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Abstract: A significant number of postural orthostatic tachycardia syndrome (POTS) patients have
platelet delta granule storage pool deficiency (δ-SPD). The etiology of POTS is unknown but a number
of laboratories, including ours, have reported elevations of G-protein-coupled adrenergic receptor and
muscarinic acetylcholine receptor autoantibodies in POTS patients, detected by a variety of techniques,
suggesting that the disorder is an autoimmune condition. Thus, it could also be considered an
inflammatory disease. In a pilot study, we investigated a limited number of platelet-related cytokines
and chemokines and discovered many that were elevated. This case–control study validates our pilot
study results that POTS patients have an activated innate immune system. Plasma of 35 POTS patients
and 35 patients with unexplained bleeding symptoms and categorized as “non-POTS” subjects was
analyzed by multiplex flow cytometry to quantify 16 different innate immune system cytokines and
chemokines. Electron microscopy was used to quantify platelet dense granules. Ten of 16 biomarkers
of inflammation were elevated in plasma from POTS patients compared to non-POTS subjects, with
most of the differences extremely significant, with p values < 0.0001. Of particular interest were
elevations of IL-1β and IL-18 and decreased or normal levels of type 1 interferons in POTS patients,
suggesting that the etiology of POTS might be autoinflammatory. All POTS patients had δ-SPD. With
a growing body of evidence that POTS is an autoimmune disease and having elevations of the innate
immune system, our results suggest a potential T-cell-mediated autoimmunity in POTS characteristic
of a mixed-pattern inflammatory disease similar to rheumatoid arthritis.

Keywords: POTS; tachycardia; cytokine; inflammation; syncope; platelet; storage pool deficiency;
innate immune system activation

1. Introduction

Postural orthostatic tachycardia syndrome (POTS) is a condition of orthostatic intoler-
ance with a racing heart and a multitude of symptoms, induced upon standing and relieved
when becoming supine [1]. Common nonspecific symptoms reported with POTS include
exercise intolerance, fatigue, lightheadedness, palpitations, nausea, headache, diminished
concentration (“brain fog”), near syncope, and syncope. It is a debilitating disorder, af-
fecting an estimated 1% of the population and likely more with the numerous reports in
the literature of COVID-19 “long haulers” exhibiting many of the symptoms described by
POTS patients; a number of these patients have actually been diagnosed with POTS [2–6].
The disorder was likely first described in 1871 by Da Costa, who described all of the features
of POTS mentioned above; it was formally monikered in 1993 by Schondorf and Low, yet,
even today, it is not well recognized in the medical community, nor has an etiology been
established [1,7]. Unfortunately, as many as 75% of affected individuals are misdiagnosed
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or referred for psychological consultation [8–11]. The diagnosis requires the presence of
chronic orthostatic intolerance associated with an increased heart rate of ≥30 beats per
minute (BPM) from the supine or sitting basal rate, or a rate that exceeds 120 BPM when
standing or by an upright tilt test that occurs within 10 min [1,12]. There is also an absence
of orthostatic hypotension, a duration of symptoms for at least 6 months, and the absence
of a number of conditions that could explain sinus tachycardia [1]. There is a growing body
of evidence suggesting that POTS is an autoimmune disease [13–18].

We have reported that a number of symptoms observed in POTS may be related to a
platelet deficiency of granules that contain stores of serotonin, called platelet delta granule
storage pool deficiency (δ-SPD) [8]. Platelet δ-SPD is an autosomal dominant inherited dis-
order but may also be acquired; there are many documented genetic associations including
autoimmune diseases [9,10]. We have empirical evidence that the acquired δ-SPD may be
related to viral infection and/or chronic inflammation and, based upon this, we explored
a number of cytokines and chemokines related to platelet activation in a limited number
of POTS patients that had elevations of G-protein-linked autoantibodies against the alpha
1 adrenergic receptor [11]. We reported that a number of inflammatory biomarkers were
significantly elevated, but, as a pilot study, our experimental design was incomplete. The
platelet is an essential element of the innate immune system, especially in defense of viral
infections [12–14]. With associations of viral infections as a potential etiology of POTS and
evidence that many COVID-19 long haulers are developing POTS, platelets may also play
a significant role in the etiology or perpetuation of the disorder.

The purpose of the current study was to expand the number of inflammatory biomark-
ers we had previously evaluated in a case–control study of POTS and non-POTS patients.
Our hypothesis was that POTS has elevations of cytokines and chemokines indicating
innate immune cell activation characteristic of an autoinflammatory disease. These bio-
chemicals may be induced by the release of substances contained in the platelet storage
pool that prolong autoimmunity. The specific aims of the investigation were (1) to de-
termine the potential that POTS might be an autoinflammatory condition rather than an
autoimmune disease, and (2) to validate our previous results that POTS patients have
significant elevations of innate immune system biochemicals that are related to the platelet
as an immune cell.

2. Materials and Methods
2.1. Patients

Our retrospective case–control study was approved by the Institutional Review Board
of The University of Toledo Medical Center. Platelet-poor plasma (PPP) from 35 patients
diagnosed with POTS and 35 patients without POTS was assayed for a number of biomark-
ers of inflammation that we have previously reported [11]. The specific inflammatory
biomarkers included in this investigation were selected based upon descriptions in the
literature related to platelet activation [15–20]. All POTS patients had histories of orthostatic
intolerance manifested by orthostatic tachycardia, weakness, light-headedness, fatigue, and
near syncope for at least 6 months or longer and were diagnosed with primary POTS in our
Syncope and Autonomic Disorders Clinic. The diagnosis was based upon clinical history,
physical examination, and head-upright tilt table analysis in the fasting state. Blood chem-
istry analysis and thyroid profile analysis were included during diagnostic workups. These
patients had also exhibited bleeding symptoms and peripheral blood had been submitted
to assess platelet dense granules for δ-SPD to explain these symptoms. The control subjects
did not include anyone diagnosed with POTS, but they had been evaluated for a potential
platelet function disorder and found to have a normal number of platelet dense granules.

All subjects had a complete blood cell count (CBC) and a mean number of platelet
dense granules determined. We have previously reported that more than 80% of patients
diagnosed with POTS have δ-SPD.
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2.2. Platelet Preparations for Electron Microscopy

Platelet-rich plasma (PRP) was obtained from whole blood by centrifugation at room
temperature for 15 min at 200 g. Electron microscopy coated copper grids used for platelet
support were washed with deionized water following PRP incubation and air-dried. A
FEI Tecnai G2 Spirit BioTwin transmission electron microscope (TEM, Hillsboro, OR) was
used to determine the average number of DG/PL (Figure 1). Previous studies from this
laboratory have established a normal value of 4.64 ± 0.11 (mean ± 1 SE DG/PL), consistent
with the established literature [9,21,22].
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2.3. Inflammation Biomarker Preparations

A custom RayPlex® Human Multiplex Bead Array was purchased to assess 16 cy-
tokine/chemokine biomarkers from RayBiotech, Inc. (Peachtree Corners, GA 30092, USA),
including IL-1β, IL-6, IL-8, IL-10, IL-17, IL-18, IL-21, INFα, INFβ, INFγ, TNFα, CD30,
CD40, sCD40L (CD154), MCP-1 (chemokine ligand 2/CCL2), and CCL5 (RANTES), all
of which have been associated with inflammation and/or platelet activation. The multi-
plex bead system for flow cytometry allowed for simultaneous quantification of the cy-
tokines/chemokines. During validation of the custom beads, it was determined that INFα
could not be included due to detection limits, and a standard sandwich-based ELISA was
utilized to quantitate the interferon. Validation and quantitation for all targets was made
by comparison with specific protein concentrations for each cytokine/chemokine from
standard curves. All samples were analyzed by RayBiotech in Peachtree Corners, Georgia.

2.4. Statistical Methods

Unless otherwise stated, data are presented as mean + 1 standard error of the mean
(SE). Descriptive statistics were calculated using R statistical software (R Core Team, R
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/,

https://www.R-project.org/
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accessed on 2 August 2021). Univariate analysis of variance, Tukey HSD, and linear
discriminant analysis were utilized to analyze cytokine and chemokine concentration
variances between groups, and a Student t test and Mann–Whitney Rank Sum test were
used to compare the mean PL/DG and CBC results between groups. SigmaPlot software
(version 14.5, Systat Software, Inc. Palo Alto, CA, USA) was also used to produce graphs
for the manuscript.

3. Results

The mean age of subjects in study groups was not statistically different (mean age
for POTS patients was 22.2 ± 2.9 and non-POTS subjects was 22.0 ± 2.0). However, POTS
patients were found to have a mean of 2.65 ± 0.22 DG/PL (normal = 4.64 ± 0.11), which is
consistent with δ-SPD, in contrast to non-POTS subjects, who had normal numbers of DGs
(4.95 ± 0.11 DG/PL) (p < 0.0001). There was no statistical correlation found with any of the
hematologic factors measured (CBCs), except the hematocrit between groups. The POTS
patients had a lower hematocrit (33.1%; lower than normal (36.1–44.3%)) compared with
non-POTS subjects (44.1%, p < 0.008).

Highly significant differences were found between groups for 11/16 of the cytokine/
chemokine plasma concentrations evaluated (Table 1). Differences in IL-1β, IL-10, IL-
17, INFγ, and RANTES (CCL5) were striking, with each having p values < 0.0001. All
differences identified were increased concentrations of innate immune cytokines in POTS
subjects, except for the type 1 interferon INFα, which was decreased in POTS (0.06 ± 0.04)
when compared to the plasma concentration of the control group (223 ± 67, p < 0.002). No
difference was found between groups for CD40, CD40L (CD154), IL-8, INFβ, or TNFα.

Table 1. Inflammatory biomarkers in POTS patients.

Cytokine/
Chemokine

POTS
(n = 35)
(pg/mL)

Non-POTS
(n = 35)
(pg/mL)

p Value Source Major Function

CD30 3638 ± 822 160 ± 12 p < 0.0002 Activated T and B Regulates cell proliferation

CD40 340 ± 165 452 ± 171 ns B cell, Mac TLR7 PLT–neutrophil tethering

CD40 L (CD154) 31 ± 13 6.7 ± 0.8 ns Platelets, Mono Recruits neutrophils and monocytes

IL 1β 38 ± 8 4.4 ± 0.9 p < 0.0001 Mono/Mac, PLTs Proinflammatory

IL-6 119 ± 18 58 ± 9 p < 0.003 Th Cells, Mac Differentiates B cells to plasma cells

IL-8 (CXCL8) 145 ± 49 157 ± 25 ns Mono, Neutro Chemotaxis, proinflammatory

IL 10 24 ± 4 5.5 ± 1.0 p < 0.0001 T cell Anti-inflammatory

IL-17 93 ± 20 4.2 ± 0.7 p < 0.0001 Th17 Proinflammatory

IL-18 207 ± 67 21 ± 9 p < 0.009 Mono Proinflammatory, IL-1 family

IL 21 9025 ± 1875 2937 ± 517 p < 0.003 T cell Controls NK and T cells

INFα 0.06 ± 0.04 223 ± 67 p < 0.002 Leukocytes Anti-viral, phagocyte cell activation

INFβ 8219 ± 2230 6334 ± 3267 ns Fibroblasts Anti-viral, anti-proliferative

INFγ 8.5 ± 1.7 1.2 ± 0.2 p < 0.0001 NK, Th1
Antiviral, increases Neut and

Mono function

MCP1 (CCL2) 441 ± 102 13 ± 2 p < 0.0002 Endo, PLT Recruits monocytes

RANTES (CCL5) 13706 ± 3022 517 ± 297 p < 0.0001 Platelet, NK, T Chemotactic for T cells

TNFα 972 ± 250 506 ± 120 ns Mono, NK Proinflammatory

Elevations of cytokines/chemokines are in red font. Decreases in cytokines/chemokines in blue font.

4. Discussion

This case–control study was intended to validate a pilot study of inflammatory
biomarkers, presumably related to platelets, obtained from POTS patients having ele-
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vated G-protein-coupled autoantibodies [11]. Platelets play a crucial role in hemostasis
but also have a significant role in both innate and adaptive immunity [16,23,24]. Platelets
contain cytokines and chemokines known to modulate the effects of leukocytes as either
pro- or anti- inflammatory agents [16,25,26].

Our pilot study provided data that suggested that the innate immune system might
have a significant role in the etiology of POTS. In fact, our limited data suggested that
POTS could be T-cell-mediated. Unfortunately, we did not include an investigation of type
1 interferons to allow us to distinguish an autoinflammatory process from autoimmunity.
In addition, we did not evaluate IL-17 levels in plasma; the cytokine plays a significant role
in both innate and adaptive immune responses and there is a growing body of evidence
suggesting that IL-17 is elevated in autoimmune disorders [27,28].

Specific aim 1 addressed the potential that POTS might be an autoinflammatory con-
dition rather than an autoimmune disease. To evaluate this, we measured the plasma
concentrations of IL-1β, IL-18 (an IL-1 “family” member), the type 1 interferons INFα and
INFβ, and the type 2 interferon INFγ. IL-1 and type I interferons are diametrically op-
posed; inflammatory disorders with elevations of IL-1 are categorized as autoinflammatory
whereas conditions with elevations of type 1 interferons are characteristic of autoimmune
diseases [29,30]. POTS patients evaluated in this study had significant elevations of IL-1β
compared to non-POTS subjects (p < 0.0001), as well as elevations of IL-18 (p < 0.009).
Interferon alpha was significantly decreased in POTS compared to non-POTS subjects
(p < 0.002), whereas no significant difference was found for plasma levels of INFβ. Ele-
vations of type 1 INF appear to be critical mediators of autoimmune disease [31]. These
data provide evidence that POTS is an autoinflammatory condition. However, we and
others have reported that POTS appears to be an autoimmune disorder based upon the
identification of a variety of autoantibodies detected in the blood of POTS patients [32–36].
Antibody production is characteristic of an activated adaptive immune system or that an
individual has been exposed to a foreign antigen; elevations of autoantibodies (antibodies
against self) are a hallmark of autoimmune disease.

Our data strongly suggest that POTS is an autoinflammatory condition, yet the current
literature suggests it is an autoimmune disease. Pure autoinflammatory diseases are
strongly associated with fever; POTS patients are known to have difficulty regulating body
temperature. These conflicting hypotheses can be rationalized by considering that POTS
has a “mixed” inflammatory signature. There are a number of recent reports in the literature
providing evidence of mixed-pattern diseases [29,37–39]. We found that POTS patients had
elevations of the proinflammatory cytokines IL-1β, IL-6, IL-18, and INFγ, which have been
reported in both autoinflammatory and autoimmune diseases and, potentially, are a result
of abnormal NK cell function [40].

Other elevated proinflammatory biomarkers included IL-17 (p < 0.0001), MCP-1
(p < 0.0002), and RANTES (p < 0.0001; an indicator of platelet activation), whereas the
proinflammatory TNFα was found to be at a similar concentration to that in non-POTS
subjects. Interestingly, our pilot study found elevations of TNFα [11]. Tumor necrosis factor
alpha is a cytokine of the innate immune system involved in acute phase reactions and
produced primarily by activated macrophages and by T helper and NKT cells in response to
IL-1 [41]. More recently, TNFα has been reported to induce the inflammasome-independent
production of IL-1β, causing autoimmunity [42]. CD30, which is part of the TNF family
and regulates cell proliferation, was elevated in both our pilot study and this investigation.

CD30 is not expressed on resting or naive T and B cells but is a biomarker of both types
of activated lymphocytes. It is elevated in both autoimmune and chronic inflammatory
diseases [43]. It is released from the surfaces of activated T cells, B cells, and NK cells and
has been used as a biomarker in a number of studies to predict renal allograft rejection [44].
CD30 is cleaved from the surfaces of these activated cells and circulates in the peripheral
blood as soluble (s)CD30. Elevation of CD30, among other biomarkers, has been reported
to be associated with an increased risk for the development of non-Hodgkin lymphoma, as
well as resulting from viral infection such as EBV and HIV [45]. We have postulated that
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a viral infection may be the initiating stimulus for the development of autoantibodies in
POTS; the results reported here are consistent with the premise but it requires additional
research [9,11].

Other regulatory cytokines found to be elevated in this study were IL-10 (p < 0.0001)
and IL-21 (p < 0.003); these biomarkers would be expected to be elevated as feedbacks to
turn-off the innate immune system. One of the major functions of IL-10 is a suppressive
effect on T cell subsets as an anti-inflammatory cytokine, principally secreted by Treg
cells [41]. IL-21 is produced by CD4 + T cells, natural killer T cells (NKT), and follicular
helper T cells and induces B cell proliferation and differentiation into plasma cells [41].
Of particular interest, elevation of IL-21 has been reported in autoimmune diseases in-
cluding celiac disease (CD), rheumatoid arthritis (RA), and systemic lupus erythematous
(SLE) [46–48].

Cytokines and chemokines that we found elevated in POTS patients, in contrast to
our non-POTS group, and that have been related to autoimmune diseases, include not
only IL-21, but also IL-1β, INFγ, CD30, and IL-17 [49–51]. Although these biomarkers
are elevated in autoimmunity, as stated previously, they also play significant roles in both
innate and adaptive immune responses. Our data support a mixed-pattern inflammatory
disease to best categorize POTS [29].

The second specific aim of our study was to validate previous results that POTS
patients have significant elevations of innate immune system biochemicals that are re-
lated to the platelet as an immune cell. We have validated our previous results, but
what about the platelet and its role in POTS? POTS patients were found to be platelet
delta granule storage pool deficient (δ-SPD), with a mean of 2.65 ± 0.22 DG/PL, com-
pared to our non-POTS group, which had normal numbers of DGs (4.95 ± 0.11 DG/PL)
(p < 0.0001; normal = 4.64 ± 0.11). As previously mentioned, δ-SPD is usually considered
an autosomal dominant inherited disorder but may also be recessive and/or acquired.
Consequently, why do POTS patients have platelet δ-SPD? If the subjects in our study had
inherited δ-SPD, it might be possible that δ-SPD is a risk factor for susceptibility to POTS.
However, it may be a biomarker of innate immune system activation. We have empirical
data that suggest that platelet δ-SPD may be acquired in viral infections (Epstein–Barr
virus) and in cases of chronic inflammation. Platelet δ-SPD has been previously described
in autoimmune diseases including SLE, RA, and Sjögren’s syndrome [52,53]. Since platelets
contain cytokines and chemokines common in both innate and adaptive immunity, it
is possible that the association we have found with platelet δ-SPD is evidence that this
comorbidity is an acquired disorder, suggesting that the platelet may drive the mixed
inflammatory profile of POTS [16,20,54,55]. This is an unanswered question that needs to
be addressed in future investigations, requiring assessments of POTS patients who have
recovered from the disorder. Ideally, such an investigation would include platelet analysis
at the time of POTS diagnosis, and reassessed subsequently, at a sufficient time interval
after the disorder’s resolution.

There are a number of limitations of our study. The study was initiated at the height
of the COVID-19 pandemic, when all existing prospective investigations at our institution
were put on hold and new prospective protocols were not considered by our IRB office.
Thus, we were relegated to a retrospective study with all of the inherent problems related
to such investigations. We lacked specific clinical histories for samples including Beighton
scores used to assess hyperflexibility; some of the POTS patient group may have had
hypermobility spectrum disorders (HSD) or hypermobile Ehlers–Danlos syndrome (h-EDS),
which can be associated with easy bruising. The potential that δ-SPD may be associated
with HSD or EDS rather than POTS cannot be ruled out. We identified POTS samples
based upon clinical test orders of one of our authors (BPG). Non-POTS samples were
selected based upon identifying tests that had been ordered by a number of hematologists
interested in the diagnosis of unexplained bleeding; the selected samples had normal
test results. Our control group should not be considered “normal subjects” as samples in
this group had been evaluated for platelet δ-SPD in patients with unexplained bleeding
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symptoms. It is entirely possible that a few of the non-POTS samples might have had an
under-lying autoimmune disease. Regardless, most of the p values generated by the linear
discriminant analysis utilized to analyze cytokine and chemokine concentration variances
between groups were extremely significant, with p values < 0.0001. We have initiated a
large prospective study to assess an expanded list of cytokines/chemokines and to ensure
that our healthy control group does not include subjects with bleeding symptoms or other
medical conditions. This study is utilizing questionnaires to objectively score bleeding
history, hyperflexibility, and dysautonomia (COMPASS 31).

5. Conclusions

In conclusion, we have validated results described in a previous report that POTS
patients have elevated biomarkers of an activated innate immune system [11]. Although
we postulated that POTS is an autoimmune disease mediated by T cells, similar to RA,
psoriasis, systemic sclerosis, multiple sclerosis, and type-1 diabetes [42,51,56,57], the data
provided herein suggest that POTS is a mixed inflammatory pattern disease. The elevated
IL-1 family cytokines IL-1β and IL-18 are significantly elevated in POTS, a characteristic of
an autoinflammatory disease. However, we and others, using a variety of techniques, have
reported a number of different autoantibodies in POTS patients that would be consistent
with an autoimmune disorder. Type 1 interferons that are characteristic of autoimmune
disease were not elevated in our POTS patients. We currently have a prospective study in
progress to examine the hypothesis that POTS is a T-cell-mediated disorder similar to RA.
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