulation within so-
matosensory cortex runs contrary to the classic view that

Figure 2. Multivoxel pattern classification of BOLD response to facial and vocal expressions of emotion. A, ROIs rendered on the
group mean anatomical image (n � 21). B, Patterns of response within right postcentral gyrus (z � 3.21, padj � 0.0047)b, insula (z �
2.66, padj � 0.0136)c, mOFC (z � 1.92, padj � 0.0384)d, IFO (z � 1.93, padj � 0.0384)e, and FG (z � 2.43, padj � 0.0175)f were classified
at levels greater than chance (Wilcoxon sign-rank test). Dashed line reflects chance accuracy (16.67%). Error bars reflect SEM.
ACC � accuracy.
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Figure 3. Emotion-predictive patterns are consistent with known somatotopy. A, Contrasts of classification weights reveal the
perception of expressions associated with lower portions of the face was predicted by greater activation in inferior regions of the
postcentral gyrus. Solid lines demarcate borders of BAs 3, 1, and 2. Text overlays indicate hypothesized somatotopy from upper to
lower regions of the face. Inset of facial images convey portions of the face that are diagnostic of each expression (adapted with
permission from Smith et al. 2005). B, Contrasts of parameter estimates show that activation near the lateral sulcus selectively predicts
expressions of happiness and surprise (lower face emotions) relative to fear and anger (upper face emotions). Error bars reflect 95%
confidence intervals based on within-subject error (Cousineau, 2005). C, Mean confusion matrix depicts classifications based on
somatosensory data (columns) against true class labels (rows). Higher values along the main diagonal illustrate above-chance performance
(chance � 16.67%). Confusions between happiness and surprise are consistent with somatotopic patterning driven by activity associated
with lower portions of the face and mouth. Color bar indicates proportion of predictions (rows sum to one).
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the region is a unimodal sensory area and suggests that
visual and auditory signals modulate neural activity at
early stages of cortical processing in this region (Ghazan-
far and Schroeder, 2006). Additionally, the localization of
effects in the right hemisphere is in general agreement
with models of asymmetric emotional processing based
on lesion studies (DeKosky et al., 1980; Ross, 1981;
Blonder et al., 1991; Borod, 1992), although it is important
to note that fMRI has lower sensitivity and specificity
when testing for lateralization (Ross and Monnot, 2008).
Together, our findings expand the functional role of the
somatosensory cortex and provide novel evidence that
emotions are reflected partly in the brain’s representation
of the body (Damasio, 1996; Adolphs, 2002; Niedenthal,
2007).

In an exploratory analysis, we found that emotion-
predictive patterns within postcentral gyrus exhibited soma-
totopic organization, suggesting that information related to

body states contributed to the decoding of emotional ex-
pressions. This result is concordant with evidence that emo-
tions are associated with categorically distinct bodily
sensations (Nummenmaa et al., 2014). Further, the small
number of classification errors among negative emotions
(Fig. 3C) demonstrates that factors beyond valence (Russell
et al., 2003) organize somatosensory activity, although this
conclusion warrants further investigation as happiness was
the only positive emotion sampled. Until a broader array of
emotions are tested, it remains possible that some combi-
nation of valence, arousal, or approach-withdrawal motiva-
tion better explain the observed somatotopy. The confusion
matrix additionally revealed relatively few errors for neutral
expressions, a finding consistent with classification of self-
reported bodily sensations (Nummenmaa et al., 2014), dis-
tributed brain responses to emotional experiences (Kragel
and LaBar, 2015), and dynamic facial expressions of emo-
tion (Said et al., 2010).

Figure 4. The information content of response patterns within right postcentral gyrus increases with the separability of self-report.
A, Scatterplot depicts cross-validated estimates of accuracy across all emotion categories for classification of self-report and neural
data, with each point corresponding to a single subject (n � 21). Solid black line indicates the best least-squares fit to the data.
Dashed lines reflect chance accuracy (16.67%). B, Histogram of bootstrap distribution of Pearson’s correlation coefficient, with
dashed lines indicating 95% confidence interval computed using the bias corrected and accelerated percentile method. ACC �
accuracy.

Table 2. Correlations between neural and self-report classification accuracy

ROI Pearson’s r p Adjusted p Uncorrected BIC �BIC wBIC
Right postcentral gyrus 0.593 0.041 0.005 �21.020 0.000 0.833
pSTS 0.420 0.260 0.058 �15.996 5.024 0.068
mOFC 0.219 0.510 0.340 �12.944 8.076 0.015
IFO 0.257 0.510 0.261 �13.347 7.673 0.018
FG 0.085 0.802 0.713 �12.066 8.954 0.009
Amygdala 0.128 0.747 0.581 �12.257 8.763 0.010
Insula 0.051 0.826 0.826 �11.967 9.053 0.009
Left precentral gyrus 0.287 0.510 0.208 �13.712 7.308 0.022
Right precentral gyrus 0.233 0.510 0.309 �13.085 7.936 0.016
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Topographically organized somatosensory activation
has been documented during the observation of touch
(Blakemore et al., 2005; Ebisch et al., 2008; Schaefer
et al., 2009), during the observation of actions (Gazzola
and Keysers, 2009), and during the perception of sound
(Gazzola et al., 2006). Given that BAs 3 and 1 are more
closely tied to tactile stimulation, whereas BA 2 has gen-
erally been implicated in processing proprioceptive
information (Keysers et al., 2010), our localization of
emotion-predictive patterns in all three areas suggests
that a combination of tactile and proprioceptive informa-
tion is simulated during the perception of emotional ex-
pressions. Although our localization of upper versus lower
face representation is broadly in agreement with the
known somatosensory homunculus, attempts at valida-
tion against independent studies were challenging, as
there is no available human somatotopic atlas, and the
small number of studies comparing different regions of
the face use different stimulation and normalization pro-
cedures and have mixed results (for review, see Haggard
and de Boer, 2014). Due to the many challenges involved
in precise somatotopic mapping of the face, including
head-motion constraints, the need for a specialized head
coil, mechanoreceptor receptive field sizes, and variability
in individual anatomy, the present results should be con-
sidered preliminary as more precise mapping to specific
facial regions is left as a future direction.

Beyond predicting the emotional content of stimuli, we
found that somatic representations of perceived emotions
uniquely correlated with the extent of experiential mirror-
ing across individuals. The fact that this correlation was
selective to somatosensory cortex suggests that factors
influencing global levels of neural activity, such as arousal
or attentiveness, were not likely the source of individual
differences because they would lead to enhanced dis-
criminability in other brain regions. Our observation of
experiential mirroring is consonant with behavioral studies
showing the perception of emotional expressions leads to
facial mimicry and congruent self-reports (Hess and
Blairy, 2001) and further supports accounts that posit
emotion-related knowledge is embodied in somatosen-
sory cortices (Goldman and Sripada, 2005; Niedenthal,
2007). Activation of emotion categories in somatosensory
cortex may directly or may indirectly contribute to con-
scious experience through local processing or connec-
tions with distributed neural networks.

Given that emotions serve action preparation functions
and involve motor feedback, it is important to consider the
potential role of these functions as an explanation for the
somatosensory findings. The observation that emotion-
predictive patterning in primary motor cortex was not
associated with behavioral self-report suggests that facial
mimicry or other forms of motoric engagement, while
potentially contributing to emotion recognition, was not
likely responsible for the convergence of perception and
subjective experience in the right postcentral gyrus. How-
ever, future work more precisely monitoring facial muscle
activity will be necessary to definitively resolve this issue.
Although null results should be interpreted with caution,
this finding is in accordance with other studies that failed

to identify a correspondence between facial mimicry and
emotional feelings (Blairy et al., 1999; Hess and Blairy,
2001). By linking experiential ratings to distinct patterns of
somatic activity, we provide a mechanistic interpretation
for studies showing that primary somatosensory cortex
plays an essential role in emotion recognition (Adolphs
et al., 2000, 2002; Pitcher et al., 2008; Banissy et al., 2010)
that is consistent with the somatic marker hypothesis
(Damasio, 1996), wherein representations of body states
associated with distinct emotions contribute to cognitive
processing.

In addition to primary somatosensory cortex, we found
that patterns of BOLD response within a number of re-
gions implicated in emotion recognition predicted the
emotional content of stimuli, but were not associated with
individual differences in sensory experience. These re-
gions are thought to process distinct kinds information
associated with emotional expressions (Adolphs, 2002).
The orbitofrontal cortex, for example, is widely implicated
in the representation of subjective value (Clithero and
Rangel, 2014), affective valence (Chikazoe et al., 2014),
and responds to the attractiveness of faces; an effect
which is modulated by the presence of a happy facial
expressions (O’Doherty et al., 2003). The insula is broadly
involved in interoceptive processing (Craig, 2002), re-
sponds to diverse affective cues (Sander and Scheich,
2001; Aubé et al., 2015), in particular to facial expressions
of disgust (Phillips et al., 1997; Sprengelmeyer et al.,
1998; Wicker et al., 2003; but see Phillips et al., 1998;
Schienle et al., 2002). Although the insula is associated
with numerous functions (Chang et al., 2013), activity in
this region could ostensibly reflect interoceptive states
associated with distinct emotions. Although the role of the
fusiform gyrus in processing basic visual features of faces
is relatively well characterized (Haxby et al., 2000), acti-
vation of this region has additionally been observed dur-
ing the perception of emotional vocalizations (Rämä et al.,
2001; Johnstone et al., 2006) and during semantic pro-
cessing of auditory content (Chee et al., 1999). Thus,
although our findings highlight the role of somatosensory
cortex in subjective experience, we stress that other fac-
tors, such as subjective value, interoceptive processes,
conceptual knowledge, and sensory and motor modula-
tion, likely contribute to the perception of emotions in
social signals as well.

Our methodological approach serves as a template for
subsequent work examining the role of somatic states in
socio-emotional behavior. Independent characterization
of somatotopy at the single-subject level (Huang and
Sereno, 2007) using high-resolution protocols (Meier
et al., 2008; Sanchez-Panchuelo et al., 2010; Stringer
et al., 2011) may provide more detailed characterization of
somatosensory states associated with specific emotions.
Assaying somatic states during the disruption of facial
muscle activity (eg, Hennenlotter et al., 2009) could
establish whether peripheral feedback is essential in pro-
ducing the observed effects, or whether centrally gener-
ated representations of body states are sufficient. The
frequency and separability of somatic states could further
be quantified during live social interactions (Redcay et al.,
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2010), to characterize their occurrence in more ecologi-
cally valid settings. Future studies in these areas are
necessary to characterize the role embodied emotions
play in social interactions.
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