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Abstract: While monolithic giant earth observation satellites still have obvious advantages in regular-
ity and accuracy, distributed satellite systems are providing increased flexibility, enhanced robustness,
and improved responsiveness to structural and environmental changes. Due to increased system
size and more complex applications, traditional centralized methods have difficulty in integrated
management and rapid response needs of distributed systems. Aiming to efficient missions schedul-
ing in distributed earth observation satellite systems, this paper addresses the problem through a
networked game model based on a game-negotiation mechanism. In this model, each satellite is
viewed as a “rational” player who continuously updates its own “action” through cooperation with
neighbors until a Nash Equilibria is reached. To handle static and dynamic scheduling problems while
cooperating with a distributed mission scheduling algorithm, we present an adaptive particle swarm
optimization algorithm and adaptive tabu-search algorithm, respectively. Experimental results show
that the proposed method can flexibly handle situations of different scales in static scheduling, and
the performance of the algorithm will not decrease significantly as the problem scale increases;
dynamic scheduling can be well accomplished with high observation payoff while maintaining the
stability of the initial plan, which demonstrates the advantages of the proposed methods.

Keywords: EO satellite; distributed satellite system; distributed mission scheduling

1. Introduction

Driven by the need of more accurate, reliable, and frequent data to study earth
science related issues, space engineering industry [1–4] is facing an architectural change of
paradigm. Distributed Satellite Systems (DSS) encompassing several interacting spacecraft
are leading the way in applications where monolithic satellites have become obsolete in
terms of risk, cost, or even performance [5]. One typical instance is distributed earth
observation satellites (DEOS), which involves fleet of satellites to detect the Earth’s surface
and lower atmosphere to obtain information [6]. Though with more satisfied revisit
times, coverage of larger areas and higher resolution, DEOS constellations are facing
new challenges, the core of which is how to coordinate the mission plans for numbers of
satellites that are generally heterogeneous [7].

During the past decades, researchers have carried out extensive research on central-
ized methodologies. Satellites mission planning are usually designed to be executed on
the ground with the premise that all the observation requests and resource information
are updated in a centralized way. Researchers use methods such as ant colony algo-
rithm [8–10], simulated annealing algorithm [11,12], genetic algorithm [13–15], tabu search
algorithm [16–18], etc. to handle the scheduling problem. Although optimal solutions can
be obtained under certain circumstances, it is not practical to apply the methods above
directly in distributed satellite mission planning due to the following drawbacks. Firstly,
computation and memory cost could be extremely expensive as the number of satellites and
observation requests increase. Time consumption in one planning period is so high that it
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cannot satisfy the need for rapid response. Secondly, there is always a time delay between
satellites and ground stations; when emergencies (resource malfunctioning, observation
failure, etc.) occur onboard, it will take time for mission planning center (MPC) to be
informed, which leads to missed observation opportunities. Moreover, these methods
always have difficulties in handling situations where observation requests are generated
online. Whenever changes occur, the planning process should be resumed completely,
which may create conflict with the executed missions in progress and lead to waste of time
and resources. Finally, this kind of architecture does not fit the trend of decentralized way
of system management and control, and malfunction in the central point may lead to the
whole system’s failure. Consequently, new methods using a self-organized mechanism
to make DSS work in a more resilient, flexible, and adaptable way are in urgent need, by
which a system-level optimal can be reached when agents in the system cooperate with
each other based on local and exchange information.

To address the issue above, modeling DSS as multi-agent systems (MAS) is a common
trend in many experimental and academic works. The European Space Agency [19]
(ESA) has implemented multi-agent system (MAS) technologies in Earth Observation (EO)
constellations. Unlike traditional heuristic methods that are well-suited and designed for
a fixed number of missions and satellites, multi-agent methods allow for an adaptability
and scalability that is not comparable [20]. Other similar work [21–23] shows how MAS-
related applications can improve system performance and provide negotiation-based
self-organizing mechanisms as means to enhance the autonomy of a system. We can find
that, after implementing the MAS framework, the definitions of coordination rules or
mechanisms can directly determine the quality of DSS. Luckily, game theory [24–26], which
focuses on cooperation and conflict between rational players, can be perfectly utilized in
this kind of problem, and we can see considerable applications of game theory, including
unmanned aerial vehicle (UAV), sensor web, electricity management, job scheduling, etc.
For example, study [27] introduces game theory based flight control algorithms run by
each autonomous UAV to satisfy the need of speedy and dynamic adjustments to swarm
operations. Study [28] addresses the cooperation problem in underwater acoustic sensor
network (UASN) using game theory-based clustering scheme to balance network energy
consumption. Study [29] presents a real-time implementation of a multi-agent-based
game theory model for microgrid market operations to monitor, control, and perform
the reverse auction process of distributed energy resources (DER). In addition, as more
complex systems recently emerged in the real world, networked game theory also gained
prominence and showed great potential for application in socio-ecological systems [30],
networked systems [31], project management [32], etc., but surprisingly, relatively little
study has focused on implementing game theory in DEOS.

Moreover, dynamic scheduling which focuses on quick response to emergency obser-
vation requests, is also a practical issue for EOS applications. Perberton et al. [33] listed
four key dynamic elements that can make an impact on change of satellite scheduling
plan, namely, mission observation opportunity changes, resource changes, new mission
insertion, and scheduling parameter changes, but they did not propose any related models
or algorithms. Other related studies seem to reveal a major concern regarding this problem,
which is how to consider the adjustability brought by those dynamic elements to the initial
plan. Some researchers [34,35] have implemented a complete reprogramming algorithm
to solve this problem, but the new plan generated is greatly different from the original
one, which may create conflict with the executed missions in progress and lead to waste of
time and resources. Cui [16] proposed a multi-satellite dynamic mission scheduling model
and used a dynamic scheduling algorithm based on mission priority. When a new mission
arrives, this approach will respectively conduct insert, reallocation, and replacement oper-
ations to reschedule the plan according to mission priority. Other similar works [36–38]
propose some mechanisms or strategies to solve the dynamic scheduling problem; overall,
these methods reduce the complexity of the dynamic adjustment and maintain the stability
of the initial scheduling plan, but the efficiency and scalability can be further improved.
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The overall goal of this paper is to design a distributed mission scheduling architecture
that can meet the mission-level scheduling needs of heterogeneous multi-satellite earth
observation system in both static and dynamic environments. Specifically, we see each
satellite as a rational player and convert the satellite mission scheduling into a cooperative
game. Aiming at finding a near global optimal solution in a decentralized way, this paper
presents a distributed mission scheduling model, which guarantees convergence to a Nash
equilibrium. Moreover, we propose a distributed mission scheduling algorithm along with
two improved optimization algorithms for satellite mission scheduling in both static and
dynamic environments. Finally, case studies are presented to demonstrate the effectiveness
of the proposed methods.

2. DEOS Mission Scheduling Model
2.1. Problem Description

The purpose of DEOS mission scheduling is to allocate satellite resources to observa-
tion requests to maximize observing revenue while minimizing the resource consumption.
Satellite earth observation activities are affected by satellite orbits, payload parameters,
platform maneuvering, and other factors. A satellite’s access to the area has periodic
characteristics, and only a limited area can be observed at the same time. When the num-
ber of satellites and the demands for user observations increase, multi-satellite mission
scheduling will turn into a complex combination optimization problem. In order to utilize
satellite resources adequately and efficiently, a satellite mission scheduling system must
take both resources and user needs into cautious consideration beforehand and output
a reasonable scheduling plan without conflicts. For future reference, main notations are
defined in Table 1.

Table 1. Parameter and label definitions.

Notation Definition Notation Definition

S S = {s1, s2, . . . , sn, . . . }, where S represents the set of
satellites, n represents the number of satellites. Payl

Payl = {Payl1, Payl2 . . . Payli, . . . }, where Payl
represents set of payloads, i corresponding satellite

serial number.

Duri
j Duri

j represents the imaging duration time required
when the i-th satellite executes the j–th task. Prei

j
Prei

j represents the payload preparation time
required to switch from last task when the i-th

satellite executes the j–th task.

Pow
Pow = {pow1, pow2 . . . powi, . . . }, where Pow

represents the energy set of the satellite, i represents
the corresponding satellite serial number.

Pi
j

Pi
j represents the energy consumed whenthe i-th

satellite executes the j–th task, Pi is the total energy
consumption of the i-th satellite.

Sto
Sto = {sto1, sto2 . . . stoi, . . . }, where Sto represents

the storage set of the satellite, i represents the
corresponding satellite serial number.

Di
j Di

j represents the storage consumed whenthe i-th
satellite executes the j–th task.

SA

SA = {sa1
1, sa1

2 . . . sai
j, . . . }, where SA represents

the slew angle set of the satellite, sai
j represents the

slew angle when the i-th satellite executes the j–th
task, sai represents the maximum slew angle of the

i-th satellite.

Pti
Pti represents the energy consumption per unit time

of the i-th satellite during task execution.

Sasi
Sasi represents the slew angle change per unit time

of the i-th satellite during task switch. Psi
Psi represents the energy consumption per unit time

of the i-th satellite during task switch.

W

W = {w1, w2 . . . wk, . . . }, where W represents
observation windows set, k represents the number of
the windows, wk = [wbtk, wetk, wdtk], wk represents
the k-th time window, wbtk represents the start time,

wetk represents the end time, wdtk represents
the duration.

St

St = {st1, st2 . . . stk, . . . }, where St represents the
time information set of satellites execution, m

represents the number of tasks, sti
j = [sbti

j,seti
j],

where stt
j represents the time information of the i-th

satellite executing the j–th task, sbti
j represents the

execution start time after schedule, seti
j represents

the end time.
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Table 1. Cont.

Notation Definition Notation Definition

T T = {t1, t2 . . . tm, . . . }, where T represents the set of
targets, m represents the serial number of targets. Req

Req = {req1, req2 . . . reqj, . . . }, where Req represents
the set of observation type requests, j represents the

corresponding target serial number.

Num

Num = {num1, num2 . . . numi, . . . }, where Num
represents the number of tasks that are executed by
the satellite, i represents the corresponding satellite

serial number.

Prio
Prio = {prio1, prio2 . . . priom, . . . }, where Prio

represents the set of targets priority, m represents the
serial number of targets.

Sun Sun(l) represents the minimum sun elevation angle
in l window period. maxP maxP is the initial power of a satellite.

TR
TR = {tr1, tr2 . . . trm, . . . }, where TR represents the
set of targets’ resolution requirement, m represents

the serial number of targets.
SR

SR = {sr1, sr2 . . . srn, . . . }, where SR represents the
set of satellites’ resolution, n represents the serial

number of targets.

X

Xi
j represents the decision variables of satellites, j

represents corresponding target serial number, i
represents corresponding satellite serial number.

Value 1 denotes that target j has been observed by
the i-th satellite, value 0 denotes that the target has

not been scheduled.

SunAng SunAngi represents the minimum sun elevation
angle of the i-th satellite carrying an optical payload.

Considering the actual DEOS system, this paper makes the following reasonable
simplifications and assumptions for the mission scheduling process:

(1) The observation task involved in this paper refers to the observation of point targets
on the ground by satellites using different types of payloads, and a target only needs
to be observed once.

(2) A single satellite carries only one payload. This paper considers two types of payloads,
visible light and synthetic aperture radar (SAR). The satellite only executes one
mission at one time. Once the mission starts, no interruption is considered.

(3) Each satellite has computing and processing capabilities, and there is a real-time
communication link between the satellites, which can meet the needs of mutual
communication and information transmission at any time.

(4) The situation of satellite orbit maneuver is not considered.

2.2. Scheduling Problem Modeling
2.2.1. Model Constrains

On the basis of the above symbolic parameters, the constraints considered in this
paper include:

(1) Visible window constraints. The satellite payload must be visible to target, and the
window duration must not be less than the mission observation time.

∀i ∈ {1, . . . , n} , j ∈ {1, . . . , m}, sti
j ∈ St, ∃wk ∈W

sbti
j ≥ wbtk, seti

j ≤ wetk, Duri
j ≤ wdtk (1)

(2) Slew angle constraints. During task switch, the slew angle cannot exceed the maxi-
mum slew angle of satellite.

∀i ∈ {1, . . . , n} , j ∈ {1, . . . , m}
sai

j ≤ sai
(2)

(3) Task preparation time constraints. The interval between two tasks (the time interval
from the end of the previous task to the beginning of the next task) must not be less
than the payload preparation time.
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∀i ∈ {1, . . . , n} , j ∈ {1, . . . , m}, sti
j, sti

j+1 ∈ St

sbti
j+1 − seti

j ≥ Prei
j+1

Prei
j+1 = (sai

j+1 − sai
j)/Sasi

(3)

(4) Energy constraints. The accumulation of energy consumed by a single satellite to
execute tasks and switch tasks cannot exceed the upper limit of the energy storage of
the satellite.

∀i ∈ {1, . . . , n} , j ∈ {1, . . . , m}
numi
∑

j=1
Pi

j ≤ powi

Pi
j = Duri

j × Pti + Prei
j × Psi

(4)

(5) Storage capacity constraints. The accumulation of storage consumed by a single satel-
lite to execute tasks cannot exceed the upper limit of the storage capacity of satellite.

∀i ∈ {1, . . . , n} , j ∈ {1, . . . , m}
numi
∑

j=1
Di

j ≤ stoi
(5)

(6) Lighting constraints. This paper mainly considers two types of payloads: visible light
camera and synthetic aperture radar. SAR can be observed in the full orbital period,
and visible light camera can only observe within a certain sun elevation angle. The
sun elevation angle needs to meet the following formula.

∀l ∈ {1, . . . , k} , i ∈ {1, . . . , n}
Sun(l) ≥ SunAngi

(6)

(7) Payload type constraints. The target must be observed by the payload of the
required type.

∀i ∈ {1, . . . , n} , j ∈ {1, . . . , m}, sti
j ∈ St

Payli = Reqj
(7)

(8) Resolution constraints. The resolution of satellite observing the target should not be
lower than the users’ requirement.

∀i ∈ {1, . . . , n} , j ∈ {1, . . . , m}, sti
j ∈ St

sri ≤ trj
(8)

2.2.2. Scheduling Solution

The purpose of scheduling is to find an optimal execution plan for satellites that
can maximize the payoff of observing targets. From the scheduling plan, the tasks of a
satellite can be arranged in a timeline, and each satellite will know exactly the execution
and termination time of observation, as shown in Figure 1. It is noteworthy that all the
scheduling plan needs to satisfy the model constraints in Section 2.2.1 to make it executable.

During a scheduling period, observation opportunities are strictly limited by obser-
vation windows. We naturally number the observation windows and use metaheuristic
algorithms to find optimal combinations so as to deconflict and output an executable
scheduling plan. In this paper, we define a 6-tuple to record an observation chance to
one target of a certain satellite, namely, [Window ID, Target ID, Satellite ID, Observation
Start Time, Observation End Time, Observation Slew Angle]. The scheduling solution
consists of numbers of (the length of solution is the number of targets) these tuples, and
detailed execution information of the scheduling plan can be indexed from the observation
windows set.
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Figure 1. Scheduling solution.

2.3. Optimization Objective of Satellite Mission Scheduling

Satellite mission scheduling is a combined optimization problem with multiple con-
straints and objectives. Through scheduling, we want to obtain a solution that not only
prioritizes observing high-value targets (high priority) and a high task completion rate
but also ensures less energy consumption among satellites. Based on this consideration,
we set following sub-goals and use a linear weighted sum method to set the optimization
objective for solving this model:

(1) Sub-objective 1: Maximize the priority of the target observations.

y1 = a×Max(
n

∑
i=1

numi

∑
j=1

X j
i × prioj)/

m

∑
j=1

prioj (9)

(2) Sub-objective 2: Maximize the number of target observations.

y2 = b×Max
n

∑
i=1

numi

∑
j=1

X j
i /m (10)

(3) Sub-objective 3: Balance resource usage among satellites.

y3 = c×Min
n

∑
i=1

Piy3 = c·Min
n

∑
i=1

Pi (11)

On the basis of the above three sub-goals, the total optimization goal of this paper is
obtained by a linear weighted sum method.

y = α× y1 + β× y2 + γ× y3 (12)

Due to different measurements of priority, task execution number, and energy con-
sumption, it cannot be directly evaluated at the same time. This paper introduces the
dimensional parameters a, b, and c to unify each index, and the values are a = 1/4, b = 1,
and c = 1/5, in order to ensure that the benefit of observing a target must be higher than
the loss of energy consumption. In equation (12), α, β, and γ are weight indicators, and the
sum of them is 1. The value of the weight determines the importance of the sub-objective
in the overall optimization goal. This paper takes the priority of the task as the key factor,
and we set α = 0.7, β = 0.2, and γ = 0.1.

3. Distributed Mission Scheduling Model
3.1. Game Model of DEOS

To achieve efficient system coordination among multiple satellites, this paper sees
the DEOS as a multi-agent system and converts multi-satellite mission planning into a
game problem G = (N, {Ai}, {Ui}), where N = S is the set of players (agents) in a game.
Every satellite si∈S in this game is seen as a ‘rational player’ (agent), whose rationality is
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embodied in that it will continuously adjust its own action strategy ai in response to the
action strategy adopted by opponents, so as to maximize its own payoff Ui. Action ai is the
scheduling plan that is only executed by the i-th satellite, and it is a subset of the overall
scheduling solution defined in Section 2.2.2. As shown in Figure 1, the sub-solution for
Sat1 represents the current action adopted by the 1st satellite in that scenario. In addition,
A = ∏i∈N Ai represents the set of joint actions taken by the entire system in one round of
the game. For simplicity of expression, let a−i = (a1, . . . , ai−1, ai+1, . . . , an) be the action
profile other than si. To terminate iterations of gaming, we introduce Nash Equilibrium to
our model.

Definition 1. (Nash Equilibrium [39]) For a game problem G = (N, {Ai}, {Ui}), for any player
i∈N, we call a∗ a Nash equilibrium, when it satisfies:

Ui(a∗i , a∗−i) = maxai∈Ai Ui(ai, a∗−i) (13)

In iterations of reaching Nash equilibrium of a multi-satellite game, each satellite
modifies its own action without directly interfering with other satellites. Due to the
optimization objective setting in Section 2.3, each satellite will try to ‘capture’ as many
unscheduled targets as possible to gain a higher individual payoff and meanwhile pay close
attention to targets that have been scheduled by others to avoid repeated observation. The
gaming process will continue to run until the system reaches a balance when all individuals
are unable to obtain higher payoffs by changing their own actions. It is noteworthy that
after each round of the game, each satellite must inform other satellites of its action to
maintain the consistency of cognition. In Section 2.1, we assume that each satellite with the
same payload can interact in real time through inter-satellite links, which provides a basis
for the future optimization based on Nash equilibrium.

3.2. DMSA Based on Nash Equilibrium

For the generalization of the problem, in distributed mission scheduling algorithm
(DMSA, as shown in Algorithm 1), we set n finite memory tables of length L that record the
historical actions adopted by each player si and denote them by Memi

t = (memi
1; memi

2; . . . ,
memi

L) and (i = 1,2, . . . ,n), respectively, whose initialization is defined to be empty. When
optimization begins, every player will be randomly allocated several targets and generate
its own action space Ai. In each round of gaming, all the players exchange information,
and each player selects its action; ai∈Ai is by the adaptive particle swarm optimization
algorithm (APSOA) in static scheduling or by the adaptive tabu-search algorithm (ATSA)
in dynamic scheduling, both of which will execute constrains check and deconflict process
and thus calculate current payoff Ui(t) in (12). As Equations defined in (9)–(11) are the
overall optimization sub-objectives of scheduling, when calculating current payoff Ui(t) of
each satellite in (12), the variable n is set as (1) and the best response BRi

t as

BRi
t = argmaxat

i∈Ai
Ui(at

i , a∗−i) (14)

Then, each individual will compare current BRi
t with last BRi

t−1 (or ai
t−1) recorded in

the memory table and follow the greedy strategy to select the one with higher payoff as
current action ai

t. After recording ai
t into the bottom of memory table as newest memi, the

DMSA will check whether the number of elements in the current memory table is greater
than length L, and if so, si will delete the oldest element (the memi

1) to obtain an updated
fixed-length Memi

t and then reallocate those allocated but unscheduled targets to neighbors
(neighboring satellites refer to satellites with the same payload, and we assume they can
send information to each other directly at any time). The gaming will continue to process
until recorded actions of all players’ memory tables stay consistent for L rounds, which
means all satellites are unable to obtain higher returns through their own plan adjustments.
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Algorithm 1 DMSA

Input: Satellites Set S, Targets Set T, memory length L, Observation Windows Set W.
Output: Overall Scheduling Plan
Procedure:
1.for each round of Game, g = 1,2,3 . . . , do
2. for each satellite si∈S, simultaneously do
3. Receive information from neighbors;
4. Calculate and select Ui, BRi

t by APSOA/ATSA;
5. Find received targets that haven’t been scheduled;
6. Send unscheduled targets to neighbors;
7. Update Memi

t of each si;
8. end for
9.end for

3.3. APSOA for Single Satellite Scheduling
3.3.1. Solution Coding Scheme

Coding scheme is directly related to the design of model and efficiency of algorithm.
In the data preprocessing stage, observation windows defined in Section 2.2.2 are calculated
and numbered, and each window can be uniquely indexed by a window ID. As observation
can only happen during the window time period, an optimal scheduling solution is actually
a combination of observation windows that not only satisfy the model constrains but
maximize the observation payoff. In this paper, the solution coding is organized in a
chromosome manner with gene fragments on it (the number of gene fragments is equal to
the total number of targets). In each gene, there is a non-negative decimal number which
corresponds to the observation window ID (0 indicates that the current target has not
been scheduled for observation). For satellites with the same payload type, they share
the same sub-solution coding (the length of sub-solution is equal to the number of targets
with the required observation type), the final overall solution will be the accumulation of
sub-solutions with same payload type, and connections of sub-solutions with different
payload types, as shown in Figure 2.

Figure 2. Solution coding scheme.

3.3.2. APSOA Procedure

In static scheduling when all observation requests are proposed beforehand, the opti-
mization results in each round of the game will have an impact on the overall scheduling
plan of the system. In order to improve the solving efficiency and final payoff of the
distributed optimization algorithm, each satellite needs to output a satisfactory sub-plan in
a relatively short time. This paper designs an APSOA, whose inertia weight parameter λ
will be adaptively adjusted as the iterations evolve, so that the solving speed will gradually
increase, and convergence will occur as soon as possible.

λ = λmax −
(λmax − λmin) · t

Tmax
(15)

where Tmax is the maximum iteration number, t is the current iteration number, λmin is the
minimum inertia weight parameter, and λmax is the maximum inertia weight parameter.
The pseudo code of the APSOA is shown in Appendix A.
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3.3.3. Static Scheduling Evaluation

The evaluation methods for static scheduling mainly include three indicators: the first
one is the overall payoff of the scheduling plan (Payoff ), and the second one is the mission
completion rate (CR). These two indicators mainly reflect the profit of the satellite mission
execution plan. The third one is the running time (RT), which mainly reflects the solving
speed of the optimization algorithm.

3.4. ATSA for Dynamic Scheduling

Dynamic scheduling occurs when emergency missions arrive or change of initial
plan is required. This section presents an ATSA to solve this problem. Before introducing
the algorithm, we firstly analyze what will happen to the solution when an emergency
comes up.

3.4.1. Impact of Emergency on Initial Solution
New Mission Arrival

Newly arrived missions are the most frequent cases of emergency conditions. When
emergency happens, such as natural disaster monitoring, public health incidents, or when
new targets with high priority appear, new targets are added to observation requests. It
is unpractical to put newly arrived missions into a new target set and reschedule them
as regular circumstances because the scheduling plan with regards to new targets might
conflict with the initial plan in the same execution period. Therefore, new targets should
be considered as a whole with old ones; in other words, new genes representing newly
arrived targets will be numbered subsequently and inserted at the bottom of the initial
solution; the solution structure update is shown in Figure 3.

Figure 3. Emergency targets inserted into the initial solution.

Change of Scheduling Plan

Sometimes, when some targets cannot be observed as required due to weather con-
dition or satellite resources malfunction, these targets should be rescheduled without
disturbing the undergoing plan of satellites that are properly functioning. In other words,
most targets can be normally executed as initially planned, while those failed missions
should update their solution state (replace the window ID with 0) and reschedule, as shown
in Figure 4.

Figure 4. State update of scheduling plan.

3.4.2. ATSA Procedure

Above all, after emergency happens, we can see that the new solution updates its
structure and state based on the initial one. In dynamical scheduling, remaining satellite
resources will be allocated to unscheduled tasks. Because resources between different
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satellites are independent of each other, the impact of the solution improvement is also
limited to those satellites assigned new targets. Based on the above factors, we do not
perform an entirely new round of search and optimization for every gene in ATSA but
only focus on those targets that have not been scheduled. On that basis, we design a
method which will call TS multiple times and adaptively update its searching strategy and
solution structure (such as iteration number, neighborhood solution structure, etc.) during
the optimization process. This method can be continuously trimming the search space to
improve the computational efficiency as well as the quality of the solution at an acceptable
cost. The pseudo code of the ATSA is shown in Appendix B.

3.4.3. Dynamic Scheduling Evaluation

The goal of dynamic scheduling is to complete emergency tasks with high revenue
while maintaining the integrity of initial plan. Therefore, several indicators are defined to
evaluate the performance of algorithm, including the completion rate (CR), priority execu-
tion rate (PR), initial plan change rate due to newly arrived targets (IR), and emergency
execution rate (ER). The evaluation function is defined as follows:

f = CR+PR+(1−IR)+ER
4

CR = n2/n′

PR =
n1
∑

i=1
pi/

n′

∑
i=1

pi

IR = d3/n1

ER = d4/(d1 + d2)

(16)

where n′ is the total number of targets, n1 is the number of targets executed in the initial
plan, n2 is the number of targets observed after dynamic scheduling, d1 is the number of
newly arrived targets, d2 is the number of targets in the initial plan that fail to execute due
to emergency, d3 is the number of targets of the initial plan that change due to emergency,
and d4 is the total number of emergency targets that execute after dynamic scheduling.

3.5. Convergence Analysis for DMSA

In this section, we present theoretical analysis on convergence for DMSA. The analysis
is conducted in two steps. Firstly, the existence of Nash Equilibrium should be demon-
strated. It is well known that every game with a finite number of players and action
profiles has at least one Nash equilibrium [39]. In a game model of DEOS, it is clear that
the numbers of satellites and scheduling plans are finite, so a Nash Equilibrium must exist.

Secondly, we should prove that DMSA will stably converge to an optimal solution
from any initial plan. According to the distributed optimization strategy proposed in this
paper, when the inter-satellite communication is unblocked, a consensus can be reached
among different satellites, and the optimization results of satellites in each round of the
game are independent of each other. Therefore, after t rounds of gaming, the payoff F of
the entire system is

F =
N

∑
i=1

Ut
i (ai) (17)

From the perspective of formula (17) alone, it seems that it only needs to ensure that
each individual’s payoff Ui

t is the current optimal to guarantee the overall global optimal
performance. In fact, due to the “short-sighted” characteristics, each player can only obtain
a local optimal solution based on the current partial information, while the accumulation
of the local optimal does not necessarily represent the system-level optimal. Therefore, this
article adopts the greedy rule, so that after rounds of gaming, each player will compare
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its Ui
t with previous action ai

t−1′s payoff and always select one with larger payoff as new
action ai

t. Consequently, the payoff of each player must be “non-decreasing”, namely,

∀i ∈ {1, . . . , n}, ∀t

Ut
i (at

i) ≥ Ut−1
i (at−1

i )
(18)

From the definition of scheduling payoff, it can be seen that the total payoff in a
scenario is upper bounded. Along with the existence of Nash equilibrium, through each
iteration of “non-decreasing” execution, as long as the number of iterations can be guar-
anteed, the distributed optimization will be stabilized. In other words, ‘stability’ means
that all the individual payoffs will remain unchanged for the remaining rounds of gaming,
therefore leading to a system-level balance. This is also the inspiration for setting a memory
table for each satellite; the length of L should be set based on the overall requirements of
scheduling: when L is small, coordination can be reached with shorter computation time,
but scheduling effects rely heavily on the initial targets allocation; when L is large, a more
satisfactory solution can be obtained with higher computation cost; when L is infinitely
large, a Nash Equilibrium must be reached. To conclude, by setting a proper L in real world
application, DMSA can be balanced between efficiency and effectiveness, the scheduling
solution can stably converge to a local optimum, or even the global optimum.

4. Results and Discussion

To evaluate the effectiveness of the proposed methods, this section conducts several
simulation experiments. We set up test scenarios in STK software by adding different
numbers and types of EOSs, payloads, and targets, as shown in Figure 5. Mission re-
quests (including targets geographical locations, observation types, priority, resolution
requirement, etc.) are generated worldwide by a random uniform distribution. During
the simulation period (from 8 March 2021 16:00 to 9 March 2021 16:00, universal time
coordinated), the observation satellites composed of a Walker constellation in a 600 km
height sun-synchronous orbit (the inter plane true anomaly increment is 2◦, the RAAN
increment is 4.5◦) are automatically generated. We can modify the scale of scenarios by
adjusting the number of satellites in an orbital plane and orbital plane number to adjust
the size of the constellation.

4.1. Case Study for DMSA in Static Scheduling
4.1.1. Scenario Setting

The experimental cases involve several scenarios that include different numbers of
satellites, different types of observations, and different distributions of observation targets.
The number of mission targets ranges from 30 to 200. The target positions are randomly
generated within the range of latitude−60~60◦, and the observation type and priority (1~5)
are randomly generated; the number of satellites ranges from 3 to 16. The type of satellites
payloads in the constellation are randomly generated. The payload setting parameters are
shown in Table 2.

Table 2. Payload parameters.

Parameters Optical Payload Parameters SAR Payload

SensorType SimpleConic MinElevationAngle 15.2◦

FOV 5◦ MaxElevationAngle 51.9◦

SlewRange −40~40◦ ForwardExclusionAngle 5.7◦

Lighting SunAng > 15◦ AftExclusionAngle 8.6◦
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Figure 5. Test scenario example.

4.1.2. Algorithm Parameters Initializing

On the data preprocessing stage, the satellites and targets information in the scenario is
imported into STK in batches by MATLAB, and the visible window information of payload
and target is obtained through the visible analysis and calculation of STK. On this basis, the
adaptive PSO algorithm is then called for task scheduling. The main parameters of the PSO
algorithm are set as follows: particle population set to 50, PSO maximum iteration number
set to 100, acceleration coefficients c1 = c2 = 1.5, inertia weighted parameter λmax = 0.9,
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λmin = 0.4. The indication of early termination is that best fitness value of population has
not been improved for 15 consecutive generations. The length of memory table L is set as 5.

4.1.3. Typical Algorithms for Comparison

This paper selects the centralized genetic algorithm (CGA) [40], the centralized particle
swarm algorithm (CPSOA) [41], and the centralized tabu search algorithm (CTSA) [16] and
compares their performances in different cases with the DMSA proposed in this paper.

4.1.4. Simulation Results Analysis

The simulation results of different cases are shown in Table 3. Generally speaking,
with the increase in the number of satellites and the number of targets, the overall planning
payoff is on the rise, but due to the increase in the complexity of the problem, the scheduling
process also consumes more time.

Table 3. Simulation results in different cases.

Case
No.

Case DMSA CGA CPSOA CTSA

Sat Tar Profit CR RT(s) Profit CR RT(s) Profit CR RT(s) Profit CR RT(s)

No.1 6 30 19 0.93 4.6 19.8 0.97 9.6 20.2 0.97 32.9 20 0.95 5.3
No.2 6 50 31.2 0.96 4.8 29.3 0.90 21.5 31.6 0.96 38.7 30.4 0.94 7.8
No.3 6 100 64.2 0.99 17.1 59.4 0.96 45.4 64.5 1 48.8 59.3 0.91 21.2
No.4 8 100 60.7 0.98 19.9 57.9 0.92 56.2 61.6 0.98 78.6 57.2 0.86 20.8
No.5 8 150 91.9 0.87 28.2 93.8 0.89 126.6 98.9 0.96 168.5 90.3 0.85 31.2
No.6 16 150 93.4 0.91 28.8 95.3 0.93 272.6 100.3 1 370.7 90.1 0.84 43.7
No.7 16 200 123.6 0.93 29.7 121.2 0.91 353.3 126.2 1 468.2 119.4 0.87 48.6

Comparison and Analysis for Performances of Optimization Algorithms

From the perspective of search strategies among mentioned algorithms, CPSOA and
CGA are both global search algorithms, while CTSA focuses on searching local solution
space. From Figure 6, we can see that, when the problem scale is small, there is little differ-
ence between performances of different algorithms; due to CTSA’s local search strategy,
it has a considerable advantage in calculation speed over other centralized scheduling
algorithms. With the increase of the problem scale, the superiority of the CPSOA’s strong
global search ability is reflected. In all experimental cases, CPSOA can output a scheduling
plan with the highest payoff and completion rate, while CGA and CTSA fall much more
easily into a local optimum.

Figure 6. Payoff and scheduling time. Histogram shows the payoff of different algorithms’ optimiza-
tion results, while the curve shows the scheduling time.

Comparison and Analysis for Scheduling Method

From the perspective of scheduling methods, though the overall payoff will be lower
than that of centralized scheduling, the distributed mission scheduling method has signif-
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icant advantages in scheduling time. This is because the method of assigning targets to
individuals for single-satellite scheduling is helpful in reducing the search areas of solution
space, thereby improving the solving efficiency. Comparing the scheduling time between
CPSOA and DMSA (as shown in Figure 7), we can see that when the scale of the problem
increases, DMSA will not experience a sharp increase in scheduling time like CPSOA.
Moreover, only the number of satellites increases while the number of targets remains
unchanged, and the scheduling time of DMSA does not increase significantly, which fully
demonstrates the advantages of the distributed system using decentralized management
and control, that is, the addition or deletion of nodes will not affect the stability of the
system. Individuals in the system can maintain contact and collaboration with each other
through communication, while simultaneously remain relatively independent, which can
greatly enhance the flexibility and robustness of the distributed system.

Figure 7. Comparison of scheduling time between DMSA and CPSOA.

4.2. Case Study for DMSA in Dynamic Scheduling
4.2.1. Scenario Setting

To verify the effectiveness of DMSA in dynamic scheduling, we set up several cases
that involve emergency circumstances. In the first scenario, 30 initial point targets are
randomly generated; target parameters are shown in Table 4. Moreover, another 5 high
priority targets are added as emergency missions to test the dynamic scheduling algorithm,
as shown in Table 5. We set a constellation of 2 orbital planes with 3 EOSs on each plane,
payload types (visible light and microwave) and resolution of the EOSs are also randomly
generated, as shown in Table 6.

4.2.2. Algorithm Parameters Initializing

For the initialization of ATSA, the length of the tabu list is dynamically determined
by the maximum number of unscheduled tasks in the current solution (larger number
leads to longer length), and the neighborhood scale is set to 5. The TS global maximum
iteration number is set to 150, and the local maximum iteration number is set adaptively
according to times of calling different TS (later iteration leads to smaller local maximum
iteration number). The global early termination indication is that the task completion rate
(the proportion of scheduled task in all tasks that can be observed) reaches at least 98%.

4.2.3. Simulation Results Analysis

After iterations of APSOA in static scheduling, the initial plan is output, as shown
in Table 7. In the initial plan, visible light Target17 is not allocated any satellite resources
because of limitation in time window (the target cannot be observed by any optical payload
satellite due to lighting constraints). Then, we set an emergency circumstance where a
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satellite malfunction occurs: Target8, Target12, and Target21 cannot be observed as planned.
Moreover, 5 emergency targets with high priority are added. After dynamic scheduling,
for those initial targets with malfunction problems, microwave Target8 and Target12 are
rescheduled to new satellite resources with new time windows; visible light Target30 is
deleted from plan due to limited time window. For those newly arrived missions, all targets
except for the visible light Target31 are directly inserted to new scheduling plan. Target31
is deleted because it cannot be observed by any satellite.

Table 4. Initial target parameters.

Target ID Priority Geographical
Position

Observation
Type

Resolution
Requirement

Target1 4 (113◦ W, 56◦ N) microwave 0.7
Target2 4 (176◦ W, 43◦ N) microwave 0.8
Target3 4 (121◦ W, 29◦ S) visible light 0.5
Target4 3 (40◦ W, 11◦ S) microwave 0.8
Target5 4 (113◦ E, 49◦ S) microwave 0.7
Target6 5 (160◦ W, 55◦ S) visible light 0.6
Target7 4 (32◦ E, 26◦ N) microwave 0.8
Target8 2 (89◦ E, 33◦ S) microwave 0.9
Target 9 3 (153◦ W, 27◦ S) microwave 0.9
Target10 3 (112◦ E, 12◦ S) microwave 0.9
Target11 5 (36◦ W, 19◦ S) visible light 0.4
Target12 4 (9◦ W, 60◦ N) microwave 0.8
Target13 2 (7◦ W, 47◦ N) visible light 0.5
Target14 4 (119◦ W, 51◦ N) microwave 0.8
Target15 2 (78◦ E, 43◦ N) microwave 0.9
Target16 4 (89◦ W, 9◦ N) microwave 0.8
Target17 4 (141◦ E, 2◦ S) visible light 0.5
Target18 2 (42◦ W, 32◦ N) visible light 0.4
Target19 1 (17◦ W, 49◦ N) visible light 0.6
Target20 5 (78◦ E, 37◦ S) microwave 0.7
Target21 3 (15◦ E, 18◦ N) visible light 0.5
Target22 2 (43◦ E, 28◦ N) microwave 0.7
Target23 2 (151◦ E, 4◦ N) microwave 0.9
Target24 4 (137◦ W, 18◦ N) microwave 0.8
Target25 4 (49◦ W, 44◦ N) visible light 0.5
Target26 2 (13◦ W, 44◦ S) microwave 0.9
Target27 1 (46◦ W, 45◦ N) microwave 0.8
Target28 3 (113◦ E, 19◦ N) visible light 0.3
Target29 2 (171◦ W, 44◦ S) visible light 0.3
Target30 4 (35◦ W, 58◦ N) visible light 0.4

Table 5. Emergency targets parameters.

Target ID Priority Geographical
Position

Observation
Type

Resolution
Requirement

Target31 5 (102◦ W, 18◦ S) visible light 0.4
Target32 5 (45◦ W, 17◦ N) microwave 0.8
Target33 5 (7◦ E, 30◦ N) microwave 0.7
Target34 5 (110◦ E, 32◦ S) microwave 0.7
Target35 5 (86◦ W, 54◦ S) visible light 0.6

Table 6. Satellite Information.

S1 S2 S3 S4 S5 S6

Type Sar Opt Sar Sar Opt Opt
Resolution 0.5 0.3 0.7 0.7 0.5 0.3
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Table 7. Initial scheduling plan.

Target ID Priority Satellite ID Start Time End Time

Target1 4 S4 0:33:27 0:37:36
Target2 4 S4 14:42:52 14:49:05
Target3 4 S5 22:48:53 22:51:50
Target4 3 S3 2:08:03 2:13:17
Target5 4 S3 17:52:24 17:58:03
Target6 5 S5 0:33:25 0:36:08
Target7 4 S1 10:22:50 10:29:23
Target8 2 S4 9:01:19 9:07:56
Target9 3 S4 12:48:30 12:54:09
Target10 3 S1 4:06:20 4:12:45
Target11 5 S6 17:23:42 17:26:11
Target12 4 S3 23:12:30 23:15:20
Target13 2 S5 16:01:22 16:04:26
Target14 4 S4 9:58:56 10:01:40
Target15 2 S1 17:45:33 17:51:46
Target16 4 S1 18:19:39 18:25:49
Target17 4 unscheduled / /
Target18 2 S2 14:42:15 14:44:01
Target19 1 S6 17:05:26 17:07:41
Target20 5 S3 19:32:21 19:38:55
Target21 3 S2 11:32:14 11:33:18
Target22 2 S4 11:59:12 12:05:39
Target23 2 S3 13:29:07 13:35:10
Target24 4 S1 9:48:14 9:49:59
Target25 4 S6 18:43:41 18:46:45
Target26 2 S1 12:18:22 12:20:52
Target27 1 S3 2:21:50 2:24:20
Target28 3 S6 7:44:52 7:47:51
Target29 2 S2 22:53:34 22:56:37
Target30 4 S2 14:34:52 14:37:03

As shown in Table 8, it can be seen that in this scenario, 29 of 30 targets are scheduled
under regular circumstances. After dynamic scheduling, 91.4% of targets are observed with
only 10.3% change to the initial plan, 89.3% of priorities are executed, 75% of emergency
targets are allocated satellite resources, and the evaluation function value is 0.86. The
number of targets executed by optical satellites (S2, S5, and S6) are 4, 3, 4, while the number
of SAR satellites (S1, S3, and S4) are 8, 6, 7. It indicates that missions are allocated in a
balanced way among satellites; the scheduling result is shown in Figure 8. It is noteworthy
that unscheduled targets are all visible light targets, and during the whole scheduling
period, Target17 and Target31 cannot be observed by any optical satellites. Moreover,
because the Walker constellation is on the sun-synchronous orbit, Target30 can only be
observed by S2 for once. Consequently, missed observing opportunity in the initial plan will
lead to failure of observation after dynamic scheduling. Therefore, the result shows that the
algorithm can efficiently make adjustments after an emergency happens and guarantee the
stability of the initial scheduling plan. Targets with high priority and sufficient observation
windows will be scheduled with satisfactory effect.

Several more experimental cases are conducted in this section to verify the effective-
ness of the proposed method. Six scenarios with different satellites and resources are setup,
and the evaluation function defined in Section 3.4.3 is performed to evaluate the schedul-
ing results. Computational complexity is measured by the elapsed CPU time. Detailed
evaluation results are shown in Table 9.
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Table 8. Dynamic scheduling plan.

Target ID Priority Satellite ID Operation Start Time End Time

Target8 2 S4→S1 reschedule 17:27:06 17:29:43
Target12 4 S3→S1 reschedule 11:52:48 11:56:00
Target30 4 S2→none delete / /
Target31 5 unscheduled delete / /
Target32 5 S3 insert 15:48:54 15:52:55
Target33 5 S4 insert 15:11:49 15:18:07
Target34 5 S4 insert 7:28:31 7:30:58
Target35 5 S2 insert 16:29:58 16:32:00

Figure 8. Gantt chart of dynamic scheduling.

Table 9. Simulation results of dynamic scheduling.

Case
No.

Satellite
Number

Initial
Targets
Number

Malfunction
Targets

Newly
Arrived
Targets

CR PR IR ER
Run Time
of Initial
Plan(s)

Run Time of
Dynamic

Plan(s)

Evaluation
Function

No.1 3 25 0 5 0.967 0.969 0 1 4.2 1.2 0.98
No.2 6 50 5 10 0.950 0.974 0.102 0.867 5.3 1.5 0.92
No.3 8 50 10 20 0.971 0.981 0.22 0.967 6.1 2.4 0.92
No.4 8 100 15 30 0.915 0.932 0.196 0.911 18.7 3.7 0.89
No.5 12 100 15 35 0.933 0.938 0.188 0.96 20.2 5.3 0.91
No.6 16 200 20 40 0.979 0.981 0.12 0.983 31.4 8.1 0.96

It shows that as the scale of the scenarios increases, the elapsed CPU times of both
regular and dynamic scheduling exhibit an increasing trend. The average CR of 0.953
indicates our method can schedule most of the targets in the scenarios. It is noteworthy
that PR is always higher than CR, and the average ER is 0.948, both of which indicate
that targets with high priority are more likely to be scheduled. The IR is related to the
proportion of emergency targets to initial targets, we can see that in the 3rd scenario where
the proportion is the largest ((10 + 20)/50 × 100% = 60%), the change to initial plan after
dynamic scheduling is also the largest. The running times of dynamic scheduling are much
shorter than those of static scheduling, and this is because the strategy in ATSA will trim
the searching space which leads to a quicker convergence.

Some may be concerned that our trimming method is reducing computational com-
plexity at the cost of losing potential to find a global optimum, but we can see the CR
and PR values are both at satisfactory level. Every time ‘old’ TS stops its iteration and
updates its solutions’ structure, the ‘new’ TS searches the observation set again and tries
new windows combinations of unscheduled targets. A new revenue check and de-conflict
process will be calculated to see whether the scheduled targets can be substituted or deleted
due to insertion of new ones, which can exploit new parts of the searching space. Moreover,
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the tabu list will memorize the last ‘moves’ and avoid repeated search, which helps to
prevent easy convergence to a local optimal.

5. Conclusions and Future Work

Aiming at efficient mission scheduling for earth observation distributed satellite
systems, this paper addresses the problem by learning from game theory. We firstly
propose DMSA which views each satellite as a rational player that focuses on maximizing
its payoff through cooperation with neighbors, and we adopt the idea of Nash Equilibrium
to guarantee convergence to a near global optimal scheduling plan. To achieve static and
dynamic scheduling circumstances, we propose APSOA and ATSA, respectively, and set
experimental cases to evaluate their effectiveness. The simulation results show that, in
static scheduling, our method can effectively overcome the shortcomings of centralized
methods in large-scale mission scheduling scenarios, such as a sharp increase in scheduling
time and slow convergence. The distributed mission scheduling method can flexibly deal
with different scales of problem scenarios. The algorithm performance will not decrease
significantly with the increase in the problem scale and can stably and efficiently obtain
the near global optimal solution whose performance is slightly lower than that of the
centralized scheduling. In dynamic scheduling, high priority targets will take precedence in
execution, and most of the emergency targets will be dynamically scheduled in a relatively
short time without major changes to the initial plan. To conclude, the proposed method
yields a high scheduling revenue and low scheduling cost and provides a way of solving
the DEOS scheduling problem with scalability, adaptability, efficiency, and effectiveness. It
has potential to be further applied to more complex scenarios.

In future work, we will introduce new constraints and update our optimization
strategy to make the scheduling model more comprehensive and robust and study the
emergency demand analysis mechanism to transform user needs with precision and effi-
ciency. Moreover, we will explore the distributed collaborative scheduling mechanism with
restricted communication environments to meet the demands of more complex satellite
scheduling problems in the real world.
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Appendix A

The pseudo code for APSOA is shown as follows:

Algorithm A1 APSOA

Input: Targets Set Ti, acceleration coefficients c1,c2, inertia weighted parameters,
last action ai

t−1, last payoff Ui
t−1,

Output: Ui
t, BRi

t

Procedure:1. Randomly generate current swarm according to Ti;
2. Insert last action ai

t−1 to current swarm;
3. for each iteration g = 1,2 . . . do
4. for each particle p = 1,2 . . . do
5. De-conflict and calculate the profit;
6. Compare and substitute the individual optimal and global optimal;
7. Update particle’s location and velocity in (16);
8. Boundary condition processing;
9. end for
10. end for
11. Compare the best Ui

t of swarm with Ui
t−1, and select a with

higher Ui as BRi
t;

vij(t + 1) = λ·vij(t) + c1r1(t)[pij(t)− xij(t)] + c2r2(t)[pgj(t)− xij(t)]

xij(t + 1) = xij(t) + vij(t + 1)
(A1)

where particle population P = (X1, X2, . . . , XN) is randomly generated, and each particle
Xi = (xi1, xi2, . . . , xiD) is a solution that will be further iterated. D is the dimension of the
solution (it refers to the number of targets in this paper), and all the components in Xi
together determine the position of Xi. Each particle has a velocity Vi = (vi1, vi2, . . . , viD);
velocity controls the speed and direction of particle evolution. The individual optimal so
far is pbest = (pi1, pi2, . . . , piD), and the global optimal is gbest = (g1,g2, . . . ,gD).

Appendix B

The pseudo code for ATSA is shown as follows:

Algorithm A2 ATSA

Input: Targets Set Ti, neighborhood size Ca, termination parameters, last action ai
t−1,last payoff

Ui
t−1,

Output: Ui
t, BRi

t

Procedure:
1. for each satellite s = 1,2 . . . do
2. Find allocated but unscheduled targets and update solution structure;
3. for each global iteration g = 1,2 . . . do
4. Initialize local iteration parameters, including tabu list length, localmaximum
iteration number, etc.;
5. for each local iteration l = 1,2 . . . do
6. Generate the neighborhood solution and calculate payoff respectively,
and retain the solution with maximum as candidate solution;
7. Update the current solution with candidate solution and best
solutionso far with the candidate solution if aspiration judgement is satisfied;
8. Update tabu-list;
9. end for
10. end for
11. end for
12. Compare the best Ui

t with Ui
t−1, and select a with higher Ui as BRi

t;
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