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The TNF-α gene mutations are seen in many diseases especially
inflammatory diseases. Hence, before planning a larger population study, it
is advisable to sort out the possible functional SNPs. To accomplish this goal,
data available in the dbSNP database and different computer programs can
be used. Therefore, this studywas undertaken to find the functional nsSNPs
(non-synonymous single nucleotide polymorphisms) in TNF-α.
Outof the total169SNPs,48werensSNPs(non-synonymoussinglenucleotide
polymorphisms), 23 occurred in the mRNA 3′ UTR, 10 occurred in 5′ UTR
region, 41 occurred in intronic regions and the rest were other types of SNPs.
SIFT and PolyPhen predicted 2 out of 48 nsSNPs as damaging. Among the
predicted nsSNPs, rs4645843 and rs1800620 were identified as deleterious
and damaging by the SIFT (Sorting Intolerant from Tolerant) and PolyPhen
programs. Additionally, I-Mutant and nsSNPAnalyzer showed a decrease in
stability for thesensSNPsuponmutation.Protein structural analysiswith these
amino acid variants was performed by using I-Mutant, Swiss PDB viewer,
ANOLEA (Atomic Non-Local Environment Assessment), MUSTER (MUlti--
Sources ThreadER) and NOMAD-Ref servers to check their molecular
dynamics and energy minimization calculations. This study suggested that
P84L and A94T variants of TNF-α could directly or indirectly destabilize the
amino acid interactions and hydrogen bond networks thus explaining the
functional deviations of protein to some extent.
© 2014 The Authors. Published by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Keywords:
Single nucleotide polymorphism (SNP)
TNF-α
In silico analysis
Gene variant
orting Intolerant from Tolerant; PolyPhen, phenotype polymorphism; SNP,
us single nucleotide polymorphism; OMIM, Online Mendelian Inheritance in
ent; MUSTER, MUlti-Sources ThreadER.
⁎ Corresponding author.
E-mail addresses: kinnarimistry@aribas.edu.in, kinnarinmistry@yahoo.com (K.N. Mistry).
er B.V. This is an open access article under the CC BY-NC-ND license
.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mgene.2014.07.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.mgene.2014.07.005
mailto:kinnarimistry@aribas.edu.in
mailto:kinnarinmistry@yahoo.com
http://dx.doi.org/10.1016/j.mgene.2014.07.005
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.sciencedirect.com/science/journal/22145400


587B. Dabhi, K.N. Mistry / Meta Gene 2 (2014) 586–595
Introduction

A single nucleotide polymorphism (SNP) is a source variance in a genome. A SNP is a single base
mutation in DNA. SNPs are the simplest form and most common source of genetic polymorphism in the
human genome (90% of all human DNA polymorphisms). There are several publically available databases
for SNPs, such as dbSNP, GWAS Central and SwissVar. Only the non-synonymous SNPs (nsSNPs), also
called as missense variants are particularly important as they result in to changes in the translated amino
acid residue sequence. It is likely that nsSNPs play a major role in the functional diversity of coded proteins
in human populations and have been linked with many diseases. nsSNPs may affect the protein function
by reducing protein solubility or by destabilizing protein structure and they may affect gene regulation by
altering transcription and translation (Barroso et al., 1999; Chasman and Adams, 2001; Lander, 1996;
Smith et al., 1994).

Tumor necrosis factor (TNF) is a cytokine with pleomorphic actions. TNF-α is pivotal in host defense
against infections and has a major role in autoimmune diseases as well. It is also a crucial cytokine for
granuloma formation. The level of TNF-α varies from individual to individual and is genetically determined
(Wilson et al., 1992a, 1992b). The gene for TNF-α is located within the major histocompatibility complex
(MHC) region on chromosome 6p21.3 which is a highly polymorphic region. There are many biallelic single
nucleotide polymorphisms (SNPs) in and around the TNF-α gene. TNF-α is a pleiotropic cytokine produced
mainly by monocytes/macrophages that are involved in systemic inflammation (Sugimoto et al., 1999).
TNF-α exerts cytotoxic effects on renal cells (McCarthy et al., 1998;Min et al., 2009) and it has been shown to
participate in renal damage development in experimental models of renal disease including lupus nephritis,
glomerulonephritis, nephropathy, hypertension, and diabetes (Elmarakby and Sullivan, 2012;McCarthy et al.,
1998). Several investigators have implicated tumor necrosis factor-alpha (TNF-α) cytokine inmodulating the
progression of ESRD (end stage renal disease) (Klahr, 1999; Sankaran et al., 1999).

Several polymorphismshave been identified in the upstream regulatory region of TNF-α. Among these are
common biallelic G (TNF1 allele) transition to A (TNF2 allele) 308 (rs1800629) nucleotide upstream from the
transcription initiation site in the TNF-α promoter. This transition is considered to be an important enhancer
of transcriptional activation associated with elevated levels of TNF-α (Wilson et al., 1997a, 1997b), which
have been shown to be involved in increased susceptibility to different eye diseases including diabetic
retinopathy and glaucoma (Huang et al., 2006; Limb et al., 1999; Yoshioka et al., 2006). TNF-α-308 promoter
gene polymorphism has been reported to be associated with several autoimmune disorders including
systemic lupus erythematosus, rheumatoid arthritis and infections such as tuberculosis (Hajeer and
Hutchinson, 2000). Taking into account all these considerations and the central role played by TNF-α inmany
diseases, in the present studywe aimed to determine the influence of various polymorphisms in TNF-α on its
protein structure that may have an important role in disease susceptibility.
Materials and methods

The data on human TNF-α gene was collected from Entrez Gene on National Center for Biological
Information (NCBI) web site. The SNP information (protein accession number and SNP ID) of the TNF-α
gene was retrieved from the NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp/) and SwissProt databases
(http://expasy.org/).
Evaluation of the functional impact of coding nsSNPs using a sequence homology tool (SIFT)

SIFT takes a query sequence and uses multiple alignment information to predict tolerated and deleterious
substitutions for every position of the query sequence (Ng and Henikoff, 2003). It is a multistep procedure
that, given a protein sequence, (1) searches for similar sequences, (2) chooses closely related sequences that
may share similar function, (3) obtains the multiple alignment of these chosen sequences, and (4) calculates
normalized probabilities for all possible substitutions at each position from the alignment. Substitutions at
each position with normalized probabilities less than a tolerance index of 0.05 are predicted to be intolerant
or deleterious; those greater than or equal to 0.05 are predicted to be tolerated (Ng and Henikoff, 2001, 2002,
2006).

http://www.ncbi.nlm.nih.gov/snp/
http://expasy.org/
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The analysis was performed by allowing the algorithm to search for homologous sequences using the
default settings (UniProt-TrEMBL 39.6 database, median conservation of sequences of 3.00, and allowance to
remove sequencesmore than 90% identical to query sequence). The TNF-α FASTA amino acid sequence of the
NCBI protein accession id CAA26669was used as the query sequence and a total of 169 TNF-α nsSNPs filtered
from the dbSNP database were analyzed.

PolyPhen

PolyPhen (version 2) (http://genetics.bwh.harvard.edu/pph2/) predicts the influence of amino acid
substitution on the structure and function of proteins by using the specific empirical rules. Protein
sequence, database ID/accession number, amino acid position and amino acid variant details are the
input options for PolyPhen (Ramensky et al., 2002). The tool estimates the position-specific independent
count (PSIC) score for every variant and calculates the score difference between variants.

nsSNPAnalyzer

It uses a machine learning method called Random Forest to classify the nsSNPs. It was trained using a
curated SNP dataset prepared from the SwissProt database. nsSNPAnalyzer calculates the three types of
information from the user's input: 1) the structural environment of the SNP, including the solvent
accessibility, environmental polarity and secondary structure (Bowie et al., 1991); 2) the normalized
probability of the substitution in the multiple sequence alignment (Ng and Henikoff, 2001); and 3) the
similarity and dissimilarity between the original amino acid and mutated amino acid.

The minimum input includes a protein sequence in FASTA format and a substitution file denoting the
SNP identities to be analyzed. Substitution file format: a substitution is denoted as X#Y where X is the
original amino acid in one letter, # is the position of the substitution (starting from 1) and Y is the mutated
amino acid in one letter. Multiple substitutions should be separated by new line characters.

Identification of cis regulatory elements

PROSCAN version 1.7 Web Promoter Scan Service (http://bimas.dcrt.nih.gov/molbio/proscan/)
PROSCAN version 1.7 Web Promoter Scan Service predicts promoter regions based on homologies with

putative eukaryotic Pol II promoter sequences. The site is serviced and maintained by Dr. Dan Prestridge at
the Advanced Biosciences Computing Center, University of Minnesota.

Promoter 2.0 Prediction Server (http://www.cbs.dtu.dk/services/Promoter/)
Promoter 2.0 predicts transcription start sites of vertebrate Pol II promoters in DNA sequences. It has

been developed as a frequently updated database of simulated transcription factors that interact with
sequences in promoter regions. It builds on principles that are common to neural networks and genetic
algorithms. The site is serviced and maintained by Steen Knudsen at The Center for Biological Sequence
Analysis at the Technical University of Denmark.

TSSG
Recognition of human PolII promoter regions and transcription start sites from Softberry (http://www.

softberry.com/) — TSSG is the most accurate mammalian cis element prediction program.

Modeling nsSNP locations on protein structure

I-Mutant and FOLD-X
I-Mutant (version 2.0) (http://folding.uib.es/i-mutant/i-mutant2.0.html) is a neural network based tool

for the routine analysis of protein stability and alterations by taking into account the single-site mutations.
The FASTA sequence of protein retrieved from UniProt is used as an input to predict the mutational effect on
protein stability. I-Mutant also provides the scores for free energy alterations, calculated with the FOLD-X
energy based web server. FOLD-X is a computer algorithm for quantitative estimation of interactions
facilitating the stability of proteins. The FOLD-X tool provides the comparison betweenwild type andmutant

http://genetics.bwh.harvard.edu/pph2/
http://bimas.dcrt.nih.gov/molbio/proscan/
http://www.cbs.dtu.dk/services/Promoter/
http://www.softberry.com/
http://www.softberry.com/
http://folding.uib.es/i-mutant/i-mutant2.0.html
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models in the form of van der Waals clashes, which greatly influence the energy decomposition. Sometimes
the mutations can cause and reduce strain in the original native structure (Abagyan and Totrov, 1994;
Schymkowitz et al., 2005).

Models generated by MUSTER
MUSTER is aMUlti-Source ThreadERprogram,which considers six different sources: (1) sequence-derived

profiles; (2) secondary structures; (3) structured-derived profiles; (4) solvent accessibility; (5) torsion angles
(psi and phi angles); and (6) hydrophobic scoringmatrix. The optimized threading is foundby global dynamic
programming. MUSTER provides the Z-score and complete full lengthmodels by usingMODELLER v8.2. If the
calculated Z-score is greater than 7.5, the corresponding template is considered good otherwise designated as
bad (Wu and Zhang, 2008).

Results

The dbSNP database contains both validated and non-validated polymorphisms. In spite of this
drawback, we opted to avail the dbSNP because the allelic frequency of most of nsSNPs of TNF-α has been
recorded there and that is the most extensive SNP database (Bhagwat, 2010). It contained a total of 169
SNPs, out of which 48 were nsSNPs, 23 occurred in the mRNA 3′ UTR, 10 occurred in 5′ UTR region, 41
occurred in intronic regions and the rest were other types of SNPs as shown in Fig. 1. We selected missense
nsSNPs, 3′ UTR SNPs, and intronic SNPs for our investigation.

Deleterious nsSNPs by SIFT program

Protein sequence with mutational position and amino acid residue variants associated to 24 missense
nsSNPs were submitted as input to the SIFT server, and the results are shown in Table 1, along with the
corresponding heterozygosity and validation status description for each SNP, when available from dbSNP.

Protein sequence with mutational position and amino acid residue variants associated to nsSNPs were
submitted as input to the SIFT server, and the results are shown in Table 1. According to the classification
proposed by Ng and Henikoff 2003 and the lower the tolerance index, the higher the functional impact a
particular amino acid residue substitution is likely to have and vice versa.

Among the total nsSNPs analyzed, 2 nsSNPs were identified to be deleterious with a tolerance index
score ≤0.05. One nsSNP (rs11574936) showed a highly deleterious tolerance index score of 0.00. The
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Fig. 1. A graphical representation of distribution of nonsynonymous, 5′ UTR, 3′ UTR and intronic SNPs for TNF-α gene (based on the
dbSNP database).



Table 1
List of nsSNPs that were analyzed by SIFT.

SNP Amino acid change Protein ID Amino acid Prediction Score

rs1800620 A94T NP_000585 A Tolerated 1
T Damaging 0.02

rs3179060 H52N NP_000585 H Tolerated 1
N Tolerated 0.1

rs4645843 P84L NP_000585 P Tolerated 1
L Tolerated 0.12

rs11574936 I194N NP_000585 I Tolerated 1
N Damaging 0

rs35131721 P64L NP_000585 P Tolerated 1
L Tolerated 0.06

rs104895105 H478Y NP_000234 H Tolerated 0.56
Y Tolerated 0.09
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remaining nsSNPs (rs3179060, rs4645843, rs35131721 and rs104895105) were found to be tolerated with
tolerance index scores of ≥0.05.
Damaged nsSNPs by PolyPhen server

All the 6 nsSNPs submitted to SIFT were also submitted to the PolyPhen server. A PSIC score difference
of 1.5 and above is considered to be damaging. Two nsSNPs (rs4645843, rs1800620) were considered to be
damaging and exhibited a range of PSIC score difference between 1.503 and 2.609. SNP rs1800620 was
also found damaging by SIFT server.
nsSNPAnalyzer

nsSNPAnalyzer is a tool to predict whether a nonsynonymous single nucleotide polymorphism (nsSNP)
has a phenotypic effect. nsSNPAnalyzer also provides additional useful information about the SNP to facilitate
the interpretation of results, e.g., structural environment and multiple sequence alignment. nsSNPAnalyzer
uses information contained in the multiple sequence alignment and information contained in the three
dimensional protein structure to make predictions.

Two amino acid variants (P84L and A94T) were submitted to nsSNPAnalyzer tool along with protein
sequence of TNF-α in FASTA format. We could not find any significant result for the P84L variant. The output
of final result of nsSNPAnalyzer tool is shown in Table 2.

After analyzing the coding regions, we focused our attention on non-coding variants also. Specifically,
we analyzed the genotypic data and haplotypic information of Phase 1 of the 1000 Genomes Project.
We found 331 non-coding genetic variants. To evaluate the impact of these variants on TNF-α gene, we
performed different in silico analyses like SIFT and nsSNPAnalyzer. 36 non-coding SNPs were found to be
affected and among them 9 SNPs were observed deleterious by SIFT. When we enroll the same non-coding
SNPs in nsSNPAnalyzer, 3 SNPs were found to be affected (Renato et al., 2014). Among these SNPs, I194N
was found to be of disease type.
Table 2
Output for nsSNPAnalyzer.

Amino acid variant Phenotype Environment Area buried Frac polar Secondary structure

A94T Neutral P1S 0.303 0.115 S

Amino acid variant was found to be neutral.



Table 3
Protein structural stability based on standard free energy change.

Mutation Position WT New pH Temperature Stability DDG(kcal/mol)

84: P–L 84 P L 7.0 25 °C Decrease −0.29
94: A–T 94 A T 7.0 25 °C Decrease −1.02

Where, “WT” is the amino acid in native protein, “New” is mutant amino acid and DDG is the stability (DDG b 0: decrease stability,
DDG N 0: increase stability).
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Analysis of cis regulatory elements

PROSCAN: version 1.7
Cis element region was predicted on forward strand at 197 bp to 447 bp.

Softberry TSSG
1 promoter is predicted.
Promoter position: 469 LDF.

Promoter 2.0 Prediction Server
T
T

T

Position (bp)
able 4
otal energy of native and mutant structures after energy

Amino acid variants Total energy a

Native −6807.950
P84L −8366.239
A94T −8601.871

otal energy and electrostatic constraint were found to b
Score
minimization.

fter minimization (kJ/mol)

e negative.
Likelihood
700
 1.077
 Highly likely prediction

1500
 0.665
 Marginal prediction

3200
 0.577
 Marginal prediction
Structural analysis of mutant structures

Out of 6 nsSNPs predicted to be deleterious by SIFT or PolyPhen, 2 (rs4645843, rs1800620) were
mapped to the native structure by I mutant 2.0 server. Then, energy minimizations were performed by
GROMACS for the native structure and the mutant modeled structures (Table 4).

Prediction of protein structural stability
I-Mutant is a neural network based routine tool used in the analysis of protein stability alterations by

considering the single-site mutation. I-Mutant also provides the scores for free energy alterations,
calculated with the FOLD-X energy based web server. By assimilating the FOLD-X estimations with those
of I-Mutant, the 93% precision can achieved. The two mutations (84, P → L and 94, A → T) of TNF α gene
have been selected on the basis of prediction scores of PolyPhen. These variants were given to I-Mutant
web server to predict the DDG stability and reliability index (RI) upon mutation (Table 3).

Modeling of mutant structure
Information about mapping the deleterious nsSNPs into protein structure was obtained from dbSNP.

The available structure for TNF alpha gene has a PDB id 4G3Y. Two nsSNPs were found to be the highest
Electrostatic constraint

−4973.34
−5316.41
−5441.50



ig. 2. (a) Native structure showing phenyl alanine and arginine at positions 84 and 94 respectively. (b) Mutant modeled structure showing
rosine residue at position 94; deep viewof superimposed structure ofwild andmutant residue at position 94. (c)Mutantmodeled structure
howing leucine residue at position 84; deep view of superimposed structure of wild and mutant residue at position 84.
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deleterious nature among all the nsSNPs. Hence we selected these nsSNPs for structural analysis. The
mutational position and amino acid variant associated with this nsSNP is P → L at the residue position 84
and at the residue 94 A → T were mapped by ANOLEA to get modeled structure as shown in Fig. 2.

MUSTER
If Z-score is greater than 7.5, the corresponding template is considered good otherwise designated as bad.

It was found that for all the alignments of TNF-α Z score was N7.5, which indicates that all the templates can
be considered as good type (Table 5).

Discussion

Tumor necrosis factor (TNF) is a cytokine which plays an important role in many diseases like diabetes,
arthritis, and multiple myeloma. TNF-α is pivotal in host defense against infections and has a major role in
autoimmune diseases as well. The level of TNF-α varies from individual to individual and is genetically
determined. The gene for TNF-α is located within the major histocompatibility complex (MHC) region on
chromosome 6p21.3which is a highly polymorphic region (Wilson et al., 1997a, 1997b). It has been observed
that TNF enhancer polymorphism is implicated in several diseases, and TNF rs1800629 and rs361525 SNPs are
the most important in human disease susceptibility as these might influence the transcription of TNF gene. It
has been found that TNF enhancer polymorphism influences the serum level of TNF in different human
diseases and thus affects the susceptibility to diseases. The presence of DNA sequence variation in TNF gene
causes the modification of transcriptional regulation and is thus responsible for the association of
susceptibility/resistance with human diseases (Qidwai and Khan, 2011).

Many human SNPs that are now recognized (in excess of 4-million unique SNPs) (http://www.ncbi.nlm.
nih.gov/SNP/index.html), along with the genome sequence and other proteome information, provide an
opportunity for a much broader understanding of the association between genotype and phenotype.
Therefore, an effort was made to identify SNPs that can modify the structure, function and expression of the
TNF-α gene. There were 48 nsSNPs submitted to the SIFT as well as to the PolyPhen server, out of these 48
nsSNPs, 6 nsSNPswere found to be damaging by SIFT and 2 nsSNPswere found to be deleterious by PolyPhen.
Associations between polymorphism (rs1799964, rs1799724, rs1800630) and immune-mediated diseases
such as rheumatoid arthritis and Crohn's disease (CD) have been reported. It has been found that in patients
with diabetic nephropathy, TNF variant like rs1800629wasmore frequent than in non-diabetic patients with
chronic renal failure (Wilson et al., 1997a, 1997b). Therewas not any study reportedwhich shows association
between damaging nsSNPs (rs4645843 and rs1800620) and any disease. Therefore the validation of these
nsSNPs in any disease is required to complement this finding. Similar approach has been used to investigate
the effect of nsSNP of BARD1gene and BRCA1 gene (Ali et al., 2012; Rajasekaran et al., 2007). The combination
of the analysis of human genetic variations of the TNF-α gene, together with the computational method to
predict their possible functional impact, can facilitate the analysis of TNF-α gene variant and their effects on
protein functional characteristics. Specifically, this approach allows us to estimate the probability of an amino
acid change to be deleterious for TNF-α function (Rosanna et al., 2014). In conclusion, the presence of a
non-complete concordance among clinical evidences, experimental investigations, and in silico analyses
Table 5
Z score value of different templates analyzed by MUSTER.

Rank Template Align_length Coverage Z score Seq_id Type

1 3it8C 152 0.652 14.246 0.993 Good
2 1tnrA 140 0.6 12.032 0.35 Good
3 4msvA 137 0.587 11.587 0.299 Good
4 2re9A 146 0.626 11.445 0.329 Good
5 3ugnA 140 0.6 11.173 0.307 Good
6 1i9rA 140 0.6 10.783 0.264 Good
7 1s55A 141 0.605 10.496 0.227 Good
8 1d4vB 142 0.609 9.9 0.232 Good
9 4mxwY 127 0.545 9.494 0.291 Good

Different templates were found based on alignment score.

http://www.ncbi.nlm.nih.gov/SNP/index.html
http://www.ncbi.nlm.nih.gov/SNP/index.html
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strongly suggested that improvements are necessary in all thesefields, in order to enhance our understanding
of TNF-α nsSNPs and their role in the pathogenesis of the TNF-α related disease.

Molecular dynamics (MD) simulation was performed to study the explicit solvent behavior of native and
mutant structures to examine the difference in dynamics and stability of native and fetal mutations. We
compared RMSD value and total energy values (kcal/mol) of native structure andmutatedmodeled structure
for TNF-α gene variant. Two variants P84L and A84T were found to have decreased the stability of protein
structure. This may be due to mutant residue which is bigger than the wild type and cannot fit within the
available space. Due to carrying the less rigid behavior, the mutant residue can possibly disturb the original
core structure of native protein. The two identified TNF variants i.e. P84L and A84T could de-regulate the
inflammatory signaling cascade, thus may participate in human inflammatory diseases. Hence, P84L and
A84T variants constitute a unique resource of genetic markers that may considerably increase the power of
TNF-α gene mutation-screening in disease epidemiological studies.
Conclusion

Functional and structural impact of SNPs in the TNF-αwas found out gene using computational prediction
tools. Out of a total of 169 SNPs in the TNF-α gene, 48 were nsSNPs, 23 occurred in the mRNA 3′ UTR, 10
occurred in 5′ UTR region, 41 occurred in intronic regions and the rest were other types of SNPs. Out of 48
missense nsSNPs, 2 were found to be deleterious by SIFT, and 2 were found to be damaging by the PolyPhen
tool. Structural analysis results showed that the amino acid residue substitutions which had the greatest
impact on the stability of the TNF-α protein were mutations P84L (rs4645843) and A94T (rs1800620). Based
on our results, we conclude that these SNPs should be considered important candidates in causing diseases
related to TNF-α gene malfunction.
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